1.

2.

3.

4.

5.

6.

7.

Homework #3, EECS 206, Fall 2002. Due Fri. Sep. 27, by 4:30PM

Notes_ • Review the HW policies on HW1! • Reading: Sections 2.5, 2.6, 2.8, 3.1-3.4, and Appendix A in textbook, and "Part 3" lecture notes. Skills and Concepts _ • sinusoidal signals • complex arithmetic • linear combinations of sinusoidal signals phasors Problems_ [10] Text 2.8. (Signal from Matlab code.) [10] Text 2.9. (sin+cos) [10] Text 2.10. (sums of cosines / phasors.) [10] Text 2.11. (complex solution) Text 2.17. (sums of cosines / phasors.) [10] Text 2.19. (sums of cosines / phasors.) [10] [10] Prove that if A and B are positive, then $A\cos(t) + B\sin(t) = \sqrt{A^2 + B^2} \cos[t - \tan^{-1}(B/A)]$. Hint: $\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$. 8. [20] Let x(t) and y(t) be the input and output signals, respectively, of a system. Assume that the following input/output relationship describes the system: y(t) = x(t) - x(t-1). (a) [10] If $x(t) = A\cos(\omega_1 t + \theta)$ show that the output y(t) can be written as $B\cos(\omega_2 t + \phi)$. Relate B, ϕ and ω_2 to A, θ and ω_1 . (b) [10] Assume that the input x(t) is periodic with period 4 and x(t) = 1 for 0 < t < 2 and x(t) = 0 for 2 < t < 4. Sketch x(t) and y(t). (c) [0] Comment on your results for parts (a) and (b). (a) [15] Convert the following complex numbers from cartesian form to complex exponential form and plot 9. [35] in the complex plane. • $z_1 = 1 + 2j$ • $z_2 = 2 + 3j$ • $z_3 = 1 - j$ (b) [10] Evaluate the product of z_1, z_2 and z_3 by: • Performing multiplication entirely in cartesian coordinates • Performing multiplication entirely with the exponential forms of these complex variables. (c) [10] Evaluate the ratio z_1/z_2 by: • Performing division by first converting z_1 and z_2 to exponential form. • Performing division by multiplying the numerator and denomination of z_1/z_2 by z_2^* . (d) [0] Which form is easier for multiplication and division? What about for addition and subtraction?