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Ch. 8: lIR Filters
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8.1
Introduction

In the preceding notch filter example we have seen that a system with poles that are not at the origin can be very useful.

Just as in the example that we worked out, such systems always have the property that the output signal value at deydimds
both on certain input signal valuas well as some previous output signal values

These systems are callestursive.

The general form for a (finitely-computable, causal, LTI) system that depends on both current and past inputs and past outputs is
the followingdifference equation

y[n] = Z ayn — 1]+ Z brx[n — k.
1=1 k=0

Are systems having the above diffeq are causal, linear, and time invariant ?
Yes. Causality is easy to see; LTl is not hard to show.

Theb,'s are calledeed-forward coefficients.
Thea,’s are calledeedbackcoefficients.

To implement such a system, computing each output signal value re@uited/ + 1 multiplies. However, we usually say that
the system is ofVth order since the number of poles has great influence on the system properties.

When we design a filter, we get to piék, M, and thefilter coefficientsay, . ..,ay andbg, ..., bys.
Usually we design in the z-plane though and work backwards from the zeros and poles to find these filter coefficients.

The above form is thenost generatlype of system that we will consider in 206, and is the bread-and-butter of DSP work.
We consider only the usual case of real filters, so the filter coefficients; thandb,’s, are real numbers.
Are FIR filters a special case? Yes, just choos&/ = 0.

8.2
Impulse response: the hard way

The chapter is called “IIR” so apparently such systems ffar 1) have an infinitely long impulse response, but that fact may not
be immediately obvious.

Let's work out a concrete example now by “brute force.” This is not the best way ta fitjdor an IIR system in general!
Example Consider thdirst-order system described by[n] = ay[n — 1] + z[n], wherea is a real number. Find thienpulse
responseh[n].

Before proceeding, we must make a very important assumption, dailliedirest conditions.

e \We assume the inputis zero prior to some starting tige.e., z[n] = 0 for n < ny. These are callesuddenly appliedinputs.

¢ We assume the output signal is zero prior to the starting time of the signaj[n] = 0 for n < ny. We say that the system is
initially at rest .*

Note thaty[0] = ay[—1] + 2[0] in this example. If the input signal[n] is zero forn < 0 (the usual case considered), then we
assumey[—1] = 0 soy[0] = 2z[0] for this example.

We assumdnitial rest conditions hereafter, both for simplicity of analysis and because that is the usual mode of operation of DSP
systems. (All memory buffers are reset to zero when the system is powered up.)

1The word “rest” has its origins in mathematical models for mechanical systems: think of a ball at rest on a flat plane that is subsequently subgestith forc
as a swift kick. The term “at rest” is not so natural for digital systems, but we use it anyway for historical reasons.
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By definition, the impulse response is the system output when the input is the unit imptilse 6[n].
In other words, the impulse response function satisfies the following recursive relatiobjgtjip: ah[n — 1] 4+ 24[n| . Because it
is recursive, it imota “final answer” forh[n]. However, we can “execute” the recursion to find the impulse response.

Using the initial rest conditions, we have thét] = 0 for n < 0 since the unit impulse input is zero far< 0.

n || dn] | hln—1] || hln]=ah[n — 1] + 2i[n|
<0 0 0 0

0 1 0 2

1 0 2 2a

2 0 2a 2a”

3 0 2a® 2a®

By inspection we see that thmpulse responsés:

1, n>0

2a™, n>0 an A
h[n] = { = 2a"u[n], whereu[n] = { 0. otherwise

0, otherwise

We see that the impulse response decays to zef@| (i 1) but never reaches zero (fer~ 0) so this is indeed aHR filter .

Stability
What happens to h[n] if a > 1 in the preceding example?
The impulse response “blows up” as— cc.

A system is calledbounded-input bounded-output (BIB) stableif all bounded input signals (inputs whelten] | < ¢; for some
constant; < oo) produce output signals that are also boundgi] | < ¢, for somec; < occ.

Is the unit impulse a bounded signal? Yes, withc; = 1.
In our example system, |&| > 1 then the (bounded) unit impulse input produces an unbounded atitpsob that system would
not be BIBO stable.

What if a = 1? Would the system be stable in that case?

To show that the answer is “no” all we need is to find one bounded input signal that produces an unbounded output signal.
For this example, the step function inptjt] = u[n| suffices.

n [l [ yln—1] [yl = yln— 1+ 2]
<0 0 0 0

0 1 0 2

1 1 2 4

2 1 4 6

3 1 6 8

By inspection we see that tlséep responsaes:
y[n] = 2(n+ Luln].

Is this bounded? No, so the system is unstablddf = 1 as well as ifia| > 1.

One can show that the system is stabljf< 1; we will return to that later when we discuss poles and zeros.

Numerically finding the impulse and step response

The above brute-force method only works for simple cases. For more complicated cases one can eithgransal-dnaction
expansion methoddescribed later, if an analytical solution is needed, or simply useLMB s filter function if a numerical
solution is adequate.

Usingfilter can be convenient for checking your analytical work.
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8.3
System function

Before we can find more general tools for finding the impulse response of IIR filters, we must examine the system function.

Taking the z-transform of both sides of the general difference equation yields

N M
Y(z) = Z az”Y (2) + Z bz X (2)
=1 k=0

or equivalently

N M
Y(z) [1 - Zalz_l] = [Z bkz_k] X(2).
=1 k=0

Thus thesystem functionis

H(2) Y(z) > 2/[:0 brz"k NS 2/[:0 b zM—k 2N boz™M +b1zM 1 4. by M
zZ) = = = — = .
X(z) 1_225\;1@24 M ZN_E:IZL apzN-1  2M 2N —ay2N=1 —agzN=2... —ay 127t —ap

This is a ratio of polynomials so it isrational system function.
Note that thenegative®f the feed-forward coefficients appear in the denominator polynomial!

As before, the numerator polynomial will havid roots calledzerosand the denominator polynomial will havé roots called
poles There can also be additional poles or zeros at the origin due totie™ term. These roots do not affect the frequency

response so are less important. In factored form the system function is:
H(z) = B(z) ﬁnz]\iﬂz_zz) _ N(z—2z1)(z—22) (2 — 2m)

S AR AN (- py) M (z—p)(z—p2)- (z—pn)’

Again we represent the system function graphically bydke-zero plot
Again, the relation betwednequency responseandsystem functionis:

H(w) = H(z)

= H(em)

z=el®

Example Fory[n] = ay[n — 1] 4 2z[n] we have
Y (2) = az 'Y (2) + 2X (2)

or equivalently
Y(1—az™) =2X(2)

so the system function is

Y(2) 2 L, 2
H(z) X(z) l1l—azl “z-a
Im(z)
Re()

So the pole-zero diagram is (far= 1/2):

The frequency response is

so the magnitude response is

2 _ 2
VI —ae7%)(1 —ae?®)  /T+a? —2acos(@)

H(@)| =



© J. Fessler, December 8, 2002, 23:27 (student version) ir.5

It is difficult to visualize the frequency response from the formuleHdw), particularly for IIR filters. So we turn tireqz
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As expected from our previous analyses, frequencies that correspond to positions along the unit circle that are closer to the pole
have a larger magnitude response.

Impulse response revisited

Given the system functioH (z) = —2— for this example, can we work backwards to find iimpulse responsei[n]?

l—az—1

Recall the geometric series formula given in the lecture notes:

- 1
dobr=——, if o < 1.
Pt 1-b

Identify b = a2~ in this example and we have
2 [e ) i B [e ) I
H(z) = [ 2 LEO(CLZ ) ‘| = ngzo 2a"z7".

Since in general

H(z)= Z hin] 27"

we see immediately that

2a™, n>0 oon
hln] = { 0, otherwise 2a”uln].

This is valid only if |b| = |az7!| < 1,i.e, |z| > |a|. This is called theegion of convergenceof the z-transform, an important
topic discussed in detail in EECS 451 but not in 206.

Of course we already knew this particular impulse response from the brute-force method used earlier, but using the z-transforrm
will be more general.

However, the specifiseries expansiorapproach used above is convenient only in special cases. We still need to find a more
general approach.

Nevertheless, we have established a particularly important z-transform pair that should be memorized:

2] > |a]
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Discrete-time systems described by difference equatiofBIR and IIR)
Difference equation:
N M
yln] =Y ayln — 1)+ ) braln — K]
=1 k=0
System function (in expanded polynomial and in factored polynomial forms):
Y(z) _ Salebez ™™ botbiz et bae™ 0 T (2 — )
H(z) = = = = —~ — =2 bo %
X(=) 1 -yt l-azT e —ayz ITi=1(z = pr)
Relationships:
Difference Equation
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Filter Design



