## Computing the DFT

There are three basic methods for "manually" determining the DFT of a signal:

- matching the DFT coefficients "by inspection,"
- using the DFT analysis formula, or
- combining the above with DFT properties.

The same techniques also work for the inverse DFT since it is almost the same formula!
Recall the $N$-point DFT formulas:

$$
\text { Analysis: } X[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] \mathrm{e}^{-\jmath(2 \pi / N) k n} \quad \text { Synthesis: } x[n]=\sum_{k=0}^{N-1} X[k] \mathrm{e}^{\jmath(2 \pi / N) k n}
$$

## Example. Method 1: coefficient matching

 as a sum of $N$ complex exponentials:

$$
\begin{equation*}
x[n]=\sum_{k=0}^{N-1} X[k] \mathrm{e}^{\jmath(2 \pi / N) k n}=X[0]+X[1] \mathrm{e}^{\jmath(2 \pi / N) n}+X[2] \mathrm{e}^{\jmath(2 \pi / N) 2 n}+\cdots++X[N-1] \mathrm{e}^{\jmath(2 \pi / N)(N-1) n} . \tag{4d-1}
\end{equation*}
$$

If we can find such an expression directly, then we do not need to use the analysis formula.
In this case, apply an inverse Euler identity:

$$
\begin{aligned}
x[n] & =20 \sin ^{2}(3 \pi / 8 n)=20\left(\frac{\mathrm{e}^{\jmath 3 \pi / 8 n}-\mathrm{e}^{-\jmath 3 \pi / 8 n}}{2 \jmath}\right)^{2} \\
& =20\left(\frac{\mathrm{e}^{\jmath(2 \pi / 32) 6 n}-\mathrm{e}^{-\jmath(2 \pi / 32) 6 n}}{2 \jmath}\right)^{2}=5\left(2-\mathrm{e}^{\jmath(2 \pi / 32) 12 n}-\mathrm{e}^{-\jmath(2 \pi / 32) 12 n}\right) \\
& =10-5 \mathrm{e}^{\jmath(2 \pi / 32) 12 n}-5 \mathrm{e}^{-\jmath(2 \pi / 32) 12 n}=10-5 \mathrm{e}^{\jmath(2 \pi / 32) 12 n}-5 \mathrm{e}^{\jmath(2 \pi / 32) 20 n}
\end{aligned}
$$

where in the last line we used the $2 \pi$ periodicity of $\mathrm{e}^{\jmath t}$, adding $2 \pi n$ to the exponent. Considering the final form, comparing to ( $4 \mathrm{~d}-1$ ) we see that the 32 -point DFT of $x[n]$ is given by:

$$
X[k]= \begin{cases}10, & k=0 \\ -5, & k=12 \\ -5, & k=20 \\ 0, & \text { otherwise }\end{cases}
$$

We see that this signal has a DC term and two other complex exponential terms.

## Example. Method 2: analysis formula

Determine the 32-point DFT the following signal $y[n]=(1 / 5)^{n}$. Note that this is an infinite duration signal, so we are only computing the DFT of a segment of it. We chose $N=32$ here simply for illustration.

Substitute $y[n]$ into the analysis formula and use a geometric series formula to help simplify:

$$
\begin{aligned}
Y[k] & =\frac{1}{32} \sum_{n=0}^{31}(1 / 5)^{n} \mathrm{e}^{-\jmath(2 \pi / 32) k n}=\frac{1}{32} \sum_{n=0}^{31}\left((1 / 5) \mathrm{e}^{-\jmath(2 \pi / 32) k}\right)^{n} \\
& =\frac{1}{32} \frac{1-\left((1 / 5) \mathrm{e}^{-\jmath(2 \pi / 32) k}\right)^{32}}{1-(1 / 5) \mathrm{e}^{-\jmath(2 \pi / 32) k}}=\frac{1}{32} \frac{1-1 / 5^{32}}{1-(1 / 5) \mathrm{e}^{-\jmath(2 \pi / 32) k}}
\end{aligned}
$$

A plot of the magnitude spectrum shows that this signal has nearly the same power at all frequencies, with a bit more at the lower frequencies.

## Example. Method 3: using properties


We see that $z[n]=2 x[n-4]+7 y[n]$. The shift property of the DFT is the following:

$$
\text { if } s[n]=x\left[n-n_{0}\right] \text {, then } S[k]=X[k] \mathrm{e}^{-\jmath(2 \pi / N) k n_{0}}
$$

Thus, using the shift property and the linearity of the DFT, we see that

$$
Z[k]=2 X[k] \mathrm{e}^{-\jmath(2 \pi / 32) k 4}+7 Y[k]= \begin{cases}20+\frac{7}{32} \frac{1-1 / 5^{32}}{1-(1 / 5)}, & k=0 \\ -10 \mathrm{e}^{-\jmath(2 \pi / 32) 4 \cdot 12}+\frac{7}{32} \frac{1-1 / 5^{32}}{1-(1 / 5) \mathrm{e}^{-\jmath(2 \pi / 32) 12}}, & k=12 \\ -10 \mathrm{e}^{-\jmath(2 \pi / 32) 4 \cdot 20}+\frac{7}{32} \frac{1-1 / 5^{32}}{1-(1 / 5) \mathrm{e}^{-\jmath(2 \pi / 32) 20}}, & k=20 \\ \frac{7}{32} \frac{1-1 / 5^{32}}{1-(1 / 5) \mathrm{e}^{-\jmath(2 \pi / 32) k},} & \text { otherwise. }\end{cases}
$$

## So what?

After we know how to compute the DFT of a signal, what can we do? There are an enormous number of applications; the DFT and its fast computational version, the FFT, are the foundation for much of signal processing.

- In lecture I demonstrated that we can perform audio signal compression by discarding frequency components with small DFT coefficients. This is the essence of how MP3 works.
- In lab you will see how to use the DFT to remove a contaminating tone from an audio signal.
- If we start with a continuous-time signal and sample it to form a discrete-time signal and then compute the DFT of that discretetime signal, then we will soon discuss how the DFT coefficients are related to the spectrum of the original continuous-time signal. This is how instruments like digital oscilloscopes display the (approximate) spectrum of continuous-time signals.

