Name: _____

ID Number: _____

Lab section:

Lecture section:

I have neither given nor received aid on this examination, nor have I concealed any violation of the Honor Code.
Signature:

EECS 206 Exam 2, 2002-11-7 DO NOT TURN THIS PAGE OVER UNTIL TOLD TO BEGIN!

- This is a 90 minute exam.
- It is closed book, closed notes, closed computer.
- You may use two 8.5x11" piece of papers, both sides, and a calculator.
- There are 11 problems. The questions are not necessarily in order of increasing difficulty.
- This exam has 6 pages. Make sure your copy is complete.
- Continuing to write *anything* after the ending time is announced will be considered an honor code violation. *Fill out your name etc. above now.*
- For problem 1, show all of your work.

For problems 2-10, clearly circle the letter(s) for your answer in this table. There are no intentional "none of the above" answers on this exam, but there is always the slim possibility of a typographical error. If you are confident that the correct answer is "none of the above" in any problem, then make a clear mark in this table and show your work clearly near that problem.

Problems 2-4 may require multiple answers, and some partial credit may be awarded for some of these problems. Problems 5-10 each only have a single answer, and no partial credit will be given.

2.	a	b	c	d	e	f	
3.	a	b	с	d	e	f	ľ
4.	a	b	c	d	e	f	
5.	a	b	c	d	e	f	
6.	a	b	c	d	e	f	ľ
7.	a	b	c	d	e	f	
8.	a	b	c	d	e	f	
9.	a	b	c	d	e	f	
10.	a	b	c	d	e	f	Í

1. (14 points)

A discrete-time signal x[n] has the following 8-point DFT:

$$X[k] = \begin{cases} 1, & k \text{ even} \\ 0, & k \text{ odd.} \end{cases}$$

Determine the 8-point DFT of the signal $y[n] = 3 + (-1)^n + x[n]$. Show your work clearly and graph your answer.

2. (6 points)

A discrete-time system has the following input/output relation:y[n] = 2x[n-1] - x[n] + 2.Which of the following correctly describe this system?Circle all that apply on the answer page.a) Linearc) Time-invariante) Causalb) Nonlineard) Time varyingf) Noncausal

3. (10 points)

The following continuous-time signal x(t) is sampled at f_s samples/sec:

 $x(t) = 1 + \sin(20\pi t + \pi/3) + 2\cos(30\pi t - \pi/6) - \cos(10\pi t).$

Which of the following conditions is/are sufficient to ensure that aliasing cannot occur? **Circle all that apply on the answer page.**

a) 15 Hz $< f_{\rm s}$	c) $f_{\rm s} < 60 \; {\rm Hz}$	e) 30 Hz $\leq f_{\rm s}$
b) 20 Hz $< f_{\rm s} \le$ 30 Hz	d) 30 Hz $< f_{ m s} \le$ 60 Hz	f) 30 Hz $\leq f_{\rm s} \leq$ 60 Hz

4. (10 points)

A sinusoidal signal x(t) is sampled at rate $f_s = 100$ Hz yielding the discrete-time signal $x[n] = \cos((\pi/2)n + \pi/5)$. Determine which of the following signals could have been the original x(t).

Circle all that apply on the answer page.

a) $\cos(25\pi t + \pi/5)$	c) $\cos(150\pi t + \pi/5)$	e) $\cos(350\pi t - \pi/5)$
b) $\cos(50\pi t + \pi/5)$	d) $\cos(200\pi t + \pi/5)$	f) $\cos(450\pi t + \pi/5)$

5. (10 points)

6. (10 points)

The spectra of two continuous-time signals x(t) and y(t) are shown below.

7. (10 points)

An AM radio signal is described by

 $x(t) = [10 + \cos(2\pi 500t)]\cos(2\pi 1200t).$

If $x(t)$ is periodic, determined of the second se	nine its t	fundamental	frequency.
---	------------	-------------	------------

	1 2	
a) $x(t)$ is aperiodic	c) 200 Hz	e) 1000 Hz
b) 100 Hz	d) 700 Hz	f) 1200 Hz

8. (10 points)

The 32-point DFT of a set of time samples of a continuous time signal x(t) is given by the following table of values:

k	0	1		12	13	14	15	16	17	18	19	20	 30	31
X[k]	0	0		0	0	- <i>j</i> /2	0	0	0	j/2	0	0	 0	0
a corroct	aond	1 to 1	which	of th	a fall	owing)						-	

These samples correspond to which of the following? a) $\sin(2\pi7000t)$ sampled at 14K samples/sec.

b) $\sin(2\pi7000t)$ sampled at 16K samples/sec.

c) $\sin(2\pi7000t)$ sampled at 18K samples/sec.

d) $\sin(2\pi9000t)$ sampled at 14K samples/sec. e) $\sin(2\pi9000t)$ sampled at 16K samples/sec. f) $\sin(2\pi9000t)$ sampled at 18K samples/sec.

9. (10 points)					
The 2 noint DET	of a signal m[m] is	$_{V[k]} = \int 3/2,$	k = 0		
The 2-point DFT	of a signal $x[n]$ is	$\Lambda[\kappa] = \begin{cases} 1/2, \\ 1/2, \end{cases}$	k = 1.		
Determine the two	o signal values: (x	x[0], x[1]).			
a) (0,1)	b) (0,2)	c) (1,1)	d) (1,2)	e) (2,1)	f) (2,2)

10. (10 points)

Let $\{\alpha_k\}$ denote the Fourier series coefficients of the following periodic signal x(t):

Extra credit problem. (Show all work clearly and box your final answer. No partial credit.)

11. (10 points)

A signal x(t) was sampled without aliasing at rate $f_s = 100$ Hz to yield the following 6-periodic discrete-time signal x[n]:

Find a simple expression for the input signal x(t).