Lab section:

Lecture section:

I have neither given nor received aid on this examination, nor have I concealed any violation of the Honor Code.
Signature:

EECS 206 Exam 1, 2002-10-3 DO NOT TURN THIS PAGE OVER UNTIL TOLD TO BEGIN!

- This is a 90 minute exam.
- It is closed book, closed notes, closed computer.
- You may use one 8.5x11" piece of paper, both sides, and a calculator.
- Read the questions carefully. They are multiple choice, so there is no partial credit.
- There are 10 problems. The questions are not necessarily in order of increasing difficulty.
- This exam has 5 pages. Make sure your copy is complete.
- Continuing to write *anything* after the ending time is announced will be considered an honor code violation. *Fill out your name etc. above now.*

1.	a	b	c	d	e	f	g
2.	a	b	c	d	e	f	g
3.	a	b	С	d	e	f	g
4.	a	b	c	d	e	f	g
5.	a	b	c	d	e	f	g
6.	a	b	c	d	e	f	g
7.	a	b	c	d	e	f	g
8.	a	b	c	d	e	f	g
9.	a	b	c	d	e	f	g
10.	a	b	c	d	e	f	g

• For each problem, clearly circle the letter for your answer in this table.

Determine the RMS value of the following signal over the support $\{-2 \le t \le 6\}$:

$$x(t) = \begin{cases} 2, & |t| \le 2, \\ -4, & 4 \le t \le 6 \\ 0, & \text{otherwise.} \end{cases}$$

a) 0 b) 1 c) $\sqrt{2}$ d) 2 e) $\sqrt{6}$ f) $\sqrt{8}$ g) none of these

2.

1.

Determine the *fundamental period* of the following signal:

$$x(t) = 3\cos(t+2) + 4\sin(t-2) + 6\cos(t+3) - 7\sin(t).$$

a) 0 b) $\frac{1}{2\pi}$ c) 1 d) 2 e) π f) 2π g) none of these

3.

Determine the *fundamental frequency* of the following signal:

$x(t) = 4\cos(\pi t) + 5\sin(6\pi t).$							
a) 0	b) 1/6	c) 1/3	d) 1/2	e) 2/3	f) 2	g) none of these	

4.

Consider t	he signal							
			$x(t) = 3 \mathrm{c}$	$\cos(2\pi t - \pi/4).$				
Determine the <i>fundamental period</i> of the signal $y(t) = 4x(2(t-3))$.								
a) 0	b) 1/6	c) 1/3	d) 1/2	e) 2/3	f) 2	g) none of these		

5.									
				dura	ation	5			
A signal m	(t) has the f	ene	energy 20						
A signal $x(t)$ has the following characteristics.			averag	e value	2				
				mean-squ	ared value	4			
Determine	the mean-so	quared valu	e of the signal	[,		
				y(t) = 3x	(t) - 2.				
a) 16	b) 24	c) 32	d) 48 e	e) 64	f) insufficie	nt inf	formation	g) none of the	se

6.

Determine the correlation between the following two signals. *Examine the limits carefully!*

• $r[n] = \int$	$(1/4)^n$,	$n \ge 0$				
• $x[n] = \int$	0,	otherwise,				
• $u[n] = \int$	$(4/3)^n$,	$n \leq 0$				
• $y[n] = $	0,	otherwise.				
a) 0	b) 2/3	c) 1	d) 3/2	e) 2	f) 3	g) none of these

7.

The following Matlab code segment would compute and display which one of the following signal characteristics?

$$\begin{array}{rcl} T &=& 2;\\ n &=& 10:1:40;\\ x &=& \mathrm{sqrt}(7) + \mathrm{sin}(2*\mathrm{pi}*\mathrm{n}/5);\\ \mathrm{disp}(\mathrm{sum}(\mathrm{x}.\ 2)) \end{array}$$

a) the average value of $x[n]$
b) the energy of $x[n]$
d) the period of $x[n]$
e) the RMS value of $x[n]$

d) the period of x[n]g) none of these c) the mean-squared value of x[n]
f) the duration of x[n]

8. Consider the signal

$$x(t) = \begin{cases} t - 2, & 2 \le t \le 4\\ 4 - t/2, & 4 \le t \le 8\\ 0, & \text{otherwise.} \end{cases}$$

Determine which of the following figures corresponds to the following signal:

9.

A discrete-time signal x[n] has the following histogram.

10.

Determine (in radians) the value of ϕ in the following equality

$$3\cos(4t - \pi/2) + \operatorname{Re}\left(2e^{j(4t + \pi/2)}\right) = A\cos(4t + \phi).$$

a) $-\pi/2$ b) 0 c) $\pi/2$ d) π e) $3\pi/2$ f) insufficient information g) none of these