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I. Elementary Signal Concepts

Reading Assignment: Chapter 1 and these notes. It is recommended that you review these notes every now and then throughot
the term. Some of these elementary concepts will be needed much later in the course, and some will be well understood only afte|
you have had more experience with signals.

A. Signal Definition and Signal Descriptions
What are layperson examples of “signals” in common use?
Definition: A “signal” or “waveform” is a quantity that varies with time (or space), and typically conirdgsmation .

In precise mathematical terms, a signal is a function of time. That is, for each value of tiveee is number called thaignal
value at time.

Since signals are functions, and functions are constructs of mathematics, we will use the language of mathematics throughout th
course, starting now!

Notation: We typically use lower case letters like y, ands, or subscripted letters like; (¢) to represent signalgg., functions
of time.

Usually we show time as the argument of such function, asift).

Beware of the Ever-Present Notational Ambiguity: When you see#(t)” written, sometimes the writer intends you to think of

the value of the signal at the specific times inz(3.1), and sometimes(t) means the whole signal—that is, the writer intends
you to think about the whole signale., the signal values at all times. When it is essential that readers think about the whole signal,
authors will sometimes write or {z(¢)} or z(-) instead of(¢).

Continuous-Time and Discrete-Time Signalsif the time variable ranges over a continuum of values, we say that the signal is
continuous-time If the time variable ranges over a discrete set of values we say the siglisdriste-time.

More specifically, unless stated otherwise, we assume that the time values of every continuous-time signal range over the set of al
real numbers from-co to +co. In mathematical terms we say that themain of a functionz(-) is the interval—oco, c0), which
we denote by the symb@ as a shorthand.

Similarly, unless stated otherwise, we assume that the time values of every discrete-time signal range over thergegefsll
{...,-2,-1,0,1,2,...}, which we denote by the symb@las a shorthand. That is, the domain of the signal (function) is the set

of all integers. When dealing with discrete-time signals it is most common to use one of the synjbl)$, m, orn to denote

time rather thart. It is also common to put the time variable inside square brackets “[ ], rather than in ordinary parentheses. For
instance, the following are examples of the notation used for discrete-time sighdlsy[k], z1[m)].

Signal Descriptions: Sometimes signals are described with formulas and sometimes they cannot be so described.
Example Continuous-time signals described with formulas:
2, t<0
z(t) =e ", y(t) = 3sin(47t), 2(t)=4¢ t?, 0<t<1
0, otherwise.
In EE, we often define functiorsecewiseusing braces.

Example The “touch tone 2” signal:
x(t) = cos(2m1336t) + cos(2m697t).

1This font is used when a technical term is used or introduced for the first time.
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Example A continuous-time signal that is not describable with a formula:

Continuous-time audio signal

X(t)
=)

0 0.05 0.1 0.15 0.2
t

The signal shown above is part of a recording of a train whistle. Almost everything that one would hear is embodied in the function
plotted above. The only missing information is the “volume” (notice the lack of unitg:foy), which in practice would depend

on the settings of the amplifiers and the efficiencies of the speakers, etc. Bofatmeationin the signal is independent of the
volume; the sound would be recognizable (by a human with unimpaired hearing) as a train whistle for any reasonable amplifier
settings. (But can your eyes tell it is a train whistle from the plot?)

Example Discrete-time signals described with formulas:

1 n 2, n <0
z[n] = <§> , y[n] = 3sin(47n), zln] =< n? 0<n<10
0, otherwise.

Example A discrete-time signal that is not (easily) describable with a formula:

Discrete-time signal

1 T T T

aove. 'TT?G . G?TWT??Q,,%“ .
Al Oda 0 s
7320 7330 7340 7350 7360

x[n]
o

Are signals described by formulas more “real” or “authentic” than signals that are not so describable?

What does it mean to “describe a signal with a formula?”

Over the centuries, it has been found useful to give names to certain basic mathematical operations, such as’+7 -z,

In(z), e, |z|, etc., and certain basic functions, suchiagx), cos(z), I'(x), etc. To “describe a signal with a formula” is simply to

say that it can be expressed in terms of previously defined operations and formulas. A signal that is not describable by a formula
may simply be a function waiting to be blessed with its own name. Or it may be a function that has not previously occurred and
may never occur again. Generally, we do not consider signals described by formulas to be any more real or authentic than thost
that are not so describable.

Note that a formula describing a signal can be quite complex, as in

N
s(t) = Z ay cos(27 fxt + o)
k=1

whereN,ay,...,an, f1,-.., fN,d1,...,¢N are “signal parametersi.e., constants or variables that one needs to know to fully
determine the signal. It will be important to develop the skill of being able to work with complex signal formulas. For example,
when you see the summation si§f), you should recognize that it is just an abbreviation for a suv #érms. Indeed, to better
understand the signal described by a summation, it is often useful to write it in its unabbreviateel §prm,

s(t) = ay cos(2mfit + ¢1) + az cos(2m fot + p2) + -+ - + an cos(2wfnt + PN).
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Discrete-Time Signals from Continuous-Time Signals via Sampling

Frequently discrete-time signals are produced#ypling a continuous-time signal. lf(¢) is a continuous-time signal aig is
a positive number then the discrete-time signal produced by samglihgvith sampling interval Ty is the signak:[n] defined by

z[n] = z(nTs) .

Example If z(t) = Coffl;t) andT, = 1/2 then

_ _ _ cos(2mn(1/2))  cos(mn) a7, neven (=
efn] = 2(nT3) = =(n(1/2) = TR B = T { T odd Tyl

The continuous-time signal(¢) and the discrete-time signalr] produced by sampling(¢) are shown below.

1f ) ‘Continuous-time signal |

X(t)
(@)

_1- M
_4 -2 0 2 4 6 8
t
1 'Dlscrete —time signal
=l . ® T ® o ° o _o
e e ¢ | | o e*e%e®e®e®e
-1
-8 —4 0 4 8 12 16
n
V2t — >
Example If Ty = 1.5 andx(t)—{ 02t 4 f)tieiwise then

z[0] = z(0) = 0, z[1] = z(1.5) = 0, z[2] = z(3) = V2, z[3] = (4.5) = V/5, z[4] = z(6) = V8, etc.

To express this compactly, consider the following manipulations:

2[n] = #(nTy) = 2(nTs) —4, (nTy)>2 3n—4, 1b5n>2 3n—4, n>2
o 700, otherwise =~ | 0, otherwise ~ | 0, otherwise.

Notice that we replacall of thet's by nTs, since that is what(nT;) means. Also we wrote > 2 rather tham > 4/3 in the final
expression since must be an integer.

The quantityfs = 1/7 is called thesampling frequencyor sampling rate, because it represents the frequency or rate (in samples
per second) at which samples are taken.

As will be discussed a great deal later in the course, we often work with continuous-time signals by working with their samples,
i.e., with a discrete-time signal produced by sampling. For example, we often display continuous-time signals (approximately) by
displaying their samples.

However, there are also discrete-time signals thahatebtained by sampling any continuous-time signal.
Example Consider the signal|n|, wherez[n| denotes the height of theth person standing in a certain line.
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B. Elementary Signal Characteristics
A starting point of any field of study is toategorizethe objects under study. We examsignal characteristicg next.

We will emphasize the characteristics of continuous-time signals. There are discrete-time versions of each of these that will be
presented later.

Perhaps the most important signal characteristic in this course is a sigpedsum, which has to do with the “frequency content”
of the signal. (Something like how a prism shows the components of white light.) This topic is so important that we will not discuss
it here. Rather, beginning with Chapter 3, it will be a focus of much of the remainder of the class.

1. Signal Support Characteristics

These are signal characteristics related tdithe axis.

C1. Support Interval :
Roughly speaking theupport interval of a signal is the set of times such that the signal is not zero. We often abbreviate and say
simply support or interval instead of support interval.
e More precisely the support interval of a continuous-time sigitél is the smallest time intenAlt;, t] such that the signal is
zero outside this interval.
e For a discrete-time signaln], the support interval is a set of consecutive integénrs; n1 + 1,n1 + 2,...,nq}. Specifically,
ny Is the largest integer such thelt:] = 0 for all n < nq, andns is the smallest integer such thgk] = 0 for all n > no.

Example. Here are some signals and their supports.

x(t) 2 (t)
1 1
T T T > >
-1 1 2 4 t 4 5 t
= —1 ty =4 =0 I (t2 = 00)
L= . 2= — infinite support —
+— supportintervali—1,4}>
z[n]

2 12 n
ni n2
support interval ={2,3,...,12} infinite support

C2. Duration:
Theduration or length of a signal is the length of its support interval.
e For continuous-time signals, duratiort&— ¢;.
e What is the duration of a discrete-time signal? duration =n, — ny + 1.

Some signals have finite duration and others have infinite duration.
Example The two signals on the left above have finite duration, whereas the two signals on the right have infinite duration.

Outside of EECS 206, one may occasionally encounter situations where signals are considergttigfibed at times outside

their support interval. However, within EECS 206, unless explicitly stated otherwise, we assume that signal values are 0 outside
the support interval. Indeed, we will often define a signal simply by describing its values in some interval, with the presumption
that the signal is zero for all times outside this interval.

2You do not need to memorize all of these. Rather you need to be aware of the existence of these characteristics, so you can look up and apply ¢he appropriat
ones at the appropriate times.

3Intervals can bepenas in(a, b), closedas in[a, b], or half-open, half-closed as {@, b] and[a, b). For continuous-time signals, in almost all cases of practical
interest, it is not necessary to distinguish the support interval as being of one type or the other.
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Example If we introduce a signal as
z(t) = 12, 1<t<2,

then it should be understood thait) = 0 for ¢ < 0 and fort > 2.
Pulses:Signals with short duration are often callpalses.Note that “short” is a subjective or relative designation.
Example The square wave signal above can be considered to be a train of rectangular pulses.

Negative times and time zeroin some of the examples above the signal interval included negative times. What is the significance
of negative time? To answer this, one must first answer the question: Whateizero? Basically, time zero is just some
convenient reference time. Accordingly, a negative time simply represents a time prior to the reference time. For example, a radal
system sends a pulse and waits to record the return times of reflections of this pulse from distant objects. It is usually convenient to
let “time zero” be the time at which the original pulse was transmitted. Then-1.8 means 1.8 units of time before the reference

time.

2. Signal Value Characteristics, a.k.a. Signal Statistics
We now consider characteristics that are related to#hgesthat a signalk:(¢) takes.

C3. Maximum and minimum values:
If z(¢) denotes some generic signal, then it haseximum value

Tmax = MAX x(t) or max z[n]
n
and aminimum value

Znin = mtin x(t) or min z[n] .
n

If these are both finita,e., if xnmax < 0o andxy,in, > —oo, then the signal is calleoounded

Example The signak:(t) = 3e~ !l hasz i, = 0 andz,., = 3, S0 it is bounded.
Example The signale[n] = \/|n + 4] hasz iy, = 0 andzy,.x = oo, SO itisunbounded

What do negative vs. positive signal values represent? The answer depends on the application. As an example, when a microphor
responds to a sound, there is usually a diaphragm that moves back and forth, tracking the fluctuations in air pressure that constitut
the sound. When the diaphragm is pushed one way, the microphone produces a positive voltage; when pulled the other way, i
produces a negative voltage.

C4. Absolute value
Quite often, when a signal has values that are both positive and negative, we are interested in a measure of the signal strength apse
from its positive or negative sign. With signal strength in mind, one can computeaigsitude or absolute value denoted(t)|.

Cb5. Squared value, a.k.a. instantaneous power

In most physical situations, the squarextf), i.e., z2(t), is a more useful measure of signal strength at tithen is its magnitude
|z(t) |, becauser?(t) is proportional to the instantaneous power in the sigr{a) at timet¢, and because power is a physical
quantity of fundamental importance. For such reasons, we often refén(tp as theinstantaneous powerof z(¢) at timet.
However, one must remember that the actual power is some constantithift¢swhere the constant depends on the specific
physical situation. For example, if(t) represents the current in amperes flowing at tintlerough a resistor with resistandée
ohms, then the instantaneous power absorbed by the resigtof {6) watts.

C6. Energy:
Althoughz?2(t) is a useful measure of signal strength at a particular time instaften we need a measure of the tataergy of
a signal, or of a portion of the signal. The energy of a sigrfal in the intervallt;, t2] is defined as follows:

Signals of infinite duration often have infinite energy (over their entire support). For such signals, average power (defined below)
is usually a more relevant quantity than energy.
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Example Suppose the signal (expressed in voitg) = ae~*/7, t > 0 is applied across a 1 Ohm resistor. The energy dissipated
in the resistor is
o0 o0 2 o0 T
E(v) = / v () dt = / [ae*t/f} dt = a? / e 27 4t = a2T.
0 0 0 2

(Compared to the expressions for mean value and MS value below, no “limit” is needed here since the exfg‘?"e's'miready a
shorthand for a limit.)

Notice that our final expression isfarmula not a number. This will be the case frequently in this course. From this formula, we
see that increasing the amplitudef the applied voltage will increase the dissipated energy by the squar&of if we increase

the decay constant, then the energy will also increase due to slower signal decay. These are among the types of relationships we
are interested in exploring.

Example The energy used in each pulse transmitted by a cellular phone will determine the battery life and can affect the voice
quality.

C7. Average or mean value
GivenN valuesz,,,n = 1,..., N, such as the ages of people, the average of those valueg( the average age) is simply

1N
- T
v

Similarly, any signal also has an average value, also called a mean value. For discrete-time signals we often do not index from 1 tc
N but rather from some; to somens, so our definition of theverageor mean valueof z[n] is

M(z) = _ > zln].

Nng —n 1
2 1+ —

For a continuous-time signal with support interftal ¢2], we can think of finely sampling the signal over that interval, computing
the average of the samples using the above formula, and then taking the limit as the number of samples increases. This leads to tt
following integral form for theaverageor mean valueof a continuous-time signai(t) over the intervalty, to]:

M(z) ! / ’ x(t) dt.

ot —t1 )y,

In words: the mean value is the “area under the curve” divided by the signal duration.

If the interval over which the average is sought is infinite, then the average needs to be defined as a limit. For example, the averag
of the signal over the intervald, co) is:

T
M(z) = lim i/o z(t) dt,

T—o0

and the average over the interyaloo, co) is

T
M(z) = lim %/fo(t) dt.

Again the “area divided by duration” concept applies over each interval of the[fefmT’], and we take the limit as the interval
length increases.

When evaluating these expressions, one rfitsgstcompute the integral, then divide @yor 27, andthentake the limit.

When a signal average is mentioned but an interval is not specified, we mean the average over the entire support of the signal.

1_|t|7 |t|§1

2_t/2, 2<t<4 shown above.

Example Consider the finite-length signal(t) = {

The supportig—1, 4] and the mean value is

M@):%f (1) dt:%[/0(1+t)dt+/01(1—t)dt+/24(2—t/2)dt] :%[1/2+1/2+1]:§.

—1 -1
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2
gt_’t The support i$1, 5] and the mean value is

Example Consider the finite-length signa(t) = {

M(a:)—i/lsx(t) dt—i[/123t2dt+/155—tdt] :i[7+1/2]:18—5.

Example Consider the (eternal) sinusoig(t) = cos(2 ft), with f # 0. The support iR and the mean value is

M(z) = lim L/T z(t) dt = lim 1 isin(2 ft '
I =Tl T oo 2T 2af Y
—  lm 1 sin2n fT) —sin(2n f(-T)) ~ lim 1 sin2n fT) _o
T—o0 2T 2 f T—o0 2T wf
The average value of an eternal sinusoid is zero, which is apparent from its plot.
z(t
1 T (t)
Example Consider the signal(t) = b/(t+2), 20 0 8 ;
_— 0, otherwise.

The support ig0, co) and the mean value is

/Tidt = 1li 1 /Tl idt = 1li lt 21 (t+2)‘T
o 29 T ST |, t+20 | r5ee T & 0

o L 2 log(2)] _
= hmT[T 210g(T+2)+10g(2)]711_1>1;o[1 Tlog(T—f—?)-i— T }1.

1
lim —

M(J?) T—oo T

T—o0

In electrical systems\I(z) is often called th®C value, where DC stands fatirect current.

Example Consider a&onstant signa) also called &C signal (even if there is no “current”), such agt) = c.
In this caseM(z) = c.

Example Typically a microphone signal has average value equal to zero, or very nearly so, since acoustical signals usually oscillate
nearly symmetrically about zero.

C8. Mean-squared value, a.k.a. average power

Whereasr?(t) is an excellent measure of signal strength at an individual time instanptite frequently we need an aggregate
measure of signal strength that applies to the whole signal, or to the signal over some specified time interval. In such cases, we wil
typically use themean-squared valugMSV). Specifically, the MSV of a signal(¢) over the intervalty, 2] is

1 f2

MS(z) = / 22 (t) dt.
ta —t1 Jy,

e This is also called thaverage powerof z(t) over the intervalty, to].

¢ As with the definition ofM(z), the definition ofMS value needs to incorporate a limit when the support interval is infinite.

e When no interval is specified, the entire support interval is intended.

Example Mean-squared value is useful when measuring the strength of the signal received by a radar antésiisalalfge in

an interval equal to the length of a radar pulse, then we assume that a reflected pulse has been received during this interval, ar
determine that this pulse is due to an object whose distance is the elapsed time since the original pulse was transmitted times th
speed of light. IfMS is very small, then we can assume that no reflected pulse has been received during thisiietethiake is

no object at the corresponding distance.

Example Mean-squared value is used by electric utility companies to determine how much to charge you for the electricity they
have supplied. This is because the amount of fuel required by them to supply your electricity is proportional to the mean-squared
value of the current supplied to your home.

Example Mean-squared value is often used as a signal quality measure. For example, st{ppissihe signal coming from the
leftmost of two microphones that are recording an orchestral concert, and sygpoasehe signal fed to the left speaker of your
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stereo receiver after transmission by an FM radio station.e(#@t= z(t) — y(¢) denote the difference between the two signals,
which we consider to be an error signal, since ideally these two signals would be identical if the recording system, radio system,
and speakers were perfect. Then the MS¥(@] is a good measure of the quality of the system that records and trangm)ite

you. In this context, it is usually calledean-squared error.

Example If z(t) = t/2for 0 < ¢t < 2, thenMS(z) = %fOQ(t/Q)th =1/3.

Energy vs average power

By comparing the previous definitions of energy and average power, we see that energy is the integral of instantaneous power. It i
also the average power multiplied by the length of the interval. Alternatively, average power is energy divided by the length of the
interval over which it is computed. A little thought will convince you that iergergyfor which an electric utility company actually
charges.

Since signal energy and average power (MSV) are related by a constant, the choice of which to focus on is often a matter of taste
If you focus on one, you can easily compute the other. The exception is for infinite duration signals with infinite energy; for such
signals average power is generally more useful.
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C9. RMS Value:
A closely related quantity is th@ot mean-squared valuglRMSV), which is simply

RMS(z) = /MS(z) = \/t2 itl /t 2332(7:) dt

On the one hand, RMSV is nicer than MSV in that its value is easier to interpret because its units are like a typical signal value,
whereas the value of the MSV is harder to interpret because its units are like the square of a typical signal value. On the other hand
the MS value is slightly easier to work with, because it avoids the square root.
Example Find the RMS value of
2ln] = { 3+1/2", n>0
0, otherwise.

We first find the MS value:

pl 1 = 1"
_ : n _ : - 2 - -
MS(z) = ngrclx3 E: (34+1/2™) —ngréoNnE:O?) +62 +t1
1—-1/2¥  1-1/4N 1—1/2Y  41-1/4N
= lim — [3°N +6 = lim [3*+12 - = 3%
N%N{ O T T Tt T N 37 N

SoRMS(z) = 3, which is intuitive from thg(Picture) of x[n].

C10. Variance and Standard Deviation
(These characteristics will be needed later in the course. You can skim them now, and return to them when needed.)

The mean-squared value of the difference between a signal and its average value is catletive of . The variance of a
signalz(t) over the intervalt;, to] is*:

1

o?(z) = MS(z — M(x)) = r—

[2@m—M@Wdt

The square root of the variance is called stendard deviation:

M(z))? dt.

o(z) = RMS(z — M(z)) = /o2 %

The variance and standard deviation of a signal are useful measures of how “variable” is the signal. A signal with small variance
or standard deviation stays close to its average value most of the time, whereas a signal with large variance or standard deviatio
does not. As with MSV vs. RMSYV, standard deviation values are usually easier to interpret because their units are commensurate
with signal units. On the other hand, variances are often easier to compute and work with.

to —t

Example Output noise in an audio amplifier with no input signal.

Relationship Between Mean-Squared Value, Variance and Average Value:

The following is a useful relationship.
MS(z) = o?(z) + M?(z) .

Its derivation is left as a exercise.

4Using the symbob2 for variance and for standard deviation is traditional.
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C11. Signal Value Distribution and Histograms:

The minimum, maximum, average, and mean-squared value are each numbers that each tell us something about the values th
appear in the signal. Thegnal value distribution gives a more complete picture. Before introducing it, let us review the general
meaning of the wordlistribution . As one example, consider the collection of grades resulting from an exam. If we speak of the
“distribution of these grades,” we mean a plot like that shown below. The horizontal axis shows the possible grades, and the height
of the plot above a given grade is proportional to the number of exam papers with that grade. As another example, consider the
distribution of incomes of residents of Michigan. Again this is a plot like the one shown below. In this case, the horizontal axis
shows the possible incomes, and the height of the plot above a given income is proportional to the number of people with that
income.

Histogram of x([)
100

50f

%5 60 65 70 75 80 85 90 95
X

One may similarly consider the distribution of many, many quantities. Not surprisingly, in signals and systems, we are often
interested in the distribution of values of a signél), which we call itssignal value distribution. That is, for a given signal(t)

we want a plot whose horizontal axis shows the signal values and whose height above a given signal value is proportional to the
frequency with which that val3eccurs in the signal.

How do we plot the signal value distribution of a sign&)? The most common way is make and pldtistogram. Specifically,
we divide the range of signal values from,i, t0 zmax iNto M equal widthbins, as illustrated below, wherk{ is some integer,
usually in the range 10 to 1000.

| | | | | | | | | z

Lmin —_— Tmax
W = Lmax—Tmin

M
o If the signal is discrete-time, we count the number of signal values that lies within each bin:
N,,, = # of signal values il i, + (m — 1)w, Zpyin + mw), m=1,..., M.

We then make a “bar plot” showing each colNy, above the bin, as illustrated above.
e If the signal is continuous-time, then we apply this procedure using reampleof the signal. That is, we apply the procedure
to the set of values(0) , z(Ts) , 2(2Ts) , 2(3Ts) , . . ., whereTy is the sample spacing.

Example We usually use a computer to compute histograms, but for simple signals we can also do it by hand.

—e
°
—e
——e
—e
3
—e
Y

2_Tr =
Consider the signat[n] = { (|)COS( sl Zthe?\;v.iééj

What values does z[n] take? {0,1/v/2 ~ 0.707,1}

SStrictly speaking it is not the frequency of individual values that matter. Rather, for anywalewant the frequency with which signal values lie in a small
neighborhood of, say fromz — A toz + A, A is a small constant.
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By counting, the histogram af[n] for M = 10 is as follows.

If we let M — oo, then we get a histogram like that shown on the right. For signals that only take a small number of values, it is

natural to consider the limit a& — oo.

4
2

histogram {4/ = 10)

1
0%

oo

1 1 z

[=)

histogram {4/ — o)
4

2

S

0

What if we considered 10 cycles of the signal (n2 = 79)? (Scales vertical axis by 10.)
What if we considered 100 samples/cycle instead of just 8? Use MATLAB!

Example Several signhals and their signal value distributions are shown below.

These histograms were computed witiMAB using the commankist(x,M)

andMis the desired number of bins. M=100 usually works well.

Signal x(t)

10 20

10 20

Histogram of x(0I

40

20

1000

500

40

-1
100

ZOI ‘
0

50

0
-1

0 1
0 1

X

1.12

, Wherex is a vector containing signal samples,
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Approximate signal characteristics from histograms

We now justify the statement made earlier that the signal value distribution gives a more complete picture of the signal values than
its minimum, maximum, average and mean-squared values. We do this by showing that these latter quantities can be determinec
at least approximately, from a histogram.

First, the minimum and maximum values will be readily apparent from the histogram. For example, the maximum value is
approximately equal to the largest bin center for which the histogram is not zero.
Why approximate?

Next, let us show how to compute the average valife) from the histogram. Let[1], z[2],...,x[N] denote the signal samples. If
the histogram haa? bins, then the width of each bin will he = (zax — Zmin)/M . The first bin is the intervdle pin, Zmin +w),
the second bin is the intervat,;, + w, zmin + 2w), and so on, and the last bin is the interf@li, + w(M — 1), Zimax]. Leten
denote the center of theth bin. That is,

Cm = Tmin + w(m —1/2), m=1,..., M.

Let N, denote the number of signal values that lie in+thig bin. Of courseZi‘f:1 N,, = N. Then the histogram is simply a bar
plot of the pointgc,,,, N),m = 1,..., M. The (exact) average value of thésignal samples is

1 N
M(z) = — > aln].

Now we observe that we can approximately compute the sum in the above in a different manner. Since Mgrsigmal values
in the mth bin, we know that there ar®.,, signal values that approximately equgal. The sum of these values is approximately
Np.cm. Making this approximation for each of the bins leads to

N
Za:[n] ~ Nicy + Naocy + -+ -+ Nayrear-
n=1

Thus, the following formula gives an approximation to the signal’s average value:

1 & MOIN
M(z) ~ N Z Npycm = Z (ﬁ) Cm -
m=1

m=1

That is, the average signal valdé(x) is approximately the weighted average of thg's (the bin centers), where the weight
multiplying ¢, is the fraction of samples that lie in theth bin.

Similarly, one may show that
M/N,
MS() ~ 3 <_m> K]
m=1 N

Then from the mean and the mean-squared value, one may directly compute the RMS value, the variance and the standard deviatio

The mean value, mean-squared value, RMS value, variance and standard deviation for a continuous-time signal are each appro:
imately equal to the corresponding quantity for the discrete-time signal produced by sampling the continuous-time signal. Thus,
they too may be estimated from a histogram.

As the number of bind/ increases, the approximation improvels Riemann approximations to integrals.

Example From theM = 10 histogram of the signat|n| considered earlier, the approximate mean is

M(z) ~ =[2-0.05+4-0.75 + 2 - 0.95] = 0.6125.

1
8
For comparison, the exact meanNgz) = (20 +4 - \/% + 2 - 1] = 0.6035. The approximation error is smaller than the bin
width.

In summary, for both discrete-time and continuous-time signals, all of the basic signal value characteristics can be determined, a
least approximately, from the signal value distribution.
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Summary of Signal Value Characteristics

The following table shows the definitions of the signal characteristics mentioned previously, with the exception of signal value
distribution, which is not easily summarized in table form. It also lists the analogous characteristics for discrete-time signals.

These are all mathematically defined quantities, but each one is important due tplsgsioal considerationis EE systems.

Characteristic

Continuous-time signalz(t)

Discrete-time signalz[n]

support interval

duration

maximum value:

minimum value:

magnitude:

squared value (instantaneous pow
mean value:

mean-squared value (average pow
RMS value:

variance:

standard deviation:

relationship:

energy:

[tb t2]
to — 11
Tmax = max; z(t)

Tmin = ming z(t)

|z(2)]
er) 72 (t)
M(z) = 1 [ a(t) dt
erMsS(z) = - ttf z2(t) dt
RMS(z) =

0% = MS(z — M(z)

{ni,n1 +1,...,ny}
No — N1 + 1
Tmax = MaX, z[n]

Tmin = Mmin, x[n]

|z[n]|
2%[n]
M(2) = oy Yonia, 2l
MS(2) = s Yonen, 27[0)
MS(z)

o =+/MS(z — M(x

)

MS(x) = o?(x) + M?(x)

E(z) = [,” 2%(t) dt

*[n]

B(z) =302,




© D. Neuhoff and J. Fessler, June 9, 2003, 12:41 (student version) 1.15

Computing continuous-time signal characteristics approximately using sums instead of integrals
This note supplements some formulas given in the Lab 1 background material without derivation.

Recall from the development of tiiemann integral in calculus that ifV is large, then

b b—a o
| a2 s,

k=1

where the intervala, b] is partitioned intaV segments with left endpoints given by=a + 22 (b—a), k=1,...,N.

We can use this approximation to compute signal characteristics like mean and energy of continuous-time signaiarbplfingt
those signals and then using the discrete-time formulas for signal charactengtics slight modificationn some cases.

Energy

Consider first the problem of calculating theergyof a continuous-time signai(t) from its sampleqz[n|} defined by
z[n] = z(nTy),

whereT; denotes the sampling rate.

Further assume that = n,7; andt, = (ng + 1)T; for some integers; andng, so thatN = ng — ny + 1 is the total number of
samples, and thug — t; = NT..

Applying the Riemann approximation:

t2 by — ) k-1
E(z) = /t Z2(t) dt ~ 2N 1Zm2(t1+—N (tQ—t1)>

1 k=

=

N n2
= Ty 2*(mTi+ (k—1)T) =T. > 2%[n].

k=1 n=ni

In summary, we can approximate the energy of a sampled signal as follows:

E(z) = /t2 2% (t) dt ~ Ty f: 2%[n] = Ts * sum(x."2)

t1

n=ni

Notice how the “extra” factof; comes out front due to the “width of the rectangle” in the Riemann approximation.

Mean value

Now consider instead thmeansignal value. Applying the Riemann approximation:

1 t2 1t & k-1
M = . t) dt ~ . t —(to — t
(z) to — 11 /t1 () to — 11 N kzlm Lt N (b2 =)
1 N 1 no
= — TS k_l TS = .
~ kZIx(m + ( )T5) e —— H;I z[n]

In summary

1 t2 1 2
M = tydt~ ———— = mean(x) .
(2) t2_t1/tl 2(t) n2—n1+1n§n3 2[n] )
=ni

Notice how this time there is no “extra” factds in the final MATLAB expression because it cancels out due totrenalization
by the signal duration. Similarly, one can show tNE§(z) ~ mean(x."2)



© D. Neuhoff and J. Fessler, June 9, 2003, 12:41 (student version) 1.16

I.B.3. Signal Shape Characteristics

In this section we consider signal characteristics related to what we loosely call signal “shape.” The signal value characteristics
considered previously have nothing to do with signal shape, as one can see by noticing that very different signals can have the
same signal value distribution, and consequently, the same min, max, average and mean-squared values. One may also obsel!
that interchanging or time-reversing segments of a signal would have no effect on signal value characteristics, but definitely would
affect signal shape.

Example The following two signals have the same signal value distribution.

1 (t) 3 (t)
1
-1 1 2 3t -1 1 2 3t
Here is the signal value distribution for the limit of a large number of samples and a large number of bins:
s.v.d.

A

3/4

1/4 *‘
0 12 1 =z

In discussing signal shape characteristics, we will first focus on continuous-time signals and later comment briefly on the analogous
characteristics for discrete-time signals.

Local shape characteristics

When studying a signal(t), we often examine segments of it to see if ilnsreasing decreasingr fluctuating

Example

Tx(t)
AN
1 NP AR WA

_increasing _ decreasing fluctuating
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Common signal shapes

The following is a list of some common signal shapes. These shapes can occur by themselves, or as segments of signals. That i
they may be thought of as local characteristics. The symalsd, ¢, andt¢; represent parameters that one must specify for the
signals to be completely determined.

, (1)
e constant z(t) = ¢ t
x(t)
Cc
_ foe t>4o A
o steff: z(t) = { 0 t<ty to t
a(t)
Cc

0, t<to | -
e rectangularpulse’: z(t) =< ¢, to<t<t to t1 ¢t

0, t>1

a(t)
Cc
b>0
o ramp: z(t) = 0, E<% \whichis increasing it > 0, decreasing it < 0. to ;
C(t—to), t Zto, '
. 0, t<to L . . . . .
o exponentiat z(t) = coblt—te) 4> ¢ which is increasing ib > 0, decreasing ib < 0, constant ifh = 0.
) = o,
a(t)
Cc
b<0
to t

e sinusoidal x(t) = csin(bt + d), which is fluctuating ifb # 0
x(t)

6Since the value of at timet is c, strictly speaking, we should simply plot the valuat timeto. Instead, we have drawn a vertical line frénup toc. This
line emphasizes the changeanas it goes frome(t) = 0 for ¢ < ¢o to z(t) = cfort > ¢o. This convention of drawing vertical lines where a function has a
step change in value is quite common. In the real world, no signal can make an perfectly instantaneous step from one value to another, contranyladdhe for
the step signal. Instead, a real world signal value would rise rapidly fréorc in the vicinity of ¢g. Thus a plot of a real world step signal would have a nearly
vertical line rising from0 to c attg. We may think of the vertical line shown in the figure above as a reminder that, in the real world, the signal can change rapidly,
but cannot actually have an ideal step change.

“Again notice the vertical lines, which are drawn for emphasis, and as a reminder of what happens in the real world.
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C12.Signal Envelope

This is best introduced with an example. The thick black line overlaying the signal shown beloweisvitlepeof the signal.

That is, for a rapidly fluctuating signal(¢), the envelope is a smooth curve that approximately followsptistivepeaks of the

signal. Admittedly this is not a very precise definition, and there is no universally accepted definition that can make it precise.
Nevertheless, the envelope is often a useful concept.

Continuous—time signal and its envelope

200 250 300 350 400
t

50 100 150

Example An AM radio station transmits an audio signal by embedding it in the envelope of a high frequency signal. Specifically,
supposen(t) is the audio signal to be transmitted. Then the radio station assigreedrter frequency f. transmits a signal of
the form

s(t) = (m(t) + ¢) cos(2m fct),

wherec is a parameter chosen so thaft) + ¢ > 0 for all, or at least most, time's Typically, f. is a frequency much higher than
the rate of fluctuation ofn(¢). For example, ifn(¢) is the audio signal shown below,

Audio message signal
0.5 r . . r .
£ Of !

-0.5

50 100 150 200 250 300 350 400
t
then the transmitted signaft) = (m(t) + 0.5) cos(2x f.t) would be the following.

Transmitted signal

50 100 150 200 250 300 350 400
t

Can you see the audio signalt) embedded in the envelope of the transmitted sigigP Can you think of a way of recovering
m(t) from s(¢)?
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C13. Periodicity:

The signal shape characteristic known as periodicity is particularly important in signals and systems, because many signals tha
appear in nature are periodic, or at least nearly so, as are many human-made signals in electronic devices.

A periodic signal consists of a certain pattern that is repeated over and over, exactly the same each time.

Though many signals agperiodic, i.e., not periodic, it turns out that periodic signals still play a key role in their analysis.

Example The following is a segment from a recording of someone speaking the vowel “ee.”

0.5 - - . . .

£ ol
< I

-0.5 : : :
50 100 150 200 250 300

t
A continuous-time signat(t) is said to beperiodic with period T' > 0, or simply T-periodic if
z(t+ 1) = z(t) for all values oft.

It is conventional to require the period T to be a positive number.

Example The plot below shows a periodic signal callegaavtooth wave Its values are marked at a particular titgeand also at
timestg + T, tg + 27T,....

0 to 4 to+ T to + 27T --- 16

Example Sawtooth waves occur in the scanning electronics for televisions. They are also an approximate model for the sound of
a bowed violin string.

Example Perhaps the most important periodic signalssameosoidalsignals, which will be the focus of Chapter 2.
If z(t) = cos(25t + ¢) , thenT is the (fundamental) period af(t). To see whyT" is a period ofz(t), notice that

z(t+T) —cos(z?w(t—i—T)—i—(b) —cos<2%t+27r+¢>) —cos<2%t—|—¢>> =z(t),

becauseos(d + 27) = cos(6).

Several important facts about periodic signals are given next.

Fact 1. A continuous-time signat(¢) with periodT is also periodic with perio@T, because foanytime ¢,
z(t+2T)=z(t+T)+T)=z(t+T)==z(¢),

where the last two inequalities follow from the definition of “periodic with periat

Fact 1. If z(¢) is T-periodic, thenz(t) is nT-periodic for alln € N = {1,2,...}. (The setN of positive integers is called
thenatural numbers.)

Fact 2. Though any periodic signal may be characterized as having infinitely many periods, there is always a unique smallest
period, called théundamental period, that is often denoted,. The fundamental periofl, of a signalz(t) is the smallest
positive numbef” such thate(t + 1) = z(t) for every value of. In other wordsTj is thesmallestperiod ofxz(t).

The reciprocal ofly is called thefundamental frequency f, of the signal. That isfo = 1/Tp. It is the number of
fundamental periods that occur per unit time.
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Warning! People often say “period” when they mean “fundamental period.” (We will not be so careless in 206!) So when
you hear the word “period,” you need to use the context to figure out if they really mean “fundamental period.”

Fact 3. If z(t) has fundamental peridf}, thenz(t) is periodic with periodhT; for every positive integer.
Fact 3'. Conversely, these are the only periods@j. That is, ifz(t) is T-periodic, therll’ = nT, for somen € N.

Derivation of the converse statem&nt
Supposex(t) is periodic with fundamental peridfy and is also known to be periodic with perid We must show that
T is an integer multiple of ;. We use proof by contradiction. Hypothetically suppose Thé not a multiple ofly. Then
T = nTy + r wheren is the integer part of'/T;, andr is the remainderd < r < Ty. Sincez(t) is Tp-periodic, it must be
that for any timet,

z(t+r) = z((t+r)+ NTo) sincex(t) is Tp-periodic and henc& T,-periodic
t+T) becausd’ = NT, +r

x(t) because:(t) is periodic with periodl.

T
T

Sincez(t + r) = z(t), we deduce that(t) is r-periodic. But the fact that < T contradicts the assumption tH&f is the
fundamental period, which by definition is the smallest periog(¢f. Therefore, our hypothetical assumption must be false.
We conclude thal” must be a multiple of .

Fact 4. A constant signal i.e., aDC signal, e.g, z(t) = 3, is a special case. It satisfie$t + T') = z(¢) for any choice

of T'. Thus it isT-periodic for every value of’ > 0. However, it is conventional to define the fundamental period to be
Ty = oo and the fundamental frequency to fie= 0. This somewhat arbitrary definition turns out to be more useful than
other definitions.

Fact 5. If signalsz1(t) andz2(t) are both periodic with period’, then the sum of these two signals,(t) + z2(¢) is also
T-periodic.
Fact 5’. This same property holds when one sums three or more signals. (The derivation of this fact is left as an exercise.)

Fact 6. The sum of two signals with fundamental perifiglis Ty-periodic, ancusuallyTy is also the fundamental period of
the sum. But sometimes the fundamental period of the sum clessthanT), as the following example illustrates.

Example Below, z (t) andz,(¢) are both 2-periodic, yet; () + z2(t) is 1-periodic.
$2(t),T2:2 $1(t)+l‘2(t),T0:1

| I [ NN 4 NN

:z:l(t), T1 =2

o 1 2 t o 1 2 t 0o 1 2

Fact 7. The sum of two signals with differing fundamental peridfisandT%, might or might not be periodic. The sum will
be periodic if and only if the ratio of their fundamental periodsaigonal, i.e., equals the ratio of two integers.

Example If T,/T) = 5/3 then the sum will be periodic. However/#% /T, = /2, then the sum will not be periodic.

To see how a rational ratio ensures periodicity, consider two signalg) with fundamental periody, andxz»(t) with
fundamental periods. Suppose thdl, /77 = m/n, wherem andn are integers. ThenTy = mT;. LettingT = nT, =
mT;, we see that

J}l(t + T) + J}Q(t + T) = Z‘l(t + mTl) + Jig(t + nTg) = Z‘l(t) + J}Q(t)

because (t) has period’; andx2(t) has periodl:. This shows that; (t) 4+ x2(t) is T-periodic.

To complete our discussion, we should also show th# T} is irrational (not the ratio of integers), them (t) + z2(t) is
not periodic. However, the proof of this is beyond the scope of the course and will not be given here.

WhenTy/T; is the ratio of two integers, the fundamental period of the sum signausllythe least common multiple
(LCM) of T, andT3. (And this rule always works if the two signals are sinusoids of different frequencies!) To find the LCM
of Ty, andT}, we find the smallest integers andn such thatnTs = mT;.

8This derivation is included for completeness. It is not expected that students can replicate this proof.
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We say “usually” because there are also examples like that illustrated in Fact 6 where the actual fundamental period is smaller
than the least common multigle

Correspondingly, the fundamental frequencyssiallythe greatest common divisor of the fundamental frequengiesd
f1 of the two signals.

There is one exception to the above discussion. If one of the two periodic signals is in fact simply a constant (a DC signal),
then the sum will certainly be periodic and the fundamental period of the sum will equal the fundamental period of the other
signal.

Example Supposer; (t) andz,(t) are the periodic signals shown below with fundamental periods 2 and 3, respectively.
Then, their sumx; () + x2(t) is periodic with fundamental period 6 = LCM(2,3).

L w1 (t)
1
T, =2 4 6
z2(t)
)
T =3 6 9 t
21 (t) + z2(t)
4
2
To =6 12 ¢

If instead of summing two periodic signals, we sum several periodic signals, then a discussion similar to the one above shows
that the sum is periodic if and only if the ratiosedich pairof fundamental periods is rational. Moreover, the fundamental
period of the sum is usually the least common multiple of all of the fundamental periods of the individual periodic signals.

Example Consider three sinusoidal signaks.d, corresponding to the carrier signal of three radio stations)t) =
cos(2m2000¢t), z2(t) = cos(2w3000¢t), x3(t) = cos(2w4000t). Determine the fundamental frequencygt) = z;(t) +
x2(t) + x3(t). The fundamental periods afgé = 1/2000, T> = 1/3000, T35 = 1/4000. The ratios of these periods are all
rational, soz(t) is indeed periodic. Now observe thl, = 1o, 372 = 1955, 475 = 1555, and the integers, 3, 4 have no
common divisors. Thus LCWy, T», T5) = 1/1000 = Tp. Thus the fundamental frequency«t) is fo = 1/To = 1000.

Summary of Facts 5-7.

If 21 (¢) is Ty-periodiczs (t) is Th-periodic, and:(t) = z;(t) + z2(t), then
e Case 0: ifl] = oo, thenz(t) is T»-periodic.
e Case 1: ifl5/T; is irrational, ther:(t) is aperiodic.
e Case 2: ifly /Ty = m/n (i.e., is rational), therx(¢) is T-periodic wherel’ = nTy = mT3.
If 71 andT; are the fundamental periods, respectively, then LCIMI) is usually the fundamental period oft).

9There is one small exception to the “less than the LCM” rule. If the sum of two or more signals happens to be a constant, then the period of thse result is
regardless of what the individual periods are.
Example z1(t) = 1 — cos(t), andz2(t) = cos(t).
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Example The following figure shows what happens when square waves of various periods are added.

e x1(t) is 2-periodic,x»(t) is 3-periodic, andr;(t) is /8-periodic
o x1(t) + z2(t) is 6-periodic
e x1(t) + z3(t) is aperiodic

X,®

X0

xl(t)+x2(t)

xl(t)+x2(t)

xl(t)+x3(t)

2
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Do periodic signals have finite support or infinite support? Always infinite! But the following fact spares us from
using limits when computing signal statistics like mean value and average power. All of the information about the signal is
contained in a single period, so we can compute all signal statistics from a single period!

Fact 8 The average of a periodic signal with peridcver an interval whose length is a multiple Bfequals the average
over any interval of lengtli’. The same applies to mean-squared value (equivalently, average power).

To see why, consider the average over the time intdtyat; + mT7:

1 t1+mT 1 t1+T t1+42T t14+mT
t1 t1 t1+ t1+(m—
1

mT

/t1+T 2(t) dt + /t1+T o(t) At + -+ /t1+T (1) dt]

t1 t1 t1
(because:(t) is the same in eachsecond interval)

t1+4+T
_ %/t 2(t) dt = M(z).

Thus we see that the average oxeperiods reduces to the average over just one period.
We can choose any we want. Usual choices ate = 0 ort; = —T/2.

A related “limiting” argument shows that the average over an infinite interval of time reduces to the average over just one
period.

Finally, we note that the average is the same over all intervals of I&ngitis follows from the fact, illustrated below, that
the integral ofz(¢) over any interval of lengtll” is the same, because, by periodicity, the same values are being integrated,
though perhaps in a different order.

x(t)

t1 ti+T t2 to+T t3 ts+T
Fact 8 also applies to mean-squared value, because mean-squared value is itself an average:

1 [T 1 [T/2
MS(z =—/ 2 (t dt:—/ x2(t) dt.
@=7 ) @Od=7[ 0
(Any interval of lengthI” will suffice.)

What about the energy E(z)? For periodic signalsi(z) = co unlessz(t) = 0.
So we always focus on average power rather than on energy for periodic signals.
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Signal Shape Characteristics of Discrete-Time Signals

Discrete-time signals can have all the same shape characteristics as continuous-time signals. For example, they can be increasir
decreasing or fluctuating. Common signal shapes include all of those mentioned previously: constant, step, rectangular pulse
ramp, exponential and sinusoidal. Envelope is again a useful concept, as is periodicity. Because periodicity is such an importan
concept, we repeat the discussion of it here, this time for discrete-time signals.

Periodicity of discrete-time signals

A discrete-time signat[n] is calledperiodic with period N, or simplyN-periodic, whereN € N (a natural number), iff
z[n + N| = z[n] for all integersn.

This definition is the same as the definition for continuous-time signals, except that instead of the equality holding for all continuous
timest, it holds for all integer times € Z. It is conventionally required that > 0.
Example The signale[n] = cos(mn) = (—1)™ is 2-periodic.

We now revisit the various facts about periodicity.
Facts 1-6 are essentially identical as those for continuous-time signals, excepatith replacet andT'.
However, Facts 7 and 8 are different, and this difference is quite important!

Fact 1. A discrete-time signal with periody is also periodic with perioegh NV for any positive integem.
Fact 2. Thefundamental period, denotedV,, is the smallest positive integ@F such thate[n + N| = z[n] for all integers
n. In other words N is the smallest period af[n].

The reciprocal ofN is called thefundamental frequency f, of the signal. That isf, = 1/Ny. It is the number of
fundamental periods occurring per sample. (It is always less than or equal to one.)

Warning! People often say “period” when they mean “fundamental period.”

Fact 3. If z[n] has fundamental perialy, thenz[n] is periodic with periodn N, for every positive integeih. Conversely,
these are the only periods ¢fn|. That is, ifz[n] is periodic with periodV, thenN = mN, for some integem.

Fact 4. A constant signak.g, z[n] = 3, is a special case. It satisfieg:. + N| = z[n| for any choice ofV € Z. Thusz[n] is
periodic with periodV for every value ofV > 0. However, it is conventionally defined to have fundamental pelipd= co
and fundamental frequengy = 0. This somewhat arbitrary definition turns out to be more useful than other definitions.

Fact 5. If signalsx; [n] andz2[n] are both periodic with period/, then the sum of these two signai$n| = z1[n] + z2[n|
is also periodic with perio@’. This same property holds when one sums three or more signals.

Fact 6. The sum of two signals with fundamental peridv{ is periodic with periodV,, but the fundamental period of the
sum might be less thaij.

Fact 7. The sum of two discrete-time signats[n| andxz[n] with (possibly)differing fundamental periodsy; and N, is

always periodic!

This statement differs from the continuous-time case because the fundamental periods of discrete-time periodic signals are
always rational. Therefor®; /N, is also always rational, so the sum is always periodic.

The least common multiple a¥; and N is always a period of the sum, anduallyequals the fundamental period of the
sum. (The LCM is always the fundamental period if the signals are sinusoids.)

Similarly, the fundamental frequency usually equals the greatest common divisor of the fundamental fregfuancigs.
Similarly, the sum of several discrete-time periodic signals is always periodic. Usually the fundamental period of the sum is
the least common multiple of the fundamental periods of the individual signals.

Fact 8. The average of a periodic signal with periddover an interval whose length is a multiple 8fequals the average
over any interval of lengtlv. The same applies to mean-squared value (equivalently, power).

n1+N—-1 ni+N-—1

M(x):% > oz, MS(x):% > 2.

n=mniy
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(Usually we user; = 0.) Again, a single period contains all the information needed to compute any signal statistics.

Example To determine the average power of the sigrial = cos(%”n), we note by plotting that[n] cycles through the six
values{1,1/2,0,-1/2,—1,-1/2,1/2} soMS(z) = $[12+ (1/2)2 + 0% + (—1/2)2 + (—=1)® + (=1/2)* + (1/2)?] = 1/2.

Period of discrete-time sinusoidal signals

To find the fundamental period of a discrete-time sinusoidal sighal = cos(wn + ¢), one must work a bit harder than in the
continuous-time case.
e First, express in the formw = 27r% whereN is a positive integer.
e If (and only if) M is also an integer, therin] is periodic.
e In addition, afterM and N have been simplified to have no common divisors, theis the fundamental period afn].
(UnlessN = 1, in which casex[n] is a constant signal so the fundamental period is said to be infinity.)

To help understand these claims, observe thaftif = cos(2r¥n + ¢) , whereM andN are integers, then
M M M
z[n+ N] = cos<27rﬁ(n +N)+ ¢> = COS(Q?TNTL +o+ 27TM> = cos(Zm’Nn + (b) = z[n],

becauseos(6 + M27w) = cos(f). This confirms thatV is a period ofz[n], but more work is needed to show thatis the
fundamental period wheh!/N is simplified.

SinceN is a period, we know thaV = LN, where isL is a positive integer and\y is the fundamental period afin]. To show
thatV is in fact the fundamental period, we must show that 1 is the only choice. We do this using a “proof by contradiction.”
Supposd. > 1. Then

el + Noj = cos(2m 2 (n + No) + ¢) = cos(2rn + 2100 1) = cos(2n 30+ 25 +6) # aln]

N N
for somen becausd. is a divisor of N but N and M have no common divisors (except unity),%o% is not an integer multiple of
27r. So we must havé = 1 and hencéV is the fundamental period when the rali/ NV is simplified to have no common factors
in the numerator and denominator.

cos(In +1). We write& = T = 27 %, so the fundamental period 18.

Example Consider the signat|n]

Example Consider the signat[n] = cos(37n). We write3r = 273, soz[n] is periodic with fundamental periali, = 2.

In constrast, the continuous-time signét) = cos(3mt) = cos(2r3t) has fundamental frequengy = 3/2 and hence fundamen-
tal periodZ, = 2/3. This is a very importance difference between continuous-time and discrete-time signals!

The following figure helps explain the situation. This phenomena is calleding and will be a main topic in Part 4.

1

cos(3mt)

X(t) =
S
[62]

cos(3 1tn)

A R S
VAANAANANS
WRRYRVAAVRYA YA

x[n] =
|
, ©
= ol o
T T
[ S—

x(1), X[n]
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I.C. Two-Dimensional Signals

A picture orimage as we will usually say, can also be modeled as a signal. However, in this case, it must be modeled as a
two-dimensionasignal z(t, s). That is, instead of single independent parametepresenting time, there are two independent
parameters ands, representing vertical and horizontal position respectively. Thatiss) represents the intensity or brightness

of the image at the position specified by horizontal positiand vertical positio, relative to some coordinate system. All of the
previously mentioned concepts and characteristics can be extended to apply to two-dimensional signals. But we will not discuss
them here.

Two-dimensional images can be “discrete-time” as well as “continuous-tidistrete-spaceand continuous-spaceare better
terms). In the discrete-space case, the signal (image) is denpted] wherem andn are integers representing vertical and
horizontal positions, respectively.

To display such a signal (image) graphically, we usually use a color scheme in which the value 0 is shown as a small black square
called apixel, and the maximum signal value, often 255, is shown as a small white square, and intermediate values are shown in
various shades of gray. Tlwlormap command in MTLAB controls this behavior when displaying images usingithage
command. Theolorbar command shows the mapping between signal values and grayscale intensities.

Example

| s B
|3 2 R

QY

m
What is the dimensionality of television? Three dimensional(z, y, t), two space dimensions plus time.

What about digital video? s[n, m, k|, wheren, m denote spatial coordinates (pixel locations) &rdenotes the time frame.
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II. Elementary Signal Operations

Engineers design systems that manipulate signals in useful ways, such as combining multipleesignalsl{o mixer) or modi-
fying a signale.g, an audio amplifier. In courses like EECS 215, you learn how to build such systems from physical components.
In 206/306, you learn to design, analyze, and compare such systems independently of the physical devices.

Perhaps the most important such operation that will be discussed in this cofiltegiigy , an operation so powerful that we will
devote the last half of the course to it. Here we start with basic operations.

A. Elementary Operations on One Signal

When discussing signals and systems, we routinely use a number of elemgpeaayions that, when applied to one signal,
result in another closely related signal. In the following we introduce these operations using continuous-time notation. With two
exceptions, to be noted, they apply equally well to discrete-time signals.

Each of these operations is defined mathematically, but each also corresponds to one or more physical situations.
It is important to be able to apply these operations both graphiealtymathematically, so we illustrate all of them using the

following signal.
2(t) = t—2, 2<t<3
10, otherwise

1 2 3 4 t
We deliberately chose a signal defined piecewise since such signals are often of interest.

Operations that modify signal values

0O1. Adding a constant
This is the operation of adding a constant to the signal. More specifically, there is a nuthbers added to the signal value at
every timet. If the original signal isc(¢), then the result is a new signal
y(t) = x(t) +c.
Itis easy to see that this operation has the effect of increasing the average valweofThat is,M(y) = M(z) + c.
Example Connecting a waveform generator in series with a 9V battery would yield an overall voltagg ef 9.

Example

t—25 2<t<3
y(t) = =(t) —1/2 = { —1/2, otherwise

y(t) = o(t) — 1/2
1/2

1 27 3 a4

02. Amplitude scaling:
Amplitude scaling is the operation of multiplying a signal by a constant. That is, there is a corstealled ascale factoror
gain, and the value of the signal at every timis multiplied byc. If the signal being scaled igt), then the result of the scaling is

y(t) = ca(t).
This has the effect of scaling both the average and the mean-squared values. Specifically,

M(y) = M(x),  MS(y) = MS(a).
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Example An ideal audio amplifier will scale the input signa.g, from a phonograph) to a larger values suitable for driving
speakers.

Example
1 lt-2), 2<t<3 t/2—1, 2<t<3
y(t) = 5e(t) = { %(0), otherwise { 0, otherwise.
y(t) = 3(t)
1/2 ‘
1 2 3 4 t
03. Squaring:
Here we simply square the value of the signal at each time, yielding
y(t) =2°(1).
Example
oo =27 2<t<3 [ (t—2)% 2<t<3
y(t) = 27(t) = { (0)2, otherwise ~ | 0, otherwise.

y(t) = 2%(t)
1

O4. Absolute value
As the name suggests,

What is a practical situation where we need an absolute value operation? AC to DC rectification.

Example (combining absolute value and amplitude shift)

B B _J|t=25], 2<t<3 [ |[t—25], 2<t<3
y(#) = |=(?) 1/2l_{ |-1/2|, otherwise ~— | 1/2, otherwise

y(t) = [=(t) —1/2]

[aE

Operations that modify the time axis

O5. Time shifting:
If z(t) is a signal and” is some number, then the following signal ifrme-shifted version ofx(¢):

yt)=z(t-1T).

That is, the value of; at timet is precisely the value aof at timet — T'. This means that if’ > 0, then as illustrated below,
anything that “happens” in the signalalso happens in the signgl but it happend” time units later iny than inz. Similarly, if
T < 0, it happend time units earlier iny. It is useful to remember the rule that a positive valug'déads to a right shift of the
plot of z:(¢) and a negative value @f leads to a left shift.

This is our first exception where the discrete-time case is slightly different. Specifically, th& shifst be an integer for discrete-
time signalse.qg, z[n — 5.
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Example Signal propagation times can be modeled by a time shift.
Example

Mwww—n—{“‘n‘l2<U—D<3_{t—&3<t<4

0, otherwise 0, otherwise

y(t) = =(t - 1)

1

06. Time reflection/reversat
Thetime reflectedor time reversedversion of a signak(t) is

y(t) = z(-t).
That is, whatever happens:inalso happens ig but at the negative of the time it happengjin
Example Playing a recording backwards.

Example A mirror. (2D case)

Example
_ oa_ =2, 2<(-t)<3 _ [ —t—-2, -3<t<-2
y(t) = z(—t) = { 0, otherwise 10, otherwise.
y(t) = z(—1)
1
-3 -2 t

O7.Time scaling
The operation ofime-scalinga signak:(¢) produces a signal
y(t) = x(ct),

wherec is some positive constant. ¢f> 1, this has the effect of “speeding up time” in the sense that the valyeabfimet is
the value ofr at timect, which is a later time. Alternatively, whatever happens im the time interval¢,, ¢2], for ¢; > 0, now
happens iry in the earlier and shorter time inter& /¢, t2/c|.

This is the second property for which the discrete-time case includes an extra wrinkle. Specifically, in discrete-time, the time values
must be integers. Therefore, if we take
y[n] = z[en],

thenc must be an integer.
Example Playing back a recording faster or slower than the original recording speed.

Example Doppler shift. (Itis called a “shift” because motion of the soureg{a train horn) causes a shift of tfrequencyof the
signal, which in this context is nearly equivalent to time scaling.)

Example

(2t)—2, 2<(2t)<3 [ 2t—2, 1<t<3/2
otherwise 10, otherwise.

y(t) = 2 (20)
1
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Combinations of the above operations

We will frequently encounter signals obtained by combining several of the operations introduced above. In particular, we will need
combinations of time shift and time scale operations, possibly in conjunction with amplitude shift and/or amplitude scaling.

For example, given the signal(t) described in the previous examples, we may need to determine the gigha! 2z (3 — %) .

Again, it is important to be able to perform such operations both mathematically and graphically. The mathematical approach
consists of applying the amplitude scaling and replacing edcim“z(t) with the appropriate argument, in this case- %, as

follows:

_ _f2(8-£-2), 2<3-%i<3 [2(1-1), -1<-t/2<0 _ [ 2—¢ 0<t<2
y(t) =22(3 - t/2) = { 0, otherwise 10, otherwise 10, otherwise.

For the graphical approach, there are two right ways and two wrong ways to do it. We will describe one correct way, which is all
that is needed. Amplitude shift and amplitude scale are easy, but combinations of time shift and time scale must be done carefully.
The following three-step recipe is a safe approach.
e First express the combined time shift and time scale in the following fg{m:= z(c(t — to)) -
e Time scalex(t) by c.
(Remember that i < 0 then there is also a time reversal, and remember the difference betweérandc < 1.)
e Time shift the resulting signal byy.
(Remember that whety > 0, the graph shifts to the right.)

To help remember the order, note that “scale” comes before “shift” alphabetically.

To see that this approach is mathematically correct, consider first defining an intermediates@igralz(ct), which is z(t)
time-scaled by. Then we have(t) = s(t — to) = z(c(t — o)), SOy(t) corresponds te(t) time-shifted byt,.

Example Continuing to use the(t) described earlier, fing(t) = 2z(3 — £) .
First we write this in the recommended form:

y(t) = 22 (—%(t - 6)) .

Next we time-scale(t) by ¢ = —1/2 and we will also apply the amplitude scaling here to fai(t) = 2z(—3t).

s(t) = 2z(—31)
2

-6 -4 0 t
Finally we time-shifts(¢) by 6 (to the right in this case) to form(t).

y(t) = s(t — 6) = 2z(—3t + 3)
2

1 2 t
Of course this final graph agrees with the mathematical formula.

If instead you used the form(at + b) then you could apply the time-shift first and then apply the time-scale second. But it is
probably safer to just practice one way to do it and stick with that way.

Even with experience, trying to combine time shift and time scale operations into one step is quite prone to errors. Stick with the
three-step approach!
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B. Elementary Operations on Two or More Signals

08. Summing:
As its name suggests, this is simply the operation of creating a new signal as the sum of two or more signals, as in

z(t) = z(t) + y(t).
More specifically, the value of at time each time is the sum ofr at timet andy at timet.

09. Linear combining:
Linear combining is like summing except that we allow amplitude scalieg (multiply the signals by constants) in addition to
summing, as in

y(t) = 3x1(t) + 4za(t) — 223(t) .

In this casey(t) is said to be dinear combination of z;(t), z2(¢), andzs(t). The scale factors multiplying the signals are often
calledcoefficients

Example Audio mixer in recording studio.

Linear combinations arise in a several ways. As one example, sometimes we are given a collection of signa(s),sayt)
andzs(t) and are asked teynthesizeanother signal(t) as a linear combination of the signals in the collection. For example,
suppose we need to create the sigy@), but our hardware can only produce signaj$t), z2(¢) andzs(¢) and perform linear
combinations. Often, it is not possible to exactly synthegize from the given collection so the synthesis must necessarily be
approximate.

As another example, sometimes we are given a sigftalthat is known to be a linear combination ©f(¢), z2(t) andzs(t),

and we are asked to find the scale factors. This task, which is call@lgsis happens for example in communications systems,
where the scale factors determine the information carried by the sjgtjallt also happens ifrourier analysis, to be discussed
considerably throughoutthe course, where we consider a gjgrab be the linear combination of sinusoidal signals with different
fundamental frequencies.

010. Multiplying :

As its name suggests, this is simply the operation of creating a new signal as the product of two or more signals, as in

2(t) = () y(t).
More specifically, the value of at time each time is the product ofc at timet andy at timet.

Example Signal multiplication is a basic operation of most radio transmitters which, as in the example of AM radio described
earlier, typically multiply a sinusoidal signal by some information-bearing signal.

0O11.Concatenating
Appending one signal to the end of another is caledcatenation

Example If z(t) is a signal with support intervdD, ¢;) andy(¢) is a signal with support0, ¢2), then as illustrated below their
concatenation is the signal
z(t)_{ z(t), t<ty

y(t—tl), t> 1.

z(t) L y(t) , 2(1)
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Example Concatenation occurs in digital communications where, to transmit a sequence at the rate of one Bitsecernds,
there is a signad, (t) with support within(0,7") used to send 0’s, and a signalt) also with support withir{0,7") used to send
1's. The transmitted signal is the concatenation of these.

Example When the signals shown below

. s0(t) , s1(t)

0 1 2 ¢ 0 1 2 ¢

are used to send the binary sequence 0,0,1,0,1,1,1,..Twit2, the transmitted signlis the following.

,2(t)

0 2 4 6 8 10 12 14 ¢

(This is an example of pulse-width modulation, which is described in more detail in EECS 353 and EECS 455.)

Concluding Remarks

The signal operations discussed in this section are elementary operations that are used in a variety of situations. One may viev
them as basic tools or building blocks. The signal operations considered later in the eogy§&hépters 5-8 of the text) are more
sophisticated operations, which are developed with some specific task in mind. These operations can be thaygiteofsthat

is, when the operation is applied to a signél), the signal:(¢) is viewed as the input to systemthat performs the operation and
produces at its output another signét), which is the result of the operation. In such cases, we often draw a block diagram like

the one shown below. Much of the course will be devoted to designing systems to perform the tasks described in the Section IV.

z(t) — = y(t)

Example Telephone system.

10As usual, vertical lines shown just emphasize the transitions between transmitted bits, as well as the jumps from 0 to 1 and 1 to O.
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Effects of signal operations on signal characteristics

So far we have covered the following
e Signal characteristics (duration, energy, etc., about 13)
e Signal operations (amplitude scaling, etc., about 11)

It is logical to expect that performingperations(even simple ones!) on signals will change thediaracteristics
So we could now derive aboli8 x 11 “properties” that describe the effect of operation X on characteristic Y.
Instead, we will work a couple examples that illustratertrethodsne can use to derive such properties when needed.

Example Operation: time scaling. Characteristic: duration.

Supposex(¢) is a finite-duration signal with support interja, ¢-).
Lety(t) = «(2t). Find the duration of(¢).

Answer.

Sincez(t) has support intervdty, o], its nonzero values occur when< ¢t < ¢,. (Use what is given about “input signal.”)
Sincey(t) = xz(2t), its nonzero values occur when< 2¢ < t,. (Use what is known about relationship betweeandz.)
Rearranging, we see that the nonzero valuagfoccur whert; /2 <t < t5/2. (Use math.)

Thus, theduration of y(t) ists/2 — t1/2 = 1(t2 — t1), so‘ duration(y) = duration(x) / 4

Example Operation: time scaling. Characteristic: energy.

If y(t) = x(—2t), relate the energy af(t) to the energy of(t).
For simplicity we consider a finite-support signgk), with supportty, t2].
By similar argument as above, the support interva}@j is [—t2/2, —t1/2]. So the energ¥(y) is given by:

—t1/2
E(y) = / y*(t) dt  (Definition)
—t2/2

7151/2
= / z?(=2t) dt  (Substitute given relationship)
7t2/2

" d’
= / z?(t) 5 (Calculus: lett’ = —2t)
to -
Why? To make the integrand match the formula Ejtr).

t2 dt’
= / z2(t) - (Calculus: exchanging limits)
t1

ta
- %/ 2(t) dt’ = %E(ﬂc) (Using energy definition again)
t1

Exercise: show the following.If y(¢) = x(ct) for ¢ # 0, thenE(y) = ﬁE(m).

Can one memorize all 100+ such properties? Can one “cram” them in before an exam? Unlikely.
Instead, one must learn these methods by working problems, paying attention to the tools used to find the solutions, so as to be abl
to apply those tools when needed for future problems.

Example Operation: signal addition. Characteristic: energy. (Rdidte+ y) to E(x) andE(y) and ?.)

E(@+y) = (z[n] +yln))* =) _2®ln]+2) z[nlyln] + ) y*[n] = E(@) +2)_ z[n]y[n] + Ey) .

n

The term)  x[n| y[n] is called thecorrelation of z[n] andy[n], and is central to the next topic!



