Solutions to EECS 206 Exam 1, 2002-10-3

1. $RMS(x) = \sqrt{\frac{1}{8} \int_{-2}^{6} x^2(t) \mathrm{d}t} = \sqrt{\frac{1}{8} (4 \cdot 2^2 + 2 \cdot 4^2)} = \sqrt{6}$	(HW 1-1)
2. This is a sum of sinusoidal signals all of which have the same frequency $\omega_0 = 1$, so the f $T_0 = 2\pi/\omega_0 = 2\pi$.	fundamental period is (HW 1-4a, 3-5a)
3. The fundamental periods of the sinusoids in $x(t)$ are 2 and 1/3, which have least common the fundamental frequency of $y(t)$ is $f_0 = 1/T_0 = 1/2$.	n multiple $T_0 = 2$, so (HW 2-2)
4. The fundamental period of $x(t)$ is 1. The fundamental period of $y(t)$ is half that of Alternatively, by substitution we have $y(t) = 12\cos(4\pi t + \phi)$ so $T_y = 1/2$.	$x(t)$, so $T_y = 1/2$. (HW 2-2)
5. $MS(ax - b) = a^2 MS(x) - 2abM(x) + b^2 = 3^2 \cdot 4 - 2 \cdot 3 \cdot 2 \cdot 2 + 2^2 = 16$	(HW 2-6b)
6. $C(x,y) = \sum_{n} x[n]y[n] = x[0]y[0] = 1$	(HW 2-5)
7. sum(x.^2) computes the energy.	(Lab 1)
8. Fig. (e) is $x(t)$ itself. Solving $2 - t/2 = 2$, the left endpoint of $x(t)$ ends up at $t = 0$. Solving the endpoint of $x(t)$ ends up at $t = -12$. So (a) is the correct answer for $y(t)$.	ving $2 - t/2 = 8$, the (HW 1-5)
9. $M(x) = 6$ and $M(y) = 5[M(x) - 1] = 25$.	(HW 1-3)
10. $3e^{-j\pi/2} + 2e^{j\pi/2} = e^{-j\pi/2}$, so $\phi = -\pi/2$. The answer $3\pi/2$ is also acceptable, although $-\pi/2$ is preferable since our convention has bee	(HW 3-2a) n to specify phases in

The answer $3\pi/2$ is also acceptable, although $-\pi/2$ is preferable since our convention has been to specify phases in the interval $(-\pi, -\pi]$ in this course. Including two possible answers in the choices was an accident, not intentional.

For elaboration on these solutions, please come to office hours.