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Supplemental Lecture Notes for Ch. 2

Outline for Ch. 2
• Convert between 3 representations of sinusoid

◦ formulax(t) = Acos(ω0t+ φ)
◦ amplitude, frequency (or period), phase
◦ graph/plot

• Simplify sums of sinusoidsof same frequency
◦ trigonometry
◦ phasors

• Complex arithmetic
◦ Euler’s identities
◦ addition/subtraction
◦ cartesian / polar / complex exponential form
◦ multiplication / division
◦ polynomial roots

• Complex exponential signals
• Beat frequencies

Overview of sinusoids

Why?
• Occur in nature

◦ tuning fork
◦ flute
◦ solution to many differential equations

• Engineering systems
◦ power generation (rotating equipment)
◦ laser
◦ oscillator (modulators for comm)

• LTI systems
◦ sinusoid in makes sin out: unique!
◦ motivates considering other signals as sums of sinusoids

Demo: filterdemoc2.m

Demo: show cos( ) + cos( ) examples

Same amplitude sum of cos() is a ”special case”
Need better method...

Demos
• rotating phasor: cos is real, sin is imag
• helix for complex exponential
• cos from sum of two rotating phasors in opposite directions
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Terminology

The book callsr\θ thepolar form for a complex number, and callsre θ thecomplex exponential form. My view is that these
forms are so similar, since they both involve the magnitude and the angle of the complex value, that it is acceptable to refer tore θ

as the “polar form” since it is easier to say (and type) than “complex exponential form.”

Complex division

How do we computez3 = z1/z2 with complex numbers?
• Polar form

z1

z2
=
r1e
 θ1

r2e θ2
=

(
r1

r2

)
e (θ1−θ2)

• Cartesian form (complex conjugate of denominator simplifies this to a multiplication problem)

z1

z2
=
z1z

?
2

z2z?2
=
z1z

?
2

|z2|2
=
x1 +  y1
x2 +  y2

·
x2 −  y2
x2 −  y2

=
(x1x2 + y1y2) +  (x2y1 − x1y2)

x22 + y
2
2

=

(
x1x2 + y1y2
x22 + y

2
2

)
+ 

(
x2y1 − x1y2
x22 + y

2
2

)

Example. Findz1/z2 whenz1 = 16e− 2π/3 andz2 = 4−  4
√
3.

• Cartesian solution desired
z1 = 16e

− 2π/3 = 16(−1/2− 
√
3/2) = −8−  8

√
3

z1

z2
=
−8−  8

√
3

4−  4
√
3
=
(−8−  8

√
3)(4 +  4

√
3)

42 + (4
√
3)2

=
(−32 + 32 · 3) +  (−32− 32)

√
3)

64
= 1− 

√
3

• Polar solution desired
z2 = 4−  4

√
3 =
√
42 + 42 · 3 e− π/3 = 8e− π/3

z1

z2
=
16e− 2π/3

8e− π/3
= 2e− π/3

Sanity check:2e− π/3 = 2[cos(−π/3) +  sin(−π/3)] = 2[1/2− 
√
3/2] = 1− 

√
3, so the two answers indeed agree.

Complex roots

The roots of the polynomialz2 + 1 = 0 arez = ± = ±
√
−1. This is a second-degree polynomial so it has two roots.

One might say that was “invented” so that thefundamental theorem of algebraworks: annth degree polynomial hasn roots.

What are the roots of the polynomialz3 + 8 = 0? It is a third-degree polynomial so it has three roots.
An equivalent question would be: determine(−8)1/3.

Do we need to invent a3
√
−1 to solve this problem? Fortunately, no!

Strategy: solvez3 = −8 by using polar form,z = re θ.
Sor3e 3θ = −8 = 8e π.
Equating themagnitudes, we see thatr3 = 8 and sincer is real, we haver = 2. That’s the easy part.
Fact: ife φ = e γ , thenφ = γ + k2π for some integerk.
Equating thephases, we see3θ = π + k2π soθ = π

3 + k
2π
3 . Picture

Choosing three consecutive integersk = −1, 0, 1, we haveθ ∈ {±π/3, π}
So the roots arez = 2e π = −2 andz = 2e±2π/3 = 1± 

√
3.

Caution: MATLAB ’s -8 ˆ (1/3) only gives one of the three possible values!

Caution: (e θ)n = e nθ whenn ∈ Z (integers). But (e θ)1/n = e (θ/n+k2π/n) for k ∈ Z.

More practice

Use thezdrill mfile in DSP First toolbox for practice!
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Sums of sinusoidal signalsof same frequency (This is a primary motivation for complex numbers!)

Example. Find theamplitude A and thephaseθ of the following sum-of-sinusoids signal:

x(t) = 2 cos(5t+ π/4) + 2
√
2 sin(5t)

?
= A cos(5t+ θ).

Note that thefrequency remains unchanged!

Most important formula:cos(φ) = Re
(
e φ
)
. Also recall thatsinx = cos

(
x− π2

)
.

x(t) = 2 cos(5t+ π/4) + 2
√
2 cos(5t− π/2)

= Re
(
2e (5t+π/4) + 2

√
2e (5t−π/2)

)

= Re
(
e 5t
(
2e π/4 + 2

√
2e− π/2

))

= Re
(
e 5t
(
2(
√
2/2 + 

√
2/2) + 2

√
2(− )

))

= Re
(
e 5t
(√
2− 

√
2
))

= Re
(
e 5t2e− π/4

)
= Re

(
2e (5t−π/4)

)
= 2 cos(5t− π/4)

The complex values first appear in polar form, yet we must add them so cartesian form is more convenient. Then the final form
requires polar form again.

This example was “cooked” for chalkboard use without a calculator.
In practice, these problems are solved easily using any scientific calculator that handles complex numbers in polar form.
You need such a calculator for the exams!

General rule for summing sinusoidal signals of the same frequency:

x(t) =
∑
k

Ak cos(ω0t+ θk) = A cos(ω0t+ θ), where Ae θ =
∑
k

Ake
 θk .

Note that all that really enters into the calculation is the sum of the terms of the formAke
 θk . These terms are calledphasors,

particularly in the context of electrical circuits. This representation simplifies calculations with resistors, capacitors, and inductors
(RLC circuits) since one can solve many problems (for sinusoidal signals) using the phasors and the (complex) impedance of each
circuit element.

Summary: the key step in this approach was writing

x1(t) = A1 cos(ω0t+ φ1) = Re
(
A1e

 (ω0t+φ1)
)
.

A (complex) signal of the form̄x1(t) = A1e (ω0t+φ1) is called acomplex exponential signal.
Another name for it is arotating phasor.

What about a signal of the form x(t) = exp(−2t)? This is an ordinaryexponential signal; it is not “complex.”

Representingsinusoidal signalsas the real part ofcomplex exponential signalsallows us toadd such signals “easily” using
complex arithmetic rather thantrigonometry .
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Relationship between sinusoidal signals and complex exponential signals
• Viewpoint 1:

x(t) = A cos(ω0t+ φ) = Re
(
Ae (ω0t+φ)

)
= Re

((
Ae φ

)
e ω0t

)
, where

(
Ae φ

)
is thephasor .

• Viewpoint 2:

x(t) = A cos(ω0t+ φ) =
A

2
e (ω0t+φ) +

A

2
e− (ω0t+φ)

=
1

2

(
Ae φ

)
e ω0t +

1

2

(
Ae− φ

)
e− ω0t.

Note that the phasor and its complex conjugate appear!
So a sinusoidal signal is the sum of tworotating phasors.
Why? Because ofinverse Euler identity: cos θ = 1

2e
 θ + 12e

− θ.

Note that there is anegative frequencyfor the second complex exponential.
This corresponds to arotating phasor that hasclockwiserotation in the complex plane.
We need the combination of the two rotating phasors having opposite directions of rotation so that when added together, the
imaginary parts cancel out and we are left with the real part which is the cosine part.
We never need a negative frequency for sinusoidal signals, only for complex exponential signals.

Plotting complex exponential signals

There are three ways to plot a complex exponential signal.

x̄(t) = Ae (ω0t+φ) = A cos(ω0t+ φ) + A sin(ω0t+ φ) = Re(x̄(t)) +  Im(x̄(t)) .

1. Separate plots of real and imaginary parts
(Picture) of two sinusoids

2. Plot in complex plane (rotating phasor)
◦ magnitude|x̄(t)| = A
◦ angle\x̄(t) = ω0t+ φ

(Picture) of counter-clockwise rotation (for positiveω0)

3. 3D plot: real and imaginary vs time(Picture) of helix
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Complex signals

We began the course defining simple signal characteristics and simple signal operations. Those definitions were forreal signals,
although many apply tocomplex signalstoo.

A complex signal has areal part and animaginary part as follows:

z(t) = x(t) + iy(t).

Most signal characteristics are easy generalizations of those defined for real signals. and are described at end of Part 1 lecture
notes.

Example. Mean of complex signal.

M(z) =
1

t2 − t1

∫ t2
t1

z(t) dt =
1

t2 − t1

∫ t2
t1

[x(t) +  y(t)] dt

=
1

t2 − t1

∫ t2
t1

x(t) dt+ 
1

t2 − t1

∫ t2
t1

y(t) dt =M(x) + M(y).

An important difference is that for complex signal properties, anywhere we had thesquared valuex2(t) before, we replace it with
themagnitude squared|z(t)|2 = z(t)z?(t) = x2(t) + y2(t).

Example. Theenergyof a complex signalz(t) is E(z) =
∫ t2
t1

|z(t)|2 dt.

Another related difference is that we define correlation for complex signals as follows:

C(z1, z2) =

∫ t2
t1

z1(t)z
?
2(t) dt.

One reason for this choice is that it satisfiesE(z) = C(z, z).

Thesignal operationslike time scaling, time shift, etc. all apply to both the real part and the imaginary part.

Similar considerations fordiscrete-timesignals.

Example. Find the energy of the signalz(t) =

{
e 5te−2t, t > 0
0, otherwise.

E(z) =

∫ ∞
0

|z(t)|2 dt =

∫ ∞
0

∣∣e 5t∣∣2 ∣∣e−2t∣∣2 dt =
∫ ∞
0

e−4t dt =
1

4
.
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Beat frequencies(Ch. 3.2)

Are complex exponential signals useful for summing sinusoidal signals with different frequencies? Sometimes!

Ch. 3 onspectra is all about sinusoids of different frequencies!

Example. Sum of two “nearly same” frequencies. (Same amplitude for simplicity, not necessity.)

x(t) = A cos(ω0t) +A cos(ω1t)

whereω1 − ω0 is “small.”

Define the center frequencȳω = ω0+ω1
2 and∆ = ω1 − ω̄ = ω̄ − ω0 for ω1 > ω0.

Assumption:∆� ω̄.

(Picture) .

This type ofx(t) has a notable auditory property. Can we describe it mathematically?

x(t) = Re
(
Ae ω0t +Ae ω1t

)
= ARe

(
e (ω̄−∆)t + e (ω̄+∆)t

)

= ARe
(
e ω̄t
(
e−∆t + e∆t

))
= ARe

(
e ω̄t2 cos(∆t)

)
= 2A cos(∆t)Re

(
e ω̄t
)
= 2A cos(∆t) cos(ω̄t).

So we have the product of a slowly changing sinusoidal signal times a higher frequency sinusoidal signal.

(Picture) of signals and their product.

Demo of closely spaced case and harmonically-related case.

Also try summing square wave and triangular wave.
Why similar? Sum of sinusoids!

Sinusoids? Enough already!

Yes, the real world has many signals that are far more interesting than sinusoidal signals.

Joseph Fourier showed in 1807 that most any signal can be expressed as the sum of (a lot of) sinusoidal signals (not of the same
frequency though!), simply by carefully choosing the frequencies, amplitudes, and phases.

“Joe” did it almost 200 years ago without calculators or MATLAB ...


