Homework \#9, EECS 206, Fall 2002. Due Fri. Nov. 22, by 4:30PM

## Notes

- Review the HW policies on HW1!
- Final Exam: Mon., Dec 16, 4-6 PM, in Chem. 1800.

An alternate time has been posted on the web page under "exams" for those with conflicts.

- Reading: Text Ch. 7.
- Relevant practice problems on the DSP CD: 7.3, 7.4, 7.18, 7.21, 7.25, 7.32, 7.35, 7.46, 7.49


## Skills and Concepts

- z-transform of finite length sequence
- represent z-transform in complex-plane
- Find system (transfer) function directly from a diffeq
- Find frequency response from transfer function

Problems $\qquad$

1. [10] Text 7.1. (z-transform of finite sequences)
2. [10] Text 7.3. (diffeq and response from system function)
3. [15] Text 7.4. (diffeq, system function)
4. [10] Text 7.7. (roots and zplane)
5. [10] Text 7.8abdf. (diffeq to $h[n]$ and $H(z)$ )
6. [15] A filter has input-output relation

$$
y[n]=x[n-1]+\sqrt{2} x[n-2]+x[n-3] .
$$

(a) [5] By taking the Z-transform of both sides of this equation to obtain $Y(z)=H(z) X(z)$ identify the system function $H(z)$.
(b) [5] From the system function of part (a) show that there is a frequency $\hat{\omega}_{o}$ for which the output of the filter equals zero when $x[n]=A \cos \left(\hat{\omega}_{o} n+\phi\right)$ for any $A, \phi$. What is this frequency?
(c) [5] What is the magnitude and phase of the output $y[n]$ when the input is the sinusoid above with $A=10$, $\hat{\omega}_{o}=\pi$ and $\phi=0$ ?
7. [15] Text 7.9ace. (Cascade of two $H(z)$ 's)
8. [15] Text 7.14. (Find output given $H(z)$ and non-periodic input)

As noted in the DSP 1st errata on the web page, the problem statement has a typo; it should be

$$
H(z)=\left(1+z^{-2}\right)\left(1-4 z^{-2}\right)=1-\mathbf{3} z^{-2}-4 z^{-4} .
$$

