$$
\text { Solutions to EECS } 206 \text { Exam 1, 2002-10-3 }
$$

1. $R M S(x)=\sqrt{\frac{1}{8} \int_{-2}^{6} x^{2}(t) \mathrm{d} t}=\sqrt{\frac{1}{8}\left(4 \cdot 2^{2}+2 \cdot 4^{2}\right)}=\sqrt{6}$
(HW 1-1)
2. This is a sum of sinusoidal signals all of which have the same frequency $\omega_{0}=1$, so the fundamental period is $T_{0}=2 \pi / \omega_{0}=2 \pi$.
(HW 1-4a, 3-5a)
3. The fundamental periods of the sinusoids in $x(t)$ are 2 and $1 / 3$, which have least common multiple $T_{0}=2$, so the fundamental frequency of $y(t)$ is $f_{0}=1 / T_{0}=1 / 2$.
(HW 2-2)
4. The fundamental period of $x(t)$ is 1 . The fundamental period of $y(t)$ is half that of $x(t)$, so $T_{y}=1 / 2$. Alternatively, by substitution we have $y(t)=12 \cos (4 \pi t+\phi)$ so $T_{y}=1 / 2$.
(HW 2-2)
5. $M S(a x-b)=a^{2} M S(x)-2 a b M(x)+b^{2}=3^{2} \cdot 4-2 \cdot 3 \cdot 2 \cdot 2+2^{2}=16$
(HW 2-6b)
6. $C(x, y)=\sum_{n} x[n] y[n]=x[0] y[0]=1$
(HW 2-5)
7. sum (x. ${ }^{\wedge} 2$) computes the energy.
(Lab 1)
8. Fig. (e) is $x(t)$ itself. Solving $2-t / 2=2$, the left endpoint of $x(t)$ ends up at $t=0$. Solving $2-t / 2=8$, the right endpoint of $x(t)$ ends up at $t=-12$. So (a) is the correct answer for $y(t)$.
(HW 1-5)
9. $M(x)=6$ and $M(y)=5[M(x)-1]=25$.
(HW 1-3)
10. $3 \mathrm{e}^{-\jmath \pi / 2}+2 \mathrm{e}^{\jmath \pi / 2}=\mathrm{e}^{-\jmath \pi / 2}$, so $\phi=-\pi / 2$.
(HW 3-2a)
The answer $3 \pi / 2$ is also acceptable, although $-\pi / 2$ is preferable since our convention has been to specify phases in the interval $(-\pi,-\pi]$ in this course. Including two possible answers in the choices was an accident, not intentional.

232 students, mean=7.9, std=1.7, hist[3:10] $=\left[\begin{array}{llll}1 & 11 & 15 & 2132515051\end{array}\right]$
EECS 206, Fall 2002, Exam 1

For elaboration on these solutions, please come to office hours.

