Homework \#4, EECS 206, Fall 2002. Due Fri. Oct. 11, by 4:30PM

Notes

- Review the HW policies on HW1!
- Reading: "Part 3" lecture notes, Ch. 3 of text, 3.4 .5 supplement (on web), Prof. Wakefield's Fourier series "quick primer" (on web)

Skills and Concepts

- spectra of sums of sinusoids
- spectra of periodic signals (Fourier series)

Problems

1. [20] Text 3.3. (plot to signal, points: a10, b5, c5)
2. [30] Consider the signal $x(t)=4+\cos (2 \pi 3 t)+\sin ^{3}(5 \pi t)$.
(a) [10] Express this $x(t)$ as a sum of complex exponential signals. (Use an inverse Euler identity.)
(b) [10] Plot the spectrum (magnitude and phase) of this signal.
(c) [10] Now consider the signal $y(t)=x(2 t)$, and plot the magnitude spectrum of $y(t)$.
(d) [0] Describe how this time scaling affected the spectrum. What about a time shift?
3. [20] Text 3.6. (AM radio)
4. [30] One of the important topics that we will discuss later in the course is filtering, which means processing a signal in a way that amplifies or attenuates various frequency components. The tone controls (bass and treble) in a stereo system are examples of filters: when you "turn up the bass" you are amplifying the low frequency components, and when you "turn down the treble" you are attenuating the high frequency components. This problem is a preview of filters.
You will analyze what happens when a signal $x(t)$ passes through a special kind of filter called a moving average filter. This filter is used frequently in signal analysis to "smooth out" signals. A block diagram for a filter looks like

$$
\text { (Input) } x(t) \rightarrow \text { filter } \rightarrow y(t) \text { (Output). }
$$

For this problem, assume that the input signal $x(t)$ has the spectrum described by the following (amplitude, frequency) pairs $\left\{(2+\jmath 2,-8),\left(4 \mathrm{e}^{-\jmath \pi / 3},-3\right),(1,0),\left(4 \mathrm{e}^{\jmath \pi / 3}, 3\right),(2-\jmath 2,8)\right\}$, where the frequencies are in Hz .
(a) [5] Plot the magnitude spectrum of $x(t)$.
(b) [10] Express $x(t)$ as a sum of sinusoidal signals. Hint: there are three terms, and one of the amplitudes is $4 \sqrt{2}$.
(c) [10] A T-second moving average filter is described by the following formula:

$$
y(t)=\frac{1}{T} \int_{0}^{T} x(t+\tau) \mathrm{d} \tau
$$

Using this formula with $T=1 / 4 \mathrm{~s}$ and the formula for $x(t)$ derived in the previous part, determine $y(t)$. Your integration should give you a sum of a few sinusoidal signals and you should simplify the result using phasor methods.
(d) [5] Plot the magnitude spectrum of $y(t)$.
(e) [0] Describe qualitatively how the spectrum of the output signal compares to the spectrum of the input signal.
(f) [0] Repeat the above for a generic sinusoidal signal $\cos (2 \pi f t)$, and make a plot of the output amplitude as a function of the input frequency f. Does this filter amplify or attenuate the high or low frequency components?
5. [20] Problem 2 in Part 3 lecture notes (Fourier series of simple periodic signals)

Part (a) will not be graded. The answer to part (a) is $\alpha_{k}=T_{0} \cdot \begin{cases}1 / 2, & k=0, \\ \frac{J}{2 \pi k}, & k \neq 0 .\end{cases}$
To do the integral using matlab's symbolic toolbox, you could try the following command.
pretty(int('t * exp(-i*2*pi*k*t)', 't', 0, 1))
6. [25] Problem 4 in Part 3 lecture notes (signal properties from spectra)
7. [5] Problem 6 in Part 3 lecture notes (power of sum of harmonic sinusoids)

Hint: the very hard way to do this would be to use the original power formula in the Part 1 lecture notes. Don't do it that way!
8. [0] Problem 10 in Part 3 lecture notes (Fourier series of even and odd signals)

