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Computing the DFT

There are three basic methods for “manually” determining the DFT of a signal:
• matching the DFT coefficients “by inspection,”
• using the DFT analysis formula, or
• combining the above with DFT properties.

The same techniques also work for the inverse DFT since it is almost the same formula!

Recall theN -point DFT formulas:

Analysis:X [k] =
1

N

N−1∑
n=0

x[n] e− (2π/N)kn Synthesis:x[n] =
N−1∑
k=0

X [k] e (2π/N)kn.

Example. Method 1: coefficient matching
Determine the 32-point DFT the following signalx[n] = 20 sin2(3π/8n). The purpose of theN -point DFT is to express the signal
as a sum ofN complex exponentials:

x[n] =

N−1∑
k=0

X [k] e (2π/N)kn = X [0] +X [1] e (2π/N)n +X [2] e (2π/N)2n + · · ·++X [N − 1] e (2π/N)(N−1)n. (4d-1)

If we can find such an expression directly, then we do not need to use the analysis formula.
In this case, apply an inverse Euler identity:

x[n] = 20 sin2(3π/8n) = 20

(
e 3π/8n − e− 3π/8n

2

)2

= 20

(
e (2π/32)6n − e− (2π/32)6n

2

)2
= 5
(
2− e (2π/32)12n − e− (2π/32)12n

)

= 10− 5e (2π/32)12n − 5e− (2π/32)12n = 10− 5e (2π/32)12n − 5e (2π/32)20n,

where in the last line we used the2π periodicity ofe t, adding2πn to the exponent. Considering the final form, comparing to
(4d-1) we see that the32-point DFT ofx[n] is given by:

X [k] =




10, k = 0
−5, k = 12
−5, k = 20
0, otherwise.

We see that this signal has a DC term and two other complex exponential terms.

Example. Method 2: analysis formula
Determine the 32-point DFT the following signaly[n] = (1/5)n. Note that this is an infinite duration signal, so we are only
computing the DFT of a segment of it. We choseN = 32 here simply for illustration.

Substitutey[n] into the analysis formula and use a geometric series formula to help simplify:

Y [k] =
1

32

31∑
n=0

(1/5)n e− (2π/32)kn =
1

32

31∑
n=0

(
(1/5) e− (2π/32)k

)n

=
1

32

1−
(
(1/5) e− (2π/32)k

)32
1− (1/5) e− (2π/32)k

=
1

32

1− 1/532

1− (1/5) e− (2π/32)k
.

A plot of the magnitude spectrum shows that this signal has nearly the same power at all frequencies, with a bit more at the lower
frequencies.
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Example. Method 3: using properties
Determine the 32-point DFT the following signalz[n] = 40 sin2(3π/8(n− 4)) + 7(1/5)n.

We see thatz[n] = 2x[n− 4] + 7y[n] . Theshift property of the DFT is the following:
if s[n] = x[n− n0], thenS[k] = X [k] e− (2π/N)kn0 .

Thus, using the shift property and thelinearity of the DFT, we see that

Z[k] = 2X [k] e− (2π/32)k4 + 7Y [k] =




20 +
7

32

1− 1/532

1− (1/5)
, k = 0

−10e− (2π/32)4·12 +
7

32

1− 1/532

1− (1/5) e− (2π/32)12
, k = 12

−10e− (2π/32)4·20 +
7

32

1− 1/532

1− (1/5) e− (2π/32)20
, k = 20

7

32

1− 1/532

1− (1/5) e− (2π/32)k
, otherwise.

So what?

After we know how to compute the DFT of a signal, what can we do? There are an enormous number of applications; the DFT and
its fast computational version, the FFT, are the foundation for much of signal processing.
• In lecture I demonstrated that we can perform audio signal compression by discarding frequency components with small DFT

coefficients. This is the essence of how MP3 works.
• In lab you will see how to use the DFT to remove a contaminating tone from an audio signal.
• If we start with a continuous-time signal and sample it to form a discrete-time signal and then compute the DFT of that discrete-

time signal, then we will soon discuss how the DFT coefficients are related to the spectrum of the original continuous-time
signal. This is how instruments like digital oscilloscopes display the (approximate) spectrum of continuous-time signals.


