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Ch. 7: Z-transform
• Definition
• Properties
◦ linearity / superposition
◦ time delay
◦ convolution:y[n] = h[n] ∗ x[n]⇐⇒ Y (z) = H(z)X(z)

• Inverse z-transform by coefficient matching
• System functionH(z)
◦ poles, zeros, pole-zero plots
◦ conjugate pairs
◦ relationship toH(ω̂)

• Cascading systems
• Filter design

Reading
• Text Ch. 7
• (Section 7.9 optional)
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Summary:

time domain view: x[n]→ h[n] → y[n] = h[n] ∗ x[n]

z-domain view: X(z)→ H(z) → Y (z) = H(z)X(z)

This is called theconvolution property of the z-transform.

Rational system functions (ratios of polynomials)

H(z) =
B(z)

A(z)
= g

∏
i(z − zi)∏
j(z − pj)

= g
(z − z1)(z − z2) · · · (z − zM )

(z − p1)(z − p2) · · · (z − pN)
,

whereB(z) is aM th-order polynomial withM roots{zi, i = 1, . . . ,M} called thezerosofH(z),
andZ(z) is aN th-order polynomial withN roots{pj, j = 1, . . . , N} called thepolesofH(z).

Graphical representation:pole-zero plot

Relation betweenfrequency responseandsystem function

H(ω̂) = H(z)
∣∣∣
z=e ω̂

= H
(
e ω̂
)

System functions of causal FIR filters

h[n] =

M∑

k=0

bkδ[n− k] ⇐⇒ H(z) =

M∑

k=0

bkz
−k

Rewriting in two forms:

H(z) =
b0z
M + b1z

M−1 + · · ·+ bM−1z + bM
zM

=
(z − z1)(z − z2) · · · (z − zM )

zM

where thezk ’s denote theM roots of the numerator polynomial,i.e., theM zeros of the system. Use MATLAB ’s roots function.

Fact. AM th-order causal FIR filter hasM zeros and hasM poles atz = 0.

We consider only the usual case of real filters (so the filter coefficients, thebk’s, are real numbers).
The by theFundamental theorem of algebra, all of the roots of the numerator polynomial are either real, or come in complex
conjugate pairs.

Fact. The zeros (and poles) of a real system are either real or come in complex conjugate pairs.

Example. The system function for a FIR filter with impulse responseh[n] = δ[n]− δ[n− 1] + 12δ[n− 2] is:

H(z) = 1− z−1 +
1

2
z−2 =

z2 − z + 12
z2

=

[
z − 12 (1 +  )

] [
z − 12 (1−  )

]

z2
,

because the roots of the numerator polynomialAz2 +Bz + C are atz± =
−B ±

√
B2 − 4AC

2B
=
1

2
(1±  ).

So the pole-zero diagram is:

Re(z)

Im(z)

2

The zeros are in complex-conjugate pairs.

What about noncausal FIR filters? (Number of poles at the origin varies.)
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First FIR filter design attempt: 60Hz notch filter.

Equipped with the concepts developed thus far, we can finally attempt our firstfilter design!

In many applications, such as measuring brain signals, “60Hz hum” from AC power lines contaminates the signalx(t). Another
example is home computer networks that operate over house AC wiring. To reduce the resulting interference, often we need to pass
the signal through a filter that removes the 60Hz component while leaving other frequency components relatively unaffected. Such
filtering can be done using RLC circuits, or by applying digital signal processing.

x(t)→
⊕

↑

60Hz hum

→ Samplefs → FilterH(ω̂) → D/A (interpolator) → y(t) ≈ x(t) .

For simplicity of the algebra, we suppose that the sampling rate isfs = 480Hz.
What is the corresponding digital frequency? ω̂ = 2πf/fs = 2π60/480 = π/4.

What is the ideal frequency response H(ω̂)?
(Picture) of idealH(ω̂) with zeros at±π/4.
This is called anotch filter .

Design 1

Where do we put zeros in the pole-zero diagram to eliminate the frequency component ω̂ = ±π/4?
See pole-zero diagram below with two zeros at±e π/4.

Where do the poles go? Two at origin needed for causal FIR filter.

This system design looks promising, since it will certainly eliminate the 60Hz (ω̂ = ±π/4) frequency component completely.
Next we find theimpulse response(needed for implementation) and thefrequency response(to see if we met our design goal).

Choosing gain=1 for now, we see from the pole-zero plot:

H(z) =

[
z − e π/4

] [
z − e− π/4

]

z2
=
z2 − z2 cos(π/4) + 1

z2
= 1− z−12 cos(π/4) + z−2 = 1− z−1

√
2 + z−2.

Thus the impulse response is:h[n] = δ[n]−
√
2δ[n− 1] + δ[n− 2] . This is a very simple filter! It can be implemented using the

following simple diffeq:
y[n] = x[n]−

√
2x[n− 1] + x[n− 2] .

The frequency response of this FIR filter is

H(ω̂) = 1−
√
2e− ω̂ + e− 2ω̂ = e− ω̂(2 cos ω̂ −

√
2).

Here is a plot of themagnitude responseandphase responseof this system, computed using MATLAB ’s zplane andfreqz
functions.

−1 0 1
−1

−0.5

0

0.5

1

Real part

Im
ag

in
ar

y 
pa

rt

zplane

2

0 5 10

−1

0

1

n

h[
n]

0

1

2

3

4

π−π π/2−π/2 ω

|H
(ω

)|

Magnitude Response

−5

0

5

π−π π/2−π/2 ω

∠
 H

(ω
)

Phase Response



c© J. Fessler, November 26, 2002, 14:27 (student version) z.4

Design 2

Our first design does remove thêω = ±π/4 frequency component completely, but unfortunately it also has the side effect of
amplifying the high frequencies relative to the low frequencies.

How can we attenuate the high frequencies somewhat?

From the general expression forH(z) above, the magnitude response is

|H(ω̂)| =
∣∣H
(
e ω̂
)∣∣ =

∣∣∣∣
(e ω̂ − z1)(e ω̂ − z2) · · · (e ω̂ − zM )

(e ω̂)M

∣∣∣∣ = |e
 ω̂ − z1||e

 ω̂ − z2| · · · |e
 ω̂ − zM |.

So the magnitude response is simply the product of the distances from the pointe ω̂ (on the unit circle) to all the zeros. In particular,
whenevere ω̂ is closeto a zero of the system function, the magnitude response will be reduced.

So to reduce (but not eliminate) high frequency components (ω̂ ≈ ±π), we can place a zero somewhere nearz = e π = −1.

ComparingH(0) = H(1) toH(π) = H(−1), one can show that a zero atz = −
√
2 will equalize the gain at̂ω = 0 andω̂ = π.

Here is the resulting frequency response.
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Well, we have equalized the gain atω̂ = 0 andω̂ = π, but we are still far from our ideal frequency response!

What is the output of this filter if the input signal is x[n] = 3 + cos(π4n) + 7(−1)
n ?

Recall that
x[n] = cos(ω̂n+ φ)→ H(ω̂) → y[n] = |H(ω̂) | cos(ω̂n+ φ+ \H(ω̂)).

For the system above,

H(z) =

[
z − e π/4

] [
z − e− π/4

] [
z +
√
2
]

z3
= [1− z−1

√
2 + z−2][1 +

√
2z−1]

H(ω̂) = H
(
e ω̂
)
= [1−

√
2e− ω̂ + e− 2ω̂][1 +

√
2e− ω̂].

The frequencies of the input signalx[n] above arêω = 0, ω̂ = π/4, andω̂ = π.
Substituting intoH(ω̂) we haveH(0) = (2 −

√
2)(1 +

√
2) =

√
2, H(π/4) = 0 (due to zeros at±π/4 on unit circle),H(π) =

(2 +
√
2)(1−

√
2) = −

√
2 =
√
2e π.

Thus the output signal is
y[n] = 3

√
2 + 0 +

√
2 cos(πn+ π).
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A magnitude response plot shows the response to aneternalsinusoid.
What about “suddenly turned on” signals cos(ω̂n)u[n], (e.g., after system first started)?
After short initialtransient response, the output signal approaches thesteady stateresponse.

Design 3

How well can we do with a more sophisticated FIR filter?
Here is aM = 28 filter designed by MATLAB ’s remez function.
The frequency response plots were made using MATLAB ’s freqz function.
The impulse response plots were made using MATLAB ’s filter function.
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This is better since it has reasonably uniform gain in the passbands, but the “notch” may be somewhat wide.

Design 4

How can we get even closer to the ideal frequency response?
One way is to use the filter with the following pole-zero plot and frequency response.
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What is fundamentally different about this filter?
It is anIIR filter , since there are poles not atz = 0.

Even though we have not yet studied IIR filters in detail, we can use what we have learned so far to find
• thesystem functionH(z),
• thediffeq,
• and thefrequency response.

However, we do not yet know how to find theimpulse responseof an IIR filter. That comes in the next chapter.

Assuming that the gain=1, from the pole-zero we have that thesystem functionis:

H(z) =
[z − e π/4][z − e− π/4]

[z − re π/4][z − re− π/4]
=
z2 − z2 cos(π/4) + 1

z2 − z2r cos(π/4) + r2
=
1− z−12 cos(π/4) + z−2

1− z−12r cos(π/4) + r2z−2
=
Y (z)

X(z)
,

wherer denotes the distance of the pole from the origin.

To find thediffeq, we firstcross multiply as follows:

Y (z)
[
1− z−12r cos(π/4) + r2z−2

]
= X(z)

[
1− z−12 cos(π/4) + z−2

]
.

Now (using linearity and shift property of z-transform), we convert back to the time domain:

y[n]− 2r cos(π/4)y[n− 1] + r2y[n− 2] = x[n]− 2 cos(π/4)x[n− 1] + x[n− 2] .

Rearranging yields the followingrecursiveexpression:

y[n] = 2r cos(π/4)y[n− 1]− r2y[n− 2] + x[n]− 2 cos(π/4)x[n− 1] + x[n− 2] .

The output at timen depends on the two past output valuesandon the current input and 2 past input values. This is very easy to
implement! Much easier than a 28-tap FIR filter.

To understand thefrequency responsequalitatively, we return to the firstfactored form of the system function above:

H(ω̂) = H
(
e ω̂
)
=
[e ω̂ − e π/4][e ω̂ − e− π/4]

[e ω̂ − re π/4][e ω̂ − re− π/4]
.

In particular, we find themagnitude responseby taking the magnitude of both sides:

|H(ω̂) | =
|e ω̂ − e π/4||e ω̂ − e− π/4|

|e ω̂ − re π/4||e ω̂ − re− π/4|
.

In words, this means that for any frequencyω̂, the magnitude response is the product of all the distances from the pointe ω̂ on the
unit circle to all the zeros, divided by the product of all the distances from the pointe ω̂ to all the poles.
Being close to a zero decreases the magnitude response; being close to pole increases the magnitude response.

For any frequencŷω that is far frome π/4 in the notch filter example, the distance frome ω̂ to the zero and to its neighboring pole
is almost the same, so the ratio is nearly unity and thus the magnitude response is nearly unity. The zero is slightly further away, so
the magnitude response is slightly more than unity.

How could we make the response closer to unity far from the zero?
Move the pole closer to the zero. (But, as we will see in the next chapter, this makes the transient response “longer,”i.e., the
impulse response decays to zero slower, which can be undesirable in some applications.
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Interconnection of LTI systems

Engineers build complicated systems by connecting simpler components.

There are three principal ways of connecting two LTI systems: series, parallel, and in a feedback loop.

Series connection

Here are two LTI systems connected inseriesor in cascade:

x[n]→ H1(z) → H2(z) → y[n] .

In the time domain, we have seen that that overall system is LTI with impulse responseh[n] = h1[n] ∗ h2[n].

Since time-domain convolution corresponds to multiplication in the z-domain, the overall system function is

H(z) = H1(z) ·H2(z),

theproductof the two individual system functions.

Example. Application: channel equalization for wireless communications.H1 represents the channel (attenuation, multipath) and
H2 represents the equalizer that is designed to “undo” (invert) the distortions induced by the channel.

Example. Application: Dolby noise reduction...

Example. Putting two unit-sample delays in series is equivalent to a two-sample delay:

x[n]→ z−1 → z−1 → y[n] is equivalent tox[n]→ z−2 → y[n] .

Example. H1(z) = g1(1 + z−1) = g1 z+1z andH2(z) = g2(1− z−1) = g2 z−1z .
In series:

H(z) = H1(z)H2(z) = g1g2
z + 1

z

z − 1

z
= g1g2

(z + 1)(z − 1)

z2
.

Pole-zero plots:

H1:

Re(z)

Im(z)

H2:

Re(z)

Im(z)

H :

Re(z)

Im(z)

2

For rational system functions:

H(z) = H1(z)H2(z) =
B1(z)

A1(z)

B2(z)

A2(z)
.

So the zeros ofH(z) are all the zeros of the two systems connected in zeros, and likewise for the poles, except in cases where
B1(z) andA2(z) share a common root, or whereB2(z) andA1(z) share a common root, which is calledpole-zero cancellation.
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Parallel connection

(Picture)

H(z) = H1(z) +H2(z) =
B1(z)

A1(z)
+
B2(z)

A2(z)
=
B1(z)A2(z) +B2(z)A1(z)

A1(z)A2(z)
.

In this case we see that the parallel connected system has all the poles of the two component systems (unless there is pole-zero
cancellation.
But we can say very little if anything about the zeros in general.

Example. H1(z) = g1(1 + z−1) = g1 z+1z andH2(z) = g2(1− z−1) = g2 z−1z .
In parallel:

H(z) = H1(z) +H2(z) = g1
z + 1

z
+ g2

z − 1

z
=
(g1 + g2)z + (g2 − g1)

z
.

Single pole atz = 0 and zero atz = (g1 − g2)/(g1 + g2).

Pole-zero plots:

H1:

Re(z)

Im(z)

H2:

Re(z)

Im(z)

H (for g1 = 1, g2 = 2):

Re(z)

Im(z)

Feedback connection

Example. automobile cruise control.

(Picture of systemH1(z) with negative feedbackHf (z))

Deriving:

H(z) =
H1(z)

1 +H1(z)Hf (z)

Location of poles and zeros ofH(z) is complicated; indeed, part of the purpose of feedback is to stabilize and otherwise unstable
system (e.g., Harriet airplane). Even ifH1(z) has poles that are outside the unit circle, which means it is an unstable system, it can
still be the case thatH(z) has all its poles inside the unit circle, meaning that it is stable, if the feedback systemHf (z) is designed
properly.

Example. H1(z) = 1
1−az−1 =

z
z−a . If a > 1, then the system is unstable.

The simplest possible feedback controller would beHf (z) = g for some constantg.

H(z) =
H1(z)

1 +H1(z)Hf (z)
=

z
z−a

1 + z
z−ag

=
z

z − a+ zg
=

z

z(1 + g)− a
,

so the system with feedback has a pole atz = a/(1 + g).
If g > a− 1, then the pole will be “moved” to within the unit circle, thereby stabilizing the system.
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Example. Noise cancellation. (Explained in lecture)

+ +

Environment

mic1

mic2

−

H1(z)

x[n]

w[n]

y[n]

H2(z) H3(z)

For perfect noise cancellation, we needH3(z) = 1/H2(z). If H1(z) is FIR, thenH3(z) will be IIR, which again brings us to the
next chapter...


