> | Homework \#3, EECS 206, Fall 2002. Due Fri. Sep. 27, by 4:30PM |
| :--- |

Notes

- Review the HW policies on HW1!
- Reading: Sections 2.5, 2.6, 2.8, 3.1-3.4, and Appendix A in textbook, and "Part 3" lecture notes.

Skills and Concepts

- sinusoidal signals
- complex arithmetic
- linear combinations of sinusoidal signals
- phasors
\qquad

1. [10] Text 2.8. (Signal from Matlab code.)
2. [10] Text 2.9. (sin+cos)
3. [10] Text 2.10. (sums of cosines / phasors.)
4. [10] Text 2.11. (complex solution)
5. [10] Text 2.17. (sums of cosines / phasors.)
6. [10] Text 2.19. (sums of cosines / phasors.)
7. [10] Prove that if A and B are positive, then $A \cos (t)+B \sin (t)=\sqrt{A^{2}+B^{2}} \cos \left[t-\tan ^{-1}(B / A)\right]$. Hint: $\cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b)$.
8. [20] Let $x(t)$ and $y(t)$ be the input and output signals, respectively, of a system. Assume that the following input/output relationship describes the system: $y(t)=x(t)-x(t-1)$.
(a) [10] If $x(t)=A \cos \left(\omega_{1} t+\theta\right)$ show that the output $y(t)$ can be written as $B \cos \left(\omega_{2} t+\phi\right)$. Relate B, ϕ and ω_{2} to A, θ and ω_{1}.
(b) [10] Assume that the input $x(t)$ is periodic with period 4 and $x(t)=1$ for $0<t<2$ and $x(t)=0$ for $2<t<4$. Sketch $x(t)$ and $y(t)$.
(c) [0] Comment on your results for parts (a) and (b).
9. [35] (a) [15] Convert the following complex numbers from cartesian form to complex exponential form and plot in the complex plane.

- $z_{1}=1+2 j$
- $z_{2}=2+3 j$
- $z_{3}=1-j$
(b) [10] Evaluate the product of z_{1}, z_{2} and z_{3} by:
- Performing multiplication entirely in cartesian coordinates
- Performing multiplication entirely with the exponential forms of these complex variables.
(c) [10] Evaluate the ratio z_{1} / z_{2} by:
- Performing division by first converting z_{1} and z_{2} to exponential form.
- Performing division by multiplying the numerator and denominatior of z_{1} / z_{2} by z_{2}^{*}.
(d) [0] Which form is easier for multiplication and division? What about for addition and subtraction?

