Name: \qquad
ID Number: \qquad
Lab section: \qquad
Lecture section: \qquad
I have neither given nor received aid on this examination, nor have I concealed any violation of the Honor Code.
Signature: \qquad

EECS 206 Exam 2, 2002-11-7

DO NOT TURN THIS PAGE OVER UNTIL TOLD TO BEGIN!

- This is a 90 minute exam.
- It is closed book, closed notes, closed computer.
- You may use two 8.5×11 " piece of papers, both sides, and a calculator.
- There are 11 problems. The questions are not necessarily in order of increasing difficulty.
- This exam has 6 pages. Make sure your copy is complete.
- Continuing to write anything after the ending time is announced will be considered an honor code violation. Fill out your name etc. above now.
- For problem 1, show all of your work.

For problems 2-10, clearly circle the letter(s) for your answer in this table. There are no intentional "none of the above" answers on this exam, but there is always the slim possibility of a typographical error. If you are confident that the correct answer is "none of the above" in any problem, then make a clear mark in this table and show your work clearly near that problem.
Problems 2-4 may require multiple answers, and some partial credit may be awarded for some of these problems. Problems 5-10 each only have a single answer, and no partial credit will be given.

2.	a	b	c	d	e	f
3.	a	b	c	d	e	f
4.	a	b	c	d	e	f
5.	a	b	c	d	e	f
6.	a	b	c	d	e	f
7.	a	b	c	d	e	f
8.	a	b	c	d	e	f
9.	a	b	c	d	e	f
10.	a	b	c	d	e	f

1. (14 points)

A discrete-time signal $x[n]$ has the following 8 -point DFT:

$$
X[k]= \begin{cases}1, & k \text { even } \\ 0, & k \text { odd }\end{cases}
$$

Determine the 8-point DFT of the signal $y[n]=3+(-1)^{n}+x[n]$. Show your work clearly and graph your answer.
2. (6 points)

A discrete-time system has the following input/output relation:
$y[n]=2 x[n-1]-x[n]+2$.
Which of the following correctly describe this system? Circle all that apply on the answer page.
a) Linear
c) Time-invariant
b) Nonlinear
d) Time varying
e) Causal
f) Noncausal
3. (10 points)

The following continuous-time signal $x(t)$ is sampled at f_{s} samples/sec:

$$
x(t)=1+\sin (20 \pi t+\pi / 3)+2 \cos (30 \pi t-\pi / 6)-\cos (10 \pi t)
$$

Which of the following conditions is/are sufficient to ensure that aliasing cannot occur?
Circle all that apply on the answer page.
a) $15 \mathrm{~Hz}<f_{\mathrm{s}}$
b) $20 \mathrm{~Hz}<f_{\mathrm{s}} \leq 30 \mathrm{~Hz}$
c) $f_{\mathrm{s}}<60 \mathrm{~Hz}$
d) $30 \mathrm{~Hz}<f_{\mathrm{s}} \leq 60 \mathrm{~Hz}$
e) $30 \mathrm{~Hz} \leq f_{\mathrm{s}}$
f) $30 \mathrm{~Hz} \leq f_{\mathrm{s}} \leq 60 \mathrm{~Hz}$
4. (10 points)

A sinusoidal signal $x(t)$ is sampled at rate $f_{\mathrm{s}}=100 \mathrm{~Hz}$ yielding the discrete-time signal $x[n]=\cos ((\pi / 2) n+\pi / 5)$. Determine which of the following signals could have been the original $x(t)$.
Circle all that apply on the answer page.
a) $\cos (25 \pi t+\pi / 5)$
b) $\cos (50 \pi t+\pi / 5)$
c) $\cos (150 \pi t+\pi / 5)$
d) $\cos (200 \pi t+\pi / 5)$
e) $\cos (350 \pi t-\pi / 5)$
f) $\cos (450 \pi t+\pi / 5)$
5. (10 points)

Determine which one of the following continuous-time signals corresponds to the above spectrum.
a) $1+\cos (3 \pi t)+2 \sqrt{2} \cos (9 \pi t)$
b) $1+2 \cos (3 \pi t)+\sqrt{2} \cos (9 \pi t+\pi / 4)$
c) $1+2 \cos (3 \pi t)+\cos (9 \pi t)$
d) $1+2 \cos (6 \pi t)+2 \sqrt{2} \cos (18 \pi t+\pi / 4)$
e) $1+\cos (6 \pi t)+\sqrt{2} \cos (18 \pi t-\pi / 4)$
f) $1+\cos (6 \pi t)+\sqrt{2} \cos (18 \pi t)$
6. (10 points)

The spectra of two continuous-time signals $x(t)$ and $y(t)$ are shown below.

Determine the relationship between $x(t)$ and $y(t)$.
a) $y(t)=x(t-\pi / 4)$
b) $y(t)=x(t-\pi / 2)$
c) $y(t)=x(-t)$
d) $y(t)=-x(t)$
e) $y(t)=x(t-1 / 10)$
f) $y(t)=x(t-1 / 20)$
7. (10 points)

An AM radio signal is described by

$$
x(t)=[10+\cos (2 \pi 500 t)] \cos (2 \pi 1200 t) .
$$

If $x(t)$ is periodic, determine its fundamental frequency.
a) $x(t)$ is aperiodic
b) 100 Hz
c) 200 Hz
d) 700 Hz
e) 1000 Hz
f) 1200 Hz
8. (10 points)

The 32-point DFT of a set of time samples of a continuous time signal $x(t)$ is given by the following table of values:

k	0	1	\ldots	12	13	14	15	16	17	18	19	20	\ldots	30	31
$X[k]$	0	0	\ldots	0	0	$-\jmath / 2$	0	0	0	$\jmath / 2$	0	0	\ldots	0	0

These samples correspond to which of the following?
a) $\sin (2 \pi 7000 t)$ sampled at 14 K samples/sec.
b) $\sin (2 \pi 7000 t)$ sampled at 16 K samples/sec.
c) $\sin (2 \pi 7000 t)$ sampled at 18 K samples $/ \mathrm{sec}$.
d) $\sin (2 \pi 9000 t)$ sampled at 14 K samples $/$ sec.
e) $\sin (2 \pi 9000 t)$ sampled at 16 K samples $/ \mathrm{sec}$.
f) $\sin (2 \pi 9000 t)$ sampled at 18 K samples/sec.
9. (10 points)

The 2-point DFT of a signal $x[n]$ is $X[k]= \begin{cases}3 / 2, & k=0 \\ 1 / 2, & k=1 .\end{cases}$
Determine the two signal values: $(x[0], x[1])$.
a) $(0,1)$
b) $(0,2)$
c) $(1,1)$
d) $(1,2)$
e) $(2,1)$
f) $(2,2)$
10. (10 points)

Let $\left\{\alpha_{k}\right\}$ denote the Fourier series coefficients of the following periodic signal $x(t)$:

Determine $\alpha_{5}+\alpha_{-5}$.
a) $\frac{-1}{5 \pi}$
b) 0
c) $\frac{1}{\pi k}$
d) $\frac{\sin ((\pi / 2) k)}{\pi k}$
e) $\frac{2}{5 \pi}$
f) $\frac{1}{10 \pi}$

Extra credit problem. (Show all work clearly and box your final answer. No partial credit.)
11. (10 points)

A signal $x(t)$ was sampled without aliasing at rate $f_{\mathrm{s}}=100 \mathrm{~Hz}$ to yield the following 6-periodic discrete-time signal $x[n]$:

Find a simple expression for the input signal $x(t)$.

