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Computing the DFT

There are three basic methods for “manually” determining the DFT of a signal:
e matching the DFT coefficients “by inspection,”
e using the DFT analysis formula, or
e combining the above with DFT properties.

The same techniques also work for the inverse DFT since it is almost the same formulal
Recall theN-point DFT formulas:
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Example Method 1: coefficient matching

Determine the 32-point DFT the following signgl] = 20sin?(37/8n). The purpose of th&/-point DFT is to express the signal
as a sum ofV complex exponentials:
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If we can find such an expression directly, then we do not need to use the analysis formula.
In this case, apply an inverse Euler identity:
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where in the last line we used ther periodicity ofe’?, adding27n to the exponent. Considering the final form, comparing to
(4d-1) we see that thg2-point DFT ofz[n] is given by:
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0, otherwise

We see that this signal has a DC term and two other complex exponential terms.

Example Method 2: analysis formula
Determine the 32-point DFT the following signgln] = (1/5)". Note that this is an infinite duration signal, so we are only
computing the DFT of a segment of it. We chd€e= 32 here simply for illustration.

Substitutey[n] into the analysis formula and use a geometric series formula to help simplify:
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A plot of the magnitude spectrum shows that this signal has nearly the same power at all frequencies, with a bit more at the lower
frequencies.
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Example Method 3: using properties
Determine the 32-point DFT the following signalh] = 40sin®(37/8(n — 4)) + 7(1/5)".

We see that[n] = 2z[n — 4] + Ty[n] . Theshift property of the DFT is the following:
if s[n] = 2[n — ng|, thenS[k] = X [k] e=7 2m/N)kno,

Thus, using the shift property and theearity of the DFT, we see that
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So what?

After we know how to compute the DFT of a signal, what can we do? There are an enormous number of applications; the DFT and
its fast computational version, the FFT, are the foundation for much of signal processing.
e In lecture | demonstrated that we can perform audio signal compression by discarding frequency components with small DFT
coefficients. This is the essence of how MP3 works.
¢ In lab you will see how to use the DFT to remove a contaminating tone from an audio signal.
o If we start with a continuous-time signal and sample it to form a discrete-time signal and then compute the DFT of that discrete-
time signal, then we will soon discuss how the DFT coefficients are related to the spectrum of the original continuous-time
signal. This is how instruments like digital oscilloscopes display the (approximate) spectrum of continuous-time signals.



