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I. Elementary Signal Concepts

Reading Assignment: Chapter 1 and these notes. It is recommended that you review these notes every now and then throughout
the term. Some of these elementary concepts will be needed much later in the course, and some will be well understood only after
you have had more experience with signals.

A. Signal Definition and Signal Descriptions

What are layperson examples of “signals” in common use?

Definition: A “signal” or “waveform” is a quantity that varies with time (or space), and typically conveysinformation .

In precise mathematical terms, a signal is a function of time. That is, for each value of timet there is number called the1 signal
value at time t.

Since signals are functions, and functions are constructs of mathematics, we will use the language of mathematics throughout the
course, starting now!

Notation: We typically use lower case letters likex, y, ands, or subscripted letters likex1(t) to represent signals,i.e., functions
of time.

Usually we show timet as the argument of such function, as inx(t).

Beware of the Ever-Present Notational Ambiguity:When you see “x(t)” written, sometimes the writer intends you to think of
the value of the signal at the specific timet, as inx(3.1), and sometimesx(t) means the whole signal—that is, the writer intends
you to think about the whole signal,i.e., the signal values at all times. When it is essential that readers think about the whole signal,
authors will sometimes writex or {x(t)} or x(·) instead ofx(t).

Continuous-Time and Discrete-Time Signals:If the time variable ranges over a continuum of values, we say that the signal is
continuous-time. If the time variable ranges over a discrete set of values we say the signal isdiscrete-time.

More specifically, unless stated otherwise, we assume that the time values of every continuous-time signal range over the set of all
real numbers from−∞ to+∞. In mathematical terms we say that thedomain of a functionx(·) is the interval(−∞,∞), which
we denote by the symbolR as a shorthand.

Similarly, unless stated otherwise, we assume that the time values of every discrete-time signal range over the set of allintegers:
{. . . ,−2,−1, 0, 1, 2, . . .}, which we denote by the symbolZ as a shorthand. That is, the domain of the signal (function) is the set
of all integers. When dealing with discrete-time signals it is most common to use one of the symbolsi, j, k, l,m, or n to denote
time rather thant. It is also common to put the time variable inside square brackets “[ ]”, rather than in ordinary parentheses. For
instance, the following are examples of the notation used for discrete-time signals:x[n], y[k], z1[m].

Signal Descriptions:Sometimes signals are described with formulas and sometimes they cannot be so described.

Example. Continuous-time signals described with formulas:

x(t) = e−t, y(t) = 3 sin(47t), z(t) =



2, t < 0
t2, 0 ≤ t ≤ 1
0, otherwise.

In EE, we often define functionspiecewiseusing braces.

Example. The “touch tone 2” signal:
x(t) = cos(2π1336t) + cos(2π697t).

1This font is used when a technical term is used or introduced for the first time.
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Example. A continuous-time signal that is not describable with a formula:

0 0.05 0.1 0.15 0.2
−1

0

1

t

x(
t)

Continuous−time audio signal

The signal shown above is part of a recording of a train whistle. Almost everything that one would hear is embodied in the function
plotted above. The only missing information is the “volume” (notice the lack of units forx(t)), which in practice would depend
on the settings of the amplifiers and the efficiencies of the speakers, etc. But theinformationin the signal is independent of the
volume; the sound would be recognizable (by a human with unimpaired hearing) as a train whistle for any reasonable amplifier
settings. (But can your eyes tell it is a train whistle from the plot?)

Example. Discrete-time signals described with formulas:

x[n] =

(
1

2

)n
, y[n] = 3 sin(47n), z[n] =



2, n < 0
n2, 0 ≤ n ≤ 10
0, otherwise.

Example. A discrete-time signal that is not (easily) describable with a formula:

7320 7330 7340 7350 7360
−1

0

1

n

x[
n]

Discrete−time signal

Are signals described by formulas more “real” or “authentic” than signals that are not so describable?
What does it mean to “describe a signal with a formula?”
Over the centuries, it has been found useful to give names to certain basic mathematical operations, such as ’+’, ’-’, ’×’, ’/’, x,
ln(x), e, |x|, etc., and certain basic functions, such assin(x), cos(x), Γ(x), etc. To “describe a signal with a formula” is simply to
say that it can be expressed in terms of previously defined operations and formulas. A signal that is not describable by a formula
may simply be a function waiting to be blessed with its own name. Or it may be a function that has not previously occurred and
may never occur again. Generally, we do not consider signals described by formulas to be any more real or authentic than those
that are not so describable.

Note that a formula describing a signal can be quite complex, as in

s(t) =

N∑
k=1

ak cos(2πfkt+ φk)

whereN, a1, . . . , aN , f1, . . . , fN , φ1, . . . , φN are “signal parameters”,i.e., constants or variables that one needs to know to fully
determine the signal. It will be important to develop the skill of being able to work with complex signal formulas. For example,
when you see the summation sign

∑
, you should recognize that it is just an abbreviation for a sum ofN terms. Indeed, to better

understand the signal described by a summation, it is often useful to write it in its unabbreviated form,e.g.,

s(t) = a1 cos(2πf1t+ φ1) + a2 cos(2πf2t+ φ2) + · · ·+ aN cos(2πfN t+ φN ).
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Discrete-Time Signals from Continuous-Time Signals via Sampling

Frequently discrete-time signals are produced bysampling a continuous-time signal. Ifx(t) is a continuous-time signal andTs is
a positive number then the discrete-time signal produced by samplingx(t) with sampling interval Ts is the signalx[n] defined by

x[n] = x(nTs) .

Example. If x(t) = cos(2πt)
1+|t| andTs = 1/2 then

x[n] = x(nTs) = x(n(1/2)) =
cos(2πn(1/2))

1 + |n/2|
=
cos(πn)

1 + |n/2|
=

{
1

1+|n/2| , n even
−1

1+|n/2| , n odd
=
(−1)n

1 + |n/2|
.

The continuous-time signalx(t) and the discrete-time signalx[n] produced by samplingx(t) are shown below.

−4 −2 0 2 4 6 8
−1

0

1

t

x(
t)

Continuous−time signal

−8 −4 0 4 8 12 16
−1

0

1

n

x[
n]

Discrete−time signal

Example. If Ts = 1.5 andx(t) =

{ √
2t− 4, t ≥ 2
0, otherwise,

then

x[0] = x(0) = 0, x[1] = x(1.5) = 0, x[2] = x(3) =
√
2, x[3] = x(4.5) =

√
5, x[4] = x(6) =

√
8, etc.

To express this compactly, consider the following manipulations:

x[n] = x(nTs) =

{ √
2(nTs)− 4, (nTs) ≥ 2
0, otherwise

=

{ √
3n− 4, 1.5n ≥ 2
0, otherwise

=

{ √
3n− 4, n ≥ 2
0, otherwise.

Notice that we replaceall of thet’s bynTs, since that is whatx(nTs)means. Also we wroten ≥ 2 rather thann ≥ 4/3 in the final
expression sincen must be an integer.

The quantityfs = 1/Ts is called thesampling frequencyor sampling rate, because it represents the frequency or rate (in samples
per second) at which samples are taken.

As will be discussed a great deal later in the course, we often work with continuous-time signals by working with their samples,
i.e., with a discrete-time signal produced by sampling. For example, we often display continuous-time signals (approximately) by
displaying their samples.

However, there are also discrete-time signals that arenot obtained by sampling any continuous-time signal.
Example. Consider the signalx[n], wherex[n] denotes the height of thenth person standing in a certain line.
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B. Elementary Signal Characteristics

A starting point of any field of study is tocategorizethe objects under study. We examinesignal characteristics2 next.

We will emphasize the characteristics of continuous-time signals. There are discrete-time versions of each of these that will be
presented later.

Perhaps the most important signal characteristic in this course is a signal’sspectrum, which has to do with the “frequency content”
of the signal. (Something like how a prism shows the components of white light.) This topic is so important that we will not discuss
it here. Rather, beginning with Chapter 3, it will be a focus of much of the remainder of the class.

1. Signal Support Characteristics

These are signal characteristics related to thetimeaxis.

C1. Support Interval :
Roughly speaking thesupport interval of a signal is the set of times such that the signal is not zero. We often abbreviate and say
simplysupport or interval instead of support interval.
• More precisely the support interval of a continuous-time signalx(t) is the smallest time interval3 [t1, t2] such that the signal is

zero outside this interval.
• For a discrete-time signalx[n], the support interval is a set of consecutive integers:{n1, n1 + 1, n1 + 2, . . . , n2}. Specifically,
n1 is the largest integer such thatx[n] = 0 for all n < n1, andn2 is the smallest integer such thatx[n] = 0 for all n > n2.

Example. Here are some signals and their supports.

-
t

6
x(t)

-1 1 2 4

1

t1 = −1 t2 = 4

←− support interval:[−1, 4]−→

-
t

6
x(t)

4 5

1
· · ·

t1 = 0 (t2 =∞)
←− infinite support →

9

support interval = {2,3,...,12}

2 12
n1 n2

x[n]

n

... ...
1

infinite support

n1 = −∞ n2 =∞

x[n]

n

C2. Duration :
Theduration or length of a signal is the length of its support interval.
• For continuous-time signals, duration =t2 − t1.
• What is the duration of a discrete-time signal? duration =n2 − n1 + 1.

Some signals have finite duration and others have infinite duration.
Example. The two signals on the left above have finite duration, whereas the two signals on the right have infinite duration.

Outside of EECS 206, one may occasionally encounter situations where signals are considered to beundefined at times outside
their support interval. However, within EECS 206, unless explicitly stated otherwise, we assume that signal values are 0 outside
the support interval. Indeed, we will often define a signal simply by describing its values in some interval, with the presumption
that the signal is zero for all times outside this interval.

2You do not need to memorize all of these. Rather you need to be aware of the existence of these characteristics, so you can look up and apply the appropriate
ones at the appropriate times.

3Intervals can beopenas in(a, b), closedas in[a, b], or half-open, half-closed as in(a, b] and[a, b). For continuous-time signals, in almost all cases of practical
interest, it is not necessary to distinguish the support interval as being of one type or the other.
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Example. If we introduce a signal as
x(t) = t2, 1 ≤ t ≤ 2,

then it should be understood thatx(t) = 0 for t < 0 and fort > 2.

Pulses:Signals with short duration are often calledpulses.Note that “short” is a subjective or relative designation.

Example. The square wave signal above can be considered to be a train of rectangular pulses.

Negative times and time zero:In some of the examples above the signal interval included negative times. What is the significance
of negative time? To answer this, one must first answer the question: What istime zero? Basically, time zero is just some
convenient reference time. Accordingly, a negative time simply represents a time prior to the reference time. For example, a radar
system sends a pulse and waits to record the return times of reflections of this pulse from distant objects. It is usually convenient to
let “time zero” be the time at which the original pulse was transmitted. Thent = −1.8means 1.8 units of time before the reference
time.

2. Signal Value Characteristics, a.k.a. Signal Statistics

We now consider characteristics that are related to thevaluesthat a signalx(t) takes.

C3. Maximum and minimum values:
If x(t) denotes some generic signal, then it has amaximum value

xmax = max
t
x(t) or max

n
x[n]

and aminimum value
xmin = min

t
x(t) or min

n
x[n] .

If these are both finite,i.e., if xmax <∞ andxmin > −∞, then the signal is calledbounded.

Example. The signalx(t) = 3e−|t| hasxmin = 0 andxmax = 3, so it is bounded.

Example. The signalx[n] =
√
|n+ 4| hasxmin = 0 andxmax =∞, so it isunbounded.

What do negative vs. positive signal values represent? The answer depends on the application. As an example, when a microphone
responds to a sound, there is usually a diaphragm that moves back and forth, tracking the fluctuations in air pressure that constitute
the sound. When the diaphragm is pushed one way, the microphone produces a positive voltage; when pulled the other way, it
produces a negative voltage.

C4. Absolute value:
Quite often, when a signal has values that are both positive and negative, we are interested in a measure of the signal strength apart
from its positive or negative sign. With signal strength in mind, one can compute itsmagnitudeor absolute value, denoted|x(t)|.

C5. Squared value, a.k.a. instantaneous power:
In most physical situations, the square ofx(t), i.e., x2(t), is a more useful measure of signal strength at timet than is its magnitude
|x(t) |, becausex2(t) is proportional to the instantaneous power in the signalx(t) at time t, and because power is a physical
quantity of fundamental importance. For such reasons, we often refer tox2(t) as theinstantaneous powerof x(t) at time t.
However, one must remember that the actual power is some constant timesx2(t), where the constant depends on the specific
physical situation. For example, ifx(t) represents the current in amperes flowing at timet through a resistor with resistanceR
ohms, then the instantaneous power absorbed by the resistor isRx2(t) watts.

C6. Energy:
Althoughx2(t) is a useful measure of signal strength at a particular time instantt, often we need a measure of the totalenergyof
a signal, or of a portion of the signal. The energy of a signalx(t) in the interval[t1, t2] is defined as follows:

E(x) =

∫ t2
t1

x2(t) dt.

Signals of infinite duration often have infinite energy (over their entire support). For such signals, average power (defined below)
is usually a more relevant quantity than energy.
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Example. Suppose the signal (expressed in volts)v(t) = ae−t/τ , t ≥ 0 is applied across a 1 Ohm resistor. The energy dissipated
in the resistor is

E(v) =

∫ ∞
0

v2(t) dt =

∫ ∞
0

[
ae−t/τ

]2
dt = a2

∫ ∞
0

e−2t/τ dt = a2
τ

2
.

(Compared to the expressions for mean value and MS value below, no “limit” is needed here since the expression
∫∞
0 is already a

shorthand for a limit.)

Notice that our final expression is aformula, not a number. This will be the case frequently in this course. From this formula, we
see that increasing the amplitudea of the applied voltage will increase the dissipated energy by the square ofa. And if we increase
the decay constantτ , then the energy will also increase due to slower signal decay. These are among the types of relationships we
are interested in exploring.

Example. The energy used in each pulse transmitted by a cellular phone will determine the battery life and can affect the voice
quality.

C7. Average or mean value:
GivenN valuesxn, n = 1, . . . , N , such as the ages ofN people, the average of those values (e.g., the average age) is simply

1

N

N∑
n=1

xn.

Similarly, any signal also has an average value, also called a mean value. For discrete-time signals we often do not index from 1 to
N but rather from somen1 to somen2, so our definition of theaverageor mean valueof x[n] is

M(x) =
1

n2 − n1 + 1

n2∑
n=n1

x[n] .

For a continuous-time signal with support interval[t1, t2], we can think of finely sampling the signal over that interval, computing
the average of the samples using the above formula, and then taking the limit as the number of samples increases. This leads to the
following integral form for theaverageor mean valueof a continuous-time signalx(t) over the interval[t1, t2]:

M(x) =
1

t2 − t1

∫ t2
t1

x(t) dt.

In words: the mean value is the “area under the curve” divided by the signal duration.

If the interval over which the average is sought is infinite, then the average needs to be defined as a limit. For example, the average
of the signal over the interval[0,∞) is:

M(x) = lim
T→∞

1

T

∫ T
0

x(t) dt,

and the average over the interval(−∞,∞) is

M(x) = lim
T→∞

1

2T

∫ T
−T
x(t) dt.

Again the “area divided by duration” concept applies over each interval of the form[−T, T ], and we take the limit as the interval
length increases.

When evaluating these expressions, one mustfirst compute the integral, then divide byT or 2T , andthentake the limit.

When a signal average is mentioned but an interval is not specified, we mean the average over the entire support of the signal.

Example. Consider the finite-length signalx(t) =

{
1− |t|, |t| ≤ 1
2− t/2, 2 ≤ t ≤ 4

shown above.

The support is[−1, 4] and the mean value is

M(x) =
1

5

∫ 4
−1
x(t) dt =

1

5

[∫ 0
−1
(1 + t) dt+

∫ 1
0

(1 − t) dt+

∫ 4
2

(2− t/2) dt

]
=
1

5
[1/2 + 1/2 + 1] =

2

5
.
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Example. Consider the finite-length signalx(t) =

{
3t2, 1 ≤ t ≤ 2
5− t, 4 ≤ t ≤ 5.

The support is[1, 5] and the mean value is

M(x) =
1

4

∫ 5
1

x(t) dt =
1

4

[∫ 2
1

3t2 dt+

∫ 5
4

5− t dt

]
=
1

4
[7 + 1/2] =

15

8
.

Example. Consider the (eternal) sinusoid:x(t) = cos(2πft), with f 6= 0. The support isR and the mean value is

M(x) = lim
T→∞

1

2T

∫ T
−T
x(t) dt = lim

T→∞

1

2T

1

2πf
sin(2πft)

∣∣∣∣
T

−T

= lim
T→∞

1

2T

sin(2πfT )− sin(2πf(−T ))

2πf
= lim
T→∞

1

2T

sin(2πfT )

πf
= 0.

The average value of an eternal sinusoid is zero, which is apparent from its plot.

Example. Consider the signalx(t) =

{
t/(t+ 2), t ≥ 0
0, otherwise.

-
t

6
x(t)

0 8

1

The support is[0,∞) and the mean value is

M(x) = lim
T→∞

1

T

[∫ T
0

t

t+ 2
dt

]
= lim
T→∞

1

T

[∫ T
0

1−
2

t+ 2
dt

]
= lim
T→∞

1

T

[
t− 2 log(t+ 2)

∣∣∣T
0

]

= lim
T→∞

1

T
[T − 2 log(T + 2) + log(2)] = lim

T→∞

[
1−
2

T
log(T + 2) +

log(2)

T

]
= 1.

In electrical systems,M(x) is often called theDC value, where DC stands fordirect current .

Example. Consider aconstant signal, also called aDC signal (even if there is no “current”), such asx(t) = c.
In this caseM(x) = c.

Example. Typically a microphone signal has average value equal to zero, or very nearly so, since acoustical signals usually oscillate
nearly symmetrically about zero.

C8. Mean-squared value, a.k.a. average power:
Whereasx2(t) is an excellent measure of signal strength at an individual time instantt, quite frequently we need an aggregate
measure of signal strength that applies to the whole signal, or to the signal over some specified time interval. In such cases, we will
typically use themean-squared value(MSV). Specifically, the MSV of a signalx(t) over the interval[t1, t2] is

MS(x) =
1

t2 − t1

∫ t2
t1

x2(t) dt.

• This is also called theaverage powerof x(t) over the interval[t1, t2].
• As with the definition ofM(x), the definition ofMS value needs to incorporate a limit when the support interval is infinite.
• When no interval is specified, the entire support interval is intended.

Example. Mean-squared value is useful when measuring the strength of the signal received by a radar antenna. IfMS is large in
an interval equal to the length of a radar pulse, then we assume that a reflected pulse has been received during this interval, and
determine that this pulse is due to an object whose distance is the elapsed time since the original pulse was transmitted times the
speed of light. IfMS is very small, then we can assume that no reflected pulse has been received during this interval,i.e., there is
no object at the corresponding distance.

Example. Mean-squared value is used by electric utility companies to determine how much to charge you for the electricity they
have supplied. This is because the amount of fuel required by them to supply your electricity is proportional to the mean-squared
value of the current supplied to your home.

Example. Mean-squared value is often used as a signal quality measure. For example, supposex(t) is the signal coming from the
leftmost of two microphones that are recording an orchestral concert, and supposey(t) is the signal fed to the left speaker of your
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stereo receiver after transmission by an FM radio station. Lete(t) = x(t) − y(t) denote the difference between the two signals,
which we consider to be an error signal, since ideally these two signals would be identical if the recording system, radio system,
and speakers were perfect. Then the MSV ofe(t) is a good measure of the quality of the system that records and transmitsx(t) to
you. In this context, it is usually calledmean-squared error.

Example. If x(t) = t/2 for 0 < t < 2, thenMS(x) = 1
2

∫ 2
0
(t/2)2 dt = 1/3.

Energy vs average power

By comparing the previous definitions of energy and average power, we see that energy is the integral of instantaneous power. It is
also the average power multiplied by the length of the interval. Alternatively, average power is energy divided by the length of the
interval over which it is computed. A little thought will convince you that it isenergyfor which an electric utility company actually
charges.

Since signal energy and average power (MSV) are related by a constant, the choice of which to focus on is often a matter of taste.
If you focus on one, you can easily compute the other. The exception is for infinite duration signals with infinite energy; for such
signals average power is generally more useful.
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C9. RMS Value:
A closely related quantity is theroot mean-squared value(RMSV), which is simply

RMS(x) =
√
MS(x) =

√
1

t2 − t1

∫ t2
t1

x2(t) dt.

On the one hand, RMSV is nicer than MSV in that its value is easier to interpret because its units are like a typical signal value,
whereas the value of the MSV is harder to interpret because its units are like the square of a typical signal value. On the other hand,
the MS value is slightly easier to work with, because it avoids the square root.

Example. Find the RMS value of

x[n] =

{
3 + 1/2n, n ≥ 0
0, otherwise.

We first find the MS value:

MS(x) = lim
N→∞

1

N

N−1∑
n=0

(3 + 1/2n)2 = lim
N→∞

1

N

N−1∑
n=0

32 + 6
1

2

n

+
1

4

n

= lim
N→∞

1

N

[
32N + 6

1− 1/2N

1− 1/2
+
1− 1/4N

1− 1/4

]
= lim
N→∞

[
32 + 12

1− 1/2N

N
+
4

3

1− 1/4N

N

]
= 32.

SoRMS(x) = 3, which is intuitive from the(Picture) of x[n].

C10.Variance and Standard Deviation:
(These characteristics will be needed later in the course. You can skim them now, and return to them when needed.)

The mean-squared value of the difference between a signal and its average value is called thevariance of x. The variance of a
signalx(t) over the interval[t1, t2] is4:

σ2(x) = MS(x−M(x)) =
1

t2 − t1

∫ t2
t1

(x(t)−M(x))2 dt.

The square root of the variance is called thestandard deviation:

σ(x) = RMS(x−M(x)) =
√
σ2(x) =

√
1

t2 − t1

∫ t2
t1

(x(t)−M(x))2 dt.

The variance and standard deviation of a signal are useful measures of how “variable” is the signal. A signal with small variance
or standard deviation stays close to its average value most of the time, whereas a signal with large variance or standard deviation
does not. As with MSV vs. RMSV, standard deviation values are usually easier to interpret because their units are commensurate
with signal units. On the other hand, variances are often easier to compute and work with.

Example. Output noise in an audio amplifier with no input signal.

Relationship Between Mean-Squared Value, Variance and Average Value:

The following is a useful relationship.
MS(x) = σ2(x) +M2(x) .

Its derivation is left as a exercise.

4Using the symbolσ2 for variance andσ for standard deviation is traditional.
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C11.Signal Value Distribution and Histograms:
The minimum, maximum, average, and mean-squared value are each numbers that each tell us something about the values that
appear in the signal. Thesignal value distribution gives a more complete picture. Before introducing it, let us review the general
meaning of the worddistribution . As one example, consider the collection of grades resulting from an exam. If we speak of the
“distribution of these grades,” we mean a plot like that shown below. The horizontal axis shows the possible grades, and the height
of the plot above a given grade is proportional to the number of exam papers with that grade. As another example, consider the
distribution of incomes of residents of Michigan. Again this is a plot like the one shown below. In this case, the horizontal axis
shows the possible incomes, and the height of the plot above a given income is proportional to the number of people with that
income.

55 60 65 70 75 80 85 90 95
0

50

100
Histogram of x(⋅)

x

One may similarly consider the distribution of many, many quantities. Not surprisingly, in signals and systems, we are often
interested in the distribution of values of a signalx(t), which we call itssignal value distribution. That is, for a given signalx(t)
we want a plot whose horizontal axis shows the signal values and whose height above a given signal value is proportional to the
frequency with which that value5 occurs in the signal.

How do we plot the signal value distribution of a signalx(t)? The most common way is make and plot ahistogram. Specifically,
we divide the range of signal values fromxmin to xmax intoM equal widthbins, as illustrated below, whereM is some integer,
usually in the range 10 to 1000.

xmin xmax

x

w = xmax−xmin
M

• If the signal is discrete-time, we count the number of signal values that lies within each bin:

Nm = # of signal values in[xmin + (m− 1)w, xmin +mw), m = 1, . . . ,M.

We then make a “bar plot” showing each countNm above the bin, as illustrated above.
• If the signal is continuous-time, then we apply this procedure using manysamplesof the signal. That is, we apply the procedure

to the set of valuesx(0) , x(Ts) , x(2Ts) , x(3Ts) , . . . , whereTs is the sample spacing.

Example. We usually use a computer to compute histograms, but for simple signals we can also do it by hand.

Consider the signalx[n] =

{ ∣∣cos( 2π8 n)∣∣ , n = 0, . . . , 7
0, otherwise.

-
n4 7

6x[n]
1

What values does x[n] take?
{
0, 1/
√
2 ≈ 0.707, 1

}

5Strictly speaking it is not the frequency of individual values that matter. Rather, for any valuex, we want the frequency with which signal values lie in a small
neighborhood ofx, say fromx−∆ to x+∆,∆ is a small constant.
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By counting, the histogram ofx[n] forM = 10 is as follows.
If we letM → ∞, then we get a histogram like that shown on the right. For signals that only take a small number of values, it is
natural to consider the limit asM →∞.

-
x0 1

10
7
10
8
10 1

6
histogram (M = 10)

2

4

-
x0 1√

2
1

6
histogram (M →∞)

2

4

What if we considered 10 cycles of the signal (n2 = 79)? (Scales vertical axis by 10.)
What if we considered 100 samples/cycle instead of just 8? Use MATLAB !

Example. Several signals and their signal value distributions are shown below.

These histograms were computed with MATLAB using the commandhist(x,M) , wherex is a vector containing signal samples,
andMis the desired number of bins. M=100 usually works well.

0 10 20
−1

0

1
Signal x(t)

−1 0 1
0

20

40
Histogram of x(⋅)

0 10 20
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−1 0 1
0

500

1000
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0

1

−1 0 1
0

20

40

0 10 20
−1

0

1

t
−1 0 1
0

50

100

x
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Approximate signal characteristics from histograms

We now justify the statement made earlier that the signal value distribution gives a more complete picture of the signal values than
its minimum, maximum, average and mean-squared values. We do this by showing that these latter quantities can be determined,
at least approximately, from a histogram.

First, the minimum and maximum values will be readily apparent from the histogram. For example, the maximum value is
approximately equal to the largest bin center for which the histogram is not zero.
Why approximate?

Next, let us show how to compute the average valueM(x) from the histogram. Letx[1], x[2],...,x[N ] denote the signal samples. If
the histogram hasM bins, then the width of each bin will bew = (xmax−xmin)/M . The first bin is the interval[xmin, xmin+w),
the second bin is the interval[xmin + w, xmin + 2w), and so on, and the last bin is the interval[xmin + w(M − 1), xmax]. Let cm
denote the center of themth bin. That is,

cm = xmin + w(m− 1/2), m = 1, . . . ,M.

LetNm denote the number of signal values that lie in themth bin. Of course
∑M
m=1Nm = N . Then the histogram is simply a bar

plot of the points(cm, Nm),m = 1, . . . ,M. The (exact) average value of theN signal samples is

M(x) =
1

N

N∑
n=1

x[n] .

Now we observe that we can approximately compute the sum in the above in a different manner. Since there areNm signal values
in themth bin, we know that there areNm signal values that approximately equalcm. The sum of these values is approximately
Nmcm. Making this approximation for each of the bins leads to

N∑
n=1

x[n] ≈ N1c1 +N2c2 + · · ·+NMcM .

Thus, the following formula gives an approximation to the signal’s average value:

M(x) ≈
1

N

M∑
m=1

Nmcm =

M∑
m=1

(
Nm

N

)
cm.

That is, the average signal valueM(x) is approximately the weighted average of thecm’s (the bin centers), where the weight
multiplying cm is the fraction of samples that lie in themth bin.

Similarly, one may show that

MS(x) ≈
M∑
m=1

(
Nm

N

)
c2m

Then from the mean and the mean-squared value, one may directly compute the RMS value, the variance and the standard deviation.

The mean value, mean-squared value, RMS value, variance and standard deviation for a continuous-time signal are each approx-
imately equal to the corresponding quantity for the discrete-time signal produced by sampling the continuous-time signal. Thus,
they too may be estimated from a histogram.

As the number of binsM increases, the approximation improves,cf. Riemann approximations to integrals.

Example. From theM = 10 histogram of the signalx[n] considered earlier, the approximate mean is

M(x) ≈
1

8
[2 · 0.05 + 4 · 0.75 + 2 · 0.95] = 0.6125.

For comparison, the exact mean isM(x) = 1
8 [2 · 0 + 4 ·

1√
2
+ 2 · 1] = 0.6035. The approximation error is smaller than the bin

width.

In summary, for both discrete-time and continuous-time signals, all of the basic signal value characteristics can be determined, at
least approximately, from the signal value distribution.
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Summary of Signal Value Characteristics

The following table shows the definitions of the signal characteristics mentioned previously, with the exception of signal value
distribution, which is not easily summarized in table form. It also lists the analogous characteristics for discrete-time signals.

These are all mathematically defined quantities, but each one is important due to somephysical considerationsin EE systems.

Characteristic Continuous-time signalx(t) Discrete-time signalx[n]

support interval [t1, t2] {n1, n1 + 1, . . . , n2}

duration t2 − t1 n2 − n1 + 1

maximum value: xmax = maxt x(t) xmax = maxn x[n]

minimum value: xmin = mint x(t) xmin = minn x[n]

magnitude: |x(t)| |x[n]|

squared value (instantaneous power) x2(t) x2[n]

mean value: M(x) = 1
t2−t1

∫ t2
t1
x(t) dt M(x) = 1

n2−n1+1

∑n2
n=n1
x[n]

mean-squared value (average power)MS(x) = 1
t2−t1

∫ t2
t1
x2(t) dt MS(x) = 1

n2−n1+1

∑n2
n=n1
x2[n]

RMS value: RMS(x) =
√
MS(x)

variance: σ2 = MS(x−M(x))

standard deviation: σ =
√
MS(x−M(x))

relationship: MS(x) = σ2(x) + M2(x)

energy: E(x) =
∫ t2
t1
x2(t) dt E(x) =

∑n2
n=n1
x2[n]
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Computing continuous-time signal characteristics approximately using sums instead of integrals

This note supplements some formulas given in the Lab 1 background material without derivation.

Recall from the development of theRiemann integral in calculus that ifN is large, then

∫ b
a

f(t) dt ≈
b− a

N

N∑
k=1

f(tk) ,

where the interval[a, b] is partitioned intoN segments with left endpoints given bytk = a+ k−1N (b− a), k = 1, . . . , N.

We can use this approximation to compute signal characteristics like mean and energy of continuous-time signals by firstsampling
those signals and then using the discrete-time formulas for signal characteristics,with a slight modificationin some cases.

Energy

Consider first the problem of calculating theenergyof a continuous-time signalx(t) from its samples{x[n]} defined by

x[n] = x(nTs) ,

whereTs denotes the sampling rate.

Further assume thatt1 = n1Ts andt2 = (n2 + 1)Ts for some integersn1 andn2, so thatN = n2 − n1 + 1 is the total number of
samples, and thust2 − t1 = NTs.

Applying the Riemann approximation:

E(x) =

∫ t2
t1

x2(t) dt ≈
t2 − t1
N

N∑
k=1

x2
(
t1 +

k − 1

N
(t2 − t1)

)

= Ts

N∑
k=1

x2(n1Ts + (k − 1)Ts) = Ts

n2∑
n=n1

x2[n] .

In summary, we can approximate the energy of a sampled signal as follows:

E(x) =

∫ t2
t1

x2(t) dt ≈ Ts

n2∑
n=n1

x2[n] = Ts * sum(x.ˆ2) .

Notice how the “extra” factorTs comes out front due to the “width of the rectangle” in the Riemann approximation.

Mean value

Now consider instead themeansignal value. Applying the Riemann approximation:

M(x) =
1

t2 − t1
·

∫ t2
t1

x(t) dt ≈
1

t2 − t1
·
t2 − t1
N

N∑
k=1

x

(
t1 +

k − 1

N
(t2 − t1)

)

=
1

N

N∑
k=1

x(n1Ts + (k − 1)Ts) =
1

n2 − n1 + 1

n2∑
n=n1

x[n] .

In summary

M(x) =
1

t2 − t1

∫ t2
t1

x(t) dt ≈
1

n2 − n1 + 1

n2∑
n=n1

x[n] = mean(x) .

Notice how this time there is no “extra” factorTs in the final MATLAB expression because it cancels out due to thenormalization
by the signal duration. Similarly, one can show thatMS(x) ≈ mean(x.ˆ2) .
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I.B.3. Signal Shape Characteristics

In this section we consider signal characteristics related to what we loosely call signal “shape.” The signal value characteristics
considered previously have nothing to do with signal shape, as one can see by noticing that very different signals can have the
same signal value distribution, and consequently, the same min, max, average and mean-squared values. One may also observe
that interchanging or time-reversing segments of a signal would have no effect on signal value characteristics, but definitely would
affect signal shape.

Example. The following two signals have the same signal value distribution.

-
t-1 1 2 3

6
x1(t)

1

-
t-1 1 2 3

6
x2(t)

1

Here is the signal value distribution for the limit of a large number of samples and a large number of bins:

-
x0 1/2 1

6
s.v.d.

1/4

3/4

In discussing signal shape characteristics, we will first focus on continuous-time signals and later comment briefly on the analogous
characteristics for discrete-time signals.

Local shape characteristics

When studying a signalx(t), we often examine segments of it to see if it isincreasing, decreasingor fluctuating.

Example.

t

increasing decreasing fluctuating

x(t)
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Common signal shapes

The following is a list of some common signal shapes. These shapes can occur by themselves, or as segments of signals. That is,
they may be thought of as local characteristics. The symbolsb, c, d, t0 andt1 represent parameters that one must specify for the
signals to be completely determined.

• constant: x(t) = c
-
t

6
x(t)

c

• step6: x(t) =

{
c, t ≥ t0
0, t < t0

-
t

6
x(t)

t0

c

• rectangular pulse7: x(t) =



0, t < t0
c, t0 ≤ t ≤ t1
0, t > t1

-
t

6
x(t)

t0 t1

c

• ramp: x(t) =

{
0, t < t0
c(t− t0), t ≥ t0,

which is increasing ifc > 0, decreasing ifc < 0.
-
t

6
x(t)

t0

c
b > 0

• exponential: x(t) =
{
0, t < t0
ceb(t−t0), t ≥ t0,

which is increasing ifb > 0, decreasing ifb < 0, constant ifb = 0.

-
t

6
x(t)

t0

c
b < 0

• sinusoidal: x(t) = c sin(bt+ d), which is fluctuating ifb 6= 0

-
t

6
x(t)

c

6Since the value ofx at timet0 is c, strictly speaking, we should simply plot the valuec at timet0. Instead, we have drawn a vertical line from0 up toc. This
line emphasizes the change inx as it goes fromx(t) = 0 for t < t0 to x(t) = c for t > t0. This convention of drawing vertical lines where a function has a
step change in value is quite common. In the real world, no signal can make an perfectly instantaneous step from one value to another, contrary to the formula for
the step signal. Instead, a real world signal value would rise rapidly from0 to c in the vicinity of t0. Thus a plot of a real world step signal would have a nearly
vertical line rising from0 to c at t0. We may think of the vertical line shown in the figure above as a reminder that, in the real world, the signal can change rapidly,
but cannot actually have an ideal step change.

7Again notice the vertical lines, which are drawn for emphasis, and as a reminder of what happens in the real world.
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C12.Signal Envelope:
This is best introduced with an example. The thick black line overlaying the signal shown below is theenvelopeof the signal.
That is, for a rapidly fluctuating signalx(t), the envelope is a smooth curve that approximately follows thepositivepeaks of the
signal. Admittedly this is not a very precise definition, and there is no universally accepted definition that can make it precise.
Nevertheless, the envelope is often a useful concept.

50 100 150 200 250 300 350 400
−1

0

1

t

x(
t)

Continuous−time signal and its envelope

Example. An AM radio station transmits an audio signal by embedding it in the envelope of a high frequency signal. Specifically,
supposem(t) is the audio signal to be transmitted. Then the radio station assigned tocarrier frequency fc transmits a signal of
the form

s(t) = (m(t) + c) cos(2πfct),

wherec is a parameter chosen so thatm(t) + c ≥ 0 for all, or at least most, timest. Typically,fc is a frequency much higher than
the rate of fluctuation ofm(t). For example, ifm(t) is the audio signal shown below,

50 100 150 200 250 300 350 400
−0.5

0

0.5

t

m
(t

)

Audio message signal

then the transmitted signals(t) = (m(t) + 0.5) cos(2πfct) would be the following.

50 100 150 200 250 300 350 400
−1

0

1

t

s(
t)

Transmitted signal

Can you see the audio signalm(t) embedded in the envelope of the transmitted signals(t)? Can you think of a way of recovering
m(t) from s(t)?
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C13.Periodicity:
The signal shape characteristic known as periodicity is particularly important in signals and systems, because many signals that
appear in nature are periodic, or at least nearly so, as are many human-made signals in electronic devices.
A periodic signal consists of a certain pattern that is repeated over and over, exactly the same each time.

Though many signals areaperiodic, i.e., not periodic, it turns out that periodic signals still play a key role in their analysis.

Example. The following is a segment from a recording of someone speaking the vowel “ee.”

50 100 150 200 250 300
−0.5

0

0.5

t

x(
t)

A continuous-time signalx(t) is said to beperiodic with period T > 0, or simplyT-periodic if

x(t+ T ) = x(t) for all values oft.

It is conventional to require the period T to be a positive number.

Example. The plot below shows a periodic signal called asawtooth wave. Its values are marked at a particular timet0 and also at
timest0 + T , t0 + 2T ,....

-
t

6
x(t)

0 4 16

2

t0 t0 + T t0 + 2T · · ·

6
· · · · · ·

Example. Sawtooth waves occur in the scanning electronics for televisions. They are also an approximate model for the sound of
a bowed violin string.

Example. Perhaps the most important periodic signals aresinuosoidalsignals, which will be the focus of Chapter 2.
If x(t) = cos

(
2π
T t+ φ

)
, thenT is the (fundamental) period ofx(t). To see whyT is a period ofx(t), notice that

x(t+ T ) = cos

(
2π

T
(t+ T ) + φ

)
= cos

(
2π

T
t+ 2π + φ

)
= cos

(
2π

T
t+ φ

)
= x(t) ,

becausecos(θ + 2π) = cos(θ).

Several important facts about periodic signals are given next.

Fact 1. A continuous-time signalx(t) with periodT is also periodic with period2T , because foranytime t,

x(t+ 2T ) = x((t+ T ) + T ) = x(t+ T ) = x(t) ,

where the last two inequalities follow from the definition of “periodic with periodT .”

Fact 1’. If x(t) is T -periodic, thenx(t) is nT -periodic for alln ∈ N = {1, 2, . . .}. (The setN of positive integers is called
thenatural numbers.)

Fact 2. Though any periodic signal may be characterized as having infinitely many periods, there is always a unique smallest
period, called thefundamental period, that is often denotedT0. The fundamental periodT0 of a signalx(t) is the smallest
positive numberT such thatx(t+ T ) = x(t) for every value oft. In other words,T0 is thesmallestperiod ofx(t).

The reciprocal ofT0 is called thefundamental frequency f0 of the signal. That is,f0 = 1/T0. It is the number of
fundamental periods that occur per unit time.
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Warning! People often say “period” when they mean “fundamental period.” (We will not be so careless in 206!) So when
you hear the word “period,” you need to use the context to figure out if they really mean “fundamental period.”

Fact 3. If x(t) has fundamental periodT0, thenx(t) is periodic with periodnT0 for every positive integern.

Fact 3’. Conversely, these are the only periods ofx(t). That is, ifx(t) is T -periodic, thenT = nT0 for somen ∈ N.

Derivation of the converse statement8.
Supposex(t) is periodic with fundamental periodT0 and is also known to be periodic with periodT . We must show that
T is an integer multiple ofT0. We use proof by contradiction. Hypothetically suppose thatT is not a multiple ofT0. Then
T = nT0 + r wheren is the integer part ofT/T0 andr is the remainder:0 < r < T0. Sincex(t) is T0-periodic, it must be
that for any timet,

x(t+ r) = x((t+ r) +NT0) sincex(t) is T0-periodic and henceNT0-periodic

= x(t+ T ) becauseT = NT0 + r

= x(t) becausex(t) is periodic with periodT .

Sincex(t + r) = x(t), we deduce thatx(t) is r-periodic. But the fact thatr < T0 contradicts the assumption thatT0 is the
fundamental period, which by definition is the smallest period ofx(t). Therefore, our hypothetical assumption must be false.
We conclude thatT must be a multiple ofT0.

Fact 4. A constant signal, i.e., a DC signal, e.g., x(t) = 3, is a special case. It satisfiesx(t + T ) = x(t) for any choice
of T . Thus it isT -periodic for every value ofT > 0. However, it is conventional to define the fundamental period to be
T0 = ∞ and the fundamental frequency to bef0 = 0. This somewhat arbitrary definition turns out to be more useful than
other definitions.

Fact 5. If signalsx1(t) andx2(t) are both periodic with periodT , then the sum of these two signals,x1(t) + x2(t) is also
T -periodic.
Fact 5’. This same property holds when one sums three or more signals. (The derivation of this fact is left as an exercise.)

Fact 6. The sum of two signals with fundamental periodT0 is T0-periodic, andusuallyT0 is also the fundamental period of
the sum. But sometimes the fundamental period of the sum can belessthanT0, as the following example illustrates.

Example. Below,x1(t) andx2(t) are both 2-periodic, yetx1(t) + x2(t) is 1-periodic.

-
t

6
x1(t), T1 = 2

0 1 2

1
· · ·

-
t

6
x2(t), T2 = 2

0 1 2

1
· · ·

-
t

6
x1(t) + x2(t), T0 = 1

0 1 2

1
· · ·

Fact 7. The sum of two signals with differing fundamental periods,T1 andT2, might or might not be periodic. The sum will
be periodic if and only if the ratio of their fundamental periods isrational , i.e., equals the ratio of two integers.

Example. If T2/T1 = 5/3 then the sum will be periodic. However, ifT2/T1 =
√
2, then the sum will not be periodic.

To see how a rational ratio ensures periodicity, consider two signals:x1(t) with fundamental periodT1, andx2(t) with
fundamental periodT2. Suppose thatT2/T1 = m/n, wherem andn are integers. ThennT2 = mT1. LettingT = nT2 =
mT1, we see that

x1(t+ T ) + x2(t+ T ) = x1(t+mT1) + x2(t+ nT2) = x1(t) + x2(t)

becausex1(t) has periodT1 andx2(t) has periodT2. This shows thatx1(t) + x2(t) is T -periodic.

To complete our discussion, we should also show that ifT2/T1 is irrational (not the ratio of integers), thenx1(t) + x2(t) is
not periodic. However, the proof of this is beyond the scope of the course and will not be given here.

WhenT2/T1 is the ratio of two integers, the fundamental period of the sum signal isusuallythe least common multiple
(LCM ) of T2 andT1. (And this rule always works if the two signals are sinusoids of different frequencies!) To find the LCM
of T2 andT1, we find the smallest integersm andn such thatnT2 = mT1.

8This derivation is included for completeness. It is not expected that students can replicate this proof.
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We say “usually” because there are also examples like that illustrated in Fact 6 where the actual fundamental period is smaller
than the least common multiple9.

Correspondingly, the fundamental frequency isusuallythe greatest common divisor of the fundamental frequenciesf2 and
f1 of the two signals.

There is one exception to the above discussion. If one of the two periodic signals is in fact simply a constant (a DC signal),
then the sum will certainly be periodic and the fundamental period of the sum will equal the fundamental period of the other
signal.

Example. Supposex1(t) andx2(t) are the periodic signals shown below with fundamental periods 2 and 3, respectively.
Then, their sumx1(t) + x2(t) is periodic with fundamental period 6 = LCM(2,3).

-
t

6
x1(t)

T1 = 2 4 6

1

-
t

6
x2(t)

T2 = 3 6 9

3

-
t

6x1(t) + x2(t)

T0 = 6 12

2
4

If instead of summing two periodic signals, we sum several periodic signals, then a discussion similar to the one above shows
that the sum is periodic if and only if the ratios ofeach pairof fundamental periods is rational. Moreover, the fundamental
period of the sum is usually the least common multiple of all of the fundamental periods of the individual periodic signals.

Example. Consider three sinusoidal signals (e.g., corresponding to the carrier signal of three radio stations):x1(t) =
cos(2π2000t), x2(t) = cos(2π3000t), x3(t) = cos(2π4000t). Determine the fundamental frequency ofz(t) = x1(t) +
x2(t) + x3(t). The fundamental periods areT1 = 1/2000, T2 = 1/3000, T3 = 1/4000. The ratios of these periods are all
rational, soz(t) is indeed periodic. Now observe that2T1 = 1

1000 , 3T2 = 1
1000 , 4T3 =

1
1000 , and the integers2, 3, 4 have no

common divisors. Thus LCM(T1, T2, T3) = 1/1000 = T0. Thus the fundamental frequency ofz(t) is f0 = 1/T0 = 1000.

Summary of Facts 5-7

If x1(t) is T1-periodicx2(t) is T2-periodic, andz(t) = x1(t) + x2(t), then
• Case 0: ifT1 =∞, thenz(t) is T2-periodic.
• Case 1: ifT2/T1 is irrational, thenz(t) is aperiodic.
• Case 2: ifT2/T1 = m/n (i.e., is rational), thenz(t) is T -periodic whereT = nT2 = mT1.

If T1 andT2 are the fundamental periods, respectively, then LCM(T1,T2) is usually the fundamental period ofz(t).

9There is one small exception to the “less than the LCM” rule. If the sum of two or more signals happens to be a constant, then the period of the result is∞
regardless of what the individual periods are.

Example. x1(t) = 1− cos(t), andx2(t) = cos(t).
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Example. The following figure shows what happens when square waves of various periods are added.

• x1(t) is 2-periodic,x2(t) is 3-periodic, andx3(t) is
√
8-periodic

• x1(t) + x2(t) is 6-periodic
• x1(t) + x3(t) is aperiodic
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Do periodic signals have finite support or infinite support? Always infinite! But the following fact spares us from
using limits when computing signal statistics like mean value and average power. All of the information about the signal is
contained in a single period, so we can compute all signal statistics from a single period!

Fact 8. The average of a periodic signal with periodT over an interval whose length is a multiple ofT equals the average
over any interval of lengthT . The same applies to mean-squared value (equivalently, average power).

To see why, consider the average over the time interval[t1, t1 +mT ]:

M(x) =
1

mT

∫ t1+mT
t1

x(t) dt =
1

mT

[∫ t1+T
t1

x(t) dt+

∫ t1+2T
t1+T

x(t) dt+ · · ·+

∫ t1+mT
t1+(m−1)T

x(t) dt

]

=
1

mT

[∫ t1+T
t1

x(t) dt+

∫ t1+T
t1

x(t) dt+ · · ·+

∫ t1+T
t1

x(t) dt

]

(becausex(t) is the same in eacht second interval)

=
1

T

∫ t1+T
t1

x(t) dt = M(x) .

Thus we see that the average overm periods reduces to the average over just one period.

We can choose anyt1 we want. Usual choices aret1 = 0 or t1 = −T/2.

A related “limiting” argument shows that the average over an infinite interval of time reduces to the average over just one
period.

Finally, we note that the average is the same over all intervals of lengthT . This follows from the fact, illustrated below, that
the integral ofx(t) over any interval of lengthT is the same, because, by periodicity, the same values are being integrated,
though perhaps in a different order.

7
x(t)

t
t1 t1 + T t2 t2 + T t3 t3 + T

Fact 8 also applies to mean-squared value, because mean-squared value is itself an average:

MS(x) =
1

T

∫ T
0

x2(t) dt =
1

T

∫ T/2
−T/2

x2(t) dt.

(Any interval of lengthT will suffice.)

What about the energy E(x)? For periodic signals,E(x) =∞ unlessx(t) = 0.
So we always focus on average power rather than on energy for periodic signals.
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Signal Shape Characteristics of Discrete-Time Signals

Discrete-time signals can have all the same shape characteristics as continuous-time signals. For example, they can be increasing,
decreasing or fluctuating. Common signal shapes include all of those mentioned previously: constant, step, rectangular pulse,
ramp, exponential and sinusoidal. Envelope is again a useful concept, as is periodicity. Because periodicity is such an important
concept, we repeat the discussion of it here, this time for discrete-time signals.

Periodicity of discrete-time signals

A discrete-time signalx[n] is calledperiodic with periodN , or simplyN-periodic, whereN ∈ N (a natural number), iff

x[n+N ] = x[n] for all integersn.

This definition is the same as the definition for continuous-time signals, except that instead of the equality holding for all continuous
timest, it holds for all integer timesn ∈ Z. It is conventionally required thatN > 0.

Example. The signalx[n] = cos(πn) = (−1)n is 2-periodic.

We now revisit the various facts about periodicity.
Facts 1-6 are essentially identical as those for continuous-time signals, except thatn andN replacet andT .
However, Facts 7 and 8 are different, and this difference is quite important!

Fact 1. A discrete-time signal with periodN is also periodic with periodmN for any positive integerm.

Fact 2. Thefundamental period, denotedN0, is the smallest positive integerN such thatx[n+N ] = x[n] for all integers
n. In other words,N0 is the smallest period ofx[n].

The reciprocal ofN0 is called thefundamental frequency f0 of the signal. That is,f0 = 1/N0. It is the number of
fundamental periods occurring per sample. (It is always less than or equal to one.)

Warning! People often say “period” when they mean “fundamental period.”

Fact 3. If x[n] has fundamental periodN0, thenx[n] is periodic with periodmN0 for every positive integerm. Conversely,
these are the only periods ofx[n]. That is, ifx[n] is periodic with periodN , thenN = mN0 for some integerm.

Fact 4. A constant signal,e.g., x[n] = 3, is a special case. It satisfiesx[n+N ] = x[n] for any choice ofN ∈ Z. Thusx[n] is
periodic with periodN for every value ofN > 0. However, it is conventionally defined to have fundamental periodN0 =∞
and fundamental frequencyf0 = 0. This somewhat arbitrary definition turns out to be more useful than other definitions.

Fact 5. If signalsx1[n] andx2[n] are both periodic with periodN , then the sum of these two signals,z[n] = x1[n] + x2[n]
is also periodic with periodN . This same property holds when one sums three or more signals.

Fact 6. The sum of two signals with fundamental periodN0 is periodic with periodN0, but the fundamental period of the
sum might be less thanN0.

Fact 7. The sum of two discrete-time signalsx1[n] andx2[n] with (possibly)differing fundamental periods,N1 andN2, is
always periodic!
This statement differs from the continuous-time case because the fundamental periods of discrete-time periodic signals are
always rational. ThereforeN1/N2 is also always rational, so the sum is always periodic.

The least common multiple ofN1 andN2 is always a period of the sum, andusuallyequals the fundamental period of the
sum. (The LCM is always the fundamental period if the signals are sinusoids.)

Similarly, the fundamental frequency usually equals the greatest common divisor of the fundamental frequenciesf1 andf2.

Similarly, the sum of several discrete-time periodic signals is always periodic. Usually the fundamental period of the sum is
the least common multiple of the fundamental periods of the individual signals.

Fact 8. The average of a periodic signal with periodN over an interval whose length is a multiple ofN equals the average
over any interval of lengthN . The same applies to mean-squared value (equivalently, power).

M(x) =
1

N

n1+N−1∑
n=n1

x[n] , MS(x) =
1

N

n1+N−1∑
n=n1

x2[n] .
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(Usually we usen1 = 0.) Again, a single period contains all the information needed to compute any signal statistics.

Example. To determine the average power of the signalx[n] = cos(2π6 n), we note by plotting thatx[n] cycles through the six
values{1, 1/2, 0,−1/2,−1,−1/2, 1/2} soMS(x) = 1

6 [1
2+(1/2)2+02+(−1/2)2+(−1)2+(−1/2)2+(1/2)2] = 1/2.

Period of discrete-time sinusoidal signals

To find the fundamental period of a discrete-time sinusoidal signalx[n] = cos(ω̂n + φ), one must work a bit harder than in the
continuous-time case.
• First, expresŝω in the formω̂ = 2πMN whereN is a positive integer.
• If (and only if)M is also an integer, thenx[n] is periodic.
• In addition, afterM andN have been simplified to have no common divisors, thenN is the fundamental period ofx[n].

(UnlessN = 1, in which casex[n] is a constant signal so the fundamental period is said to be infinity.)

To help understand these claims, observe that ifx[n] = cos
(
2πM
N
n+ φ

)
, whereM andN are integers, then

x[n+N ] = cos

(
2π
M

N
(n+N) + φ

)
= cos

(
2π
M

N
n+ φ+ 2πM

)
= cos

(
2π
M

N
n+ φ

)
= x[n] ,

becausecos(θ + M2π) = cos(θ). This confirms thatN is a period ofx[n], but more work is needed to show thatN is the
fundamental period whenM/N is simplified.

SinceN is a period, we know thatN = LN0 where isL is a positive integer andN0 is the fundamental period ofx[n]. To show
thatN is in fact the fundamental period, we must show thatL = 1 is the only choice. We do this using a “proof by contradiction.”
SupposeL > 1. Then

x[n+N0] = cos(2π
M

N
(n+N0) + φ) = cos(2π

M

N
n+ 2π

MN0

N
+ φ) = cos(2π

M

N
n+ 2π

M

L
+ φ) 6= x[n]

for somen becauseL is a divisor ofN butN andM have no common divisors (except unity), so2πM
L

is not an integer multiple of
2π. So we must haveL = 1 and henceN is the fundamental period when the ratioM/N is simplified to have no common factors
in the numerator and denominator.

Example. Consider the signalx[n] = cos(7π9 n+ 1). We writeω̂ = 7π
9 = 2π

7
18 , so the fundamental period is18.

Example. Consider the signalx[n] = cos(3πn). We write3π = 2π 32 , sox[n] is periodic with fundamental periodN0 = 2.

In constrast, the continuous-time signalx(t) = cos(3πt) = cos(2π 32 t) has fundamental frequencyf0 = 3/2 and hence fundamen-
tal periodT0 = 2/3. This is a very importance difference between continuous-time and discrete-time signals!

The following figure helps explain the situation. This phenomena is calledaliasingand will be a main topic in Part 4.
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I.C. Two-Dimensional Signals

A picture or image, as we will usually say, can also be modeled as a signal. However, in this case, it must be modeled as a
two-dimensionalsignalx(t, s). That is, instead of single independent parametert representing time, there are two independent
parameterst ands, representing vertical and horizontal position respectively. That is,x(t, s) represents the intensity or brightness
of the image at the position specified by horizontal positiont and vertical positions, relative to some coordinate system. All of the
previously mentioned concepts and characteristics can be extended to apply to two-dimensional signals. But we will not discuss
them here.

Two-dimensional images can be “discrete-time” as well as “continuous-time” (discrete-spaceandcontinuous-spaceare better
terms). In the discrete-space case, the signal (image) is denotedx[m,n] wherem andn are integers representing vertical and
horizontal positions, respectively.

To display such a signal (image) graphically, we usually use a color scheme in which the value 0 is shown as a small black square,
called apixel, and the maximum signal value, often 255, is shown as a small white square, and intermediate values are shown in
various shades of gray. Thecolormap command in MATLAB controls this behavior when displaying images using theimage
command. Thecolorbar command shows the mapping between signal values and grayscale intensities.

Example.

n

m
What is the dimensionality of television? Three dimensional:s(x, y, t), two space dimensions plus time.

What about digital video? s[n,m, k], wheren,m denote spatial coordinates (pixel locations) andk denotes the time frame.
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II. Elementary Signal Operations

Engineers design systems that manipulate signals in useful ways, such as combining multiple signals (e.g., audio mixer) or modi-
fying a signal,e.g., an audio amplifier. In courses like EECS 215, you learn how to build such systems from physical components.
In 206/306, you learn to design, analyze, and compare such systems independently of the physical devices.

Perhaps the most important such operation that will be discussed in this course isfiltering , an operation so powerful that we will
devote the last half of the course to it. Here we start with basic operations.

A. Elementary Operations on One Signal.

When discussing signals and systems, we routinely use a number of elementaryoperations that, when applied to one signal,
result in another closely related signal. In the following we introduce these operations using continuous-time notation. With two
exceptions, to be noted, they apply equally well to discrete-time signals.

Each of these operations is defined mathematically, but each also corresponds to one or more physical situations.

It is important to be able to apply these operations both graphicallyand mathematically, so we illustrate all of them using the
following signal.

x(t) =

{
t− 2, 2 < t < 3
0, otherwise

-
t1 2 3 4

6x(t)
1

We deliberately chose a signal defined piecewise since such signals are often of interest.

Operations that modify signal values

O1. Adding a constant:
This is the operation of adding a constant to the signal. More specifically, there is a numberc that is added to the signal value at
every timet. If the original signal isx(t), then the result is a new signal

y(t) = x(t) + c.

It is easy to see that this operation has the effect of increasing the average value ofx by c. That is,M(y) = M(x) + c.

Example. Connecting a waveform generator in series with a 9V battery would yield an overall voltage ofx(t) + 9.

Example.

y(t) = x(t)− 1/2 =

{
t− 2.5, 2 < t < 3
−1/2, otherwise

-
t1 2 3 4

6
y(t) = x(t)− 1/2

1/2

O2. Amplitude scaling:
Amplitude scaling is the operation of multiplying a signal by a constant. That is, there is a constantc, called ascale factoror
gain, and the value of the signal at every timet is multiplied byc. If the signal being scaled isx(t), then the result of the scaling is

y(t) = cx(t) .

This has the effect of scaling both the average and the mean-squared values. Specifically,

M(y) = cM(x) , MS(y) = c2MS(x).
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Example. An ideal audio amplifier will scale the input signal (e.g., from a phonograph) to a larger values suitable for driving
speakers.

Example.

y(t) =
1

2
x(t) =

{
1
2 (t− 2), 2 < t < 3
1
2 (0), otherwise

=

{
t/2− 1, 2 < t < 3
0, otherwise.

-
t1 2 3 4

6y(t) =
1
2x(t)

1/2

O3. Squaring:
Here we simply square the value of the signal at each time, yielding

y(t) = x2(t) .

Example.

y(t) = x2(t) =

{
(t− 2)2, 2 < t < 3
(0)2, otherwise

=

{
(t− 2)2, 2 < t < 3
0, otherwise.

-
t1 2 3 4

6y(t) = x
2(t)

1

O4. Absolute value:
As the name suggests,

y(t) = |x(t)| .

What is a practical situation where we need an absolute value operation? AC to DC rectification.

Example. (combining absolute value and amplitude shift)

y(t) = |x(t)− 1/2| =

{
|t− 2.5|, 2 < t < 3
|−1/2| , otherwise

=

{
|t− 2.5|, 2 < t < 3
1/2, otherwise

-
t1 2 3 4

6
y(t) = |x(t)− 1/2|

1/2

Operations that modify the time axis

O5. Time shifting:
If x(t) is a signal andT is some number, then the following signal is atime-shifted version ofx(t):

y(t) = x(t− T ) .

That is, the value ofy at timet is precisely the value ofx at timet − T . This means that ifT > 0, then as illustrated below,
anything that “happens” in the signalx also happens in the signaly, but it happensT time units later iny than inx. Similarly, if
T < 0, it happensT time units earlier iny. It is useful to remember the rule that a positive value ofT leads to a right shift of the
plot of x(t) and a negative value ofT leads to a left shift.

This is our first exception where the discrete-time case is slightly different. Specifically, the shiftT must be an integer for discrete-
time signals,e.g., x[n− 5].



c© D. Neuhoff and J. Fessler, June 9, 2003, 12:41 (student version) 1.29

Example. Signal propagation times can be modeled by a time shift.

Example.

y(t) = x(t− 1) =

{
(t− 1)− 2, 2 < (t− 1) < 3
0, otherwise

=

{
t− 3, 3 < t < 4
0, otherwise

-
t1 2 3 4

6y(t) = x(t− 1)
1

O6. Time reflection/reversal:
Thetime reflectedor time reversedversion of a signalx(t) is

y(t) = x(−t) .

That is, whatever happens inx also happens iny but at the negative of the time it happens iny.

Example. Playing a recording backwards.

Example. A mirror. (2D case)

Example.

y(t) = x(−t) =

{
(−t)− 2, 2 < (−t) < 3
0, otherwise

=

{
−t− 2, −3 < t < −2
0, otherwise.

-
t-3 -2

6y(t) = x(−t)
1

O7. Time scaling:
The operation oftime-scalinga signalx(t) produces a signal

y(t) = x(ct),

wherec is some positive constant. Ifc > 1, this has the effect of “speeding up time” in the sense that the value ofy at timet is
the value ofx at timect, which is a later time. Alternatively, whatever happens inx in the time interval[t1, t2], for t1 ≥ 0, now
happens iny in the earlier and shorter time interval[t1/c, t2/c].

This is the second property for which the discrete-time case includes an extra wrinkle. Specifically, in discrete-time, the time values
must be integers. Therefore, if we take

y[n] = x[cn] ,

thencmust be an integer.

Example. Playing back a recording faster or slower than the original recording speed.

Example. Doppler shift. (It is called a “shift” because motion of the source (e.g., a train horn) causes a shift of thefrequencyof the
signal, which in this context is nearly equivalent to time scaling.)

Example.

y(t) = x(2t) =

{
(2t)− 2, 2 < (2t) < 3
0, otherwise

=

{
2t− 2, 1 < t < 3/2
0, otherwise.

-
t1 2 33

2

6y(t) = x(2t)
1
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Combinations of the above operations

We will frequently encounter signals obtained by combining several of the operations introduced above. In particular, we will need
combinations of time shift and time scale operations, possibly in conjunction with amplitude shift and/or amplitude scaling.

For example, given the signalx(t) described in the previous examples, we may need to determine the signaly(t) = 2x
(
3− t

2

)
.

Again, it is important to be able to perform such operations both mathematically and graphically. The mathematical approach
consists of applying the amplitude scaling and replacing each “t” in x(t) with the appropriate argument, in this case3 − t

2 , as
follows:

y(t) = 2x(3− t/2) =

{
2
(
3− t

2 − 2
)
, 2 < 3− t

2 < 3
0, otherwise

=

{
2
(
1− t

2

)
, −1 < −t/2 < 0

0, otherwise
=

{
2− t, 0 < t < 2
0, otherwise.

For the graphical approach, there are two right ways and two wrong ways to do it. We will describe one correct way, which is all
that is needed. Amplitude shift and amplitude scale are easy, but combinations of time shift and time scale must be done carefully.
The following three-step recipe is a safe approach.
• First express the combined time shift and time scale in the following form:y(t) = x(c(t− t0)) .
• Time scalex(t) by c.

(Remember that ifc < 0 then there is also a time reversal, and remember the difference betweenc > 1 andc < 1.)
• Time shift the resulting signal byt0.

(Remember that whent0 > 0, the graph shifts to the right.)

To help remember the order, note that “scale” comes before “shift” alphabetically.

To see that this approach is mathematically correct, consider first defining an intermediate signals(t) = x(ct), which isx(t)
time-scaled byc. Then we havey(t) = s(t− t0) = x(c(t− t0)) , soy(t) corresponds tos(t) time-shifted byt0.

Example. Continuing to use thex(t) described earlier, findy(t) = 2x
(
3− t

2

)
.

First we write this in the recommended form:

y(t) = 2x

(
−
1

2
(t− 6)

)
.

Next we time-scalex(t) by c = −1/2 and we will also apply the amplitude scaling here to forms(t) = 2x
(
− 12 t
)
.

-
t-6 -4 0

6s(t) = 2x
(
− 12 t
)

2

Finally we time-shifts(t) by 6 (to the right in this case) to formy(t).

-
t1 2

6y(t) = s(t− 6) = 2x
(
− 12 t+ 3

)
2

Of course this final graph agrees with the mathematical formula.

If instead you used the formx(at+ b) then you could apply the time-shift first and then apply the time-scale second. But it is
probably safer to just practice one way to do it and stick with that way.

Even with experience, trying to combine time shift and time scale operations into one step is quite prone to errors. Stick with the
three-step approach!
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B. Elementary Operations on Two or More Signals

O8. Summing:
As its name suggests, this is simply the operation of creating a new signal as the sum of two or more signals, as in

z(t) = x(t) + y(t) .

More specifically, the value ofz at time each timet is the sum ofx at timet andy at timet.

O9. Linear combining:
Linear combining is like summing except that we allow amplitude scaling (i.e., multiply the signals by constants) in addition to
summing, as in

y(t) = 3x1(t) + 4x2(t)− 2x3(t) .

In this case,y(t) is said to be alinear combination of x1(t), x2(t), andx3(t). The scale factors multiplying the signals are often
calledcoefficients.

Example. Audio mixer in recording studio.

Linear combinations arise in a several ways. As one example, sometimes we are given a collection of signals, sayx1(t), x2(t)
andx3(t) and are asked tosynthesizeanother signaly(t) as a linear combination of the signals in the collection. For example,
suppose we need to create the signaly(t), but our hardware can only produce signalsx1(t), x2(t) andx3(t) and perform linear
combinations. Often, it is not possible to exactly synthesizey(t) from the given collection so the synthesis must necessarily be
approximate.

As another example, sometimes we are given a signalz(t) that is known to be a linear combination ofx1(t), x2(t) andx3(t),
and we are asked to find the scale factors. This task, which is calledanalysis, happens for example in communications systems,
where the scale factors determine the information carried by the signaly(t). It also happens inFourier analysis, to be discussed
considerably throughout the course, where we consider a signaly(t) to be the linear combination of sinusoidal signals with different
fundamental frequencies.

O10.Multiplying :
As its name suggests, this is simply the operation of creating a new signal as the product of two or more signals, as in

z(t) = x(t) y(t) .

More specifically, the value ofz at time each timet is the product ofx at timet andy at timet.

Example. Signal multiplication is a basic operation of most radio transmitters which, as in the example of AM radio described
earlier, typically multiply a sinusoidal signal by some information-bearing signal.

O11.Concatenating:
Appending one signal to the end of another is calledconcatenation.

Example. If x(t) is a signal with support interval(0, t1) andy(t) is a signal with support(0, t2), then as illustrated below their
concatenation is the signal

z(t) =

{
x(t) , t ≤ t1
y(t− t1) , t > t1.

-
t

6
x(t)

1 2 3

1

-
t

6
y(t)

1

1

-
t

6
z(t)

1 2 3

1
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Example. Concatenation occurs in digital communications where, to transmit a sequence at the rate of one bit everyT seconds,
there is a signals0(t) with support within(0, T ) used to send 0’s, and a signals1(t) also with support within(0, T ) used to send
1’s. The transmitted signal is the concatenation of these.

Example. When the signals shown below

-
t

6
s0(t)

0 1 2

1

-
t

6
s1(t)

0 1 2

1

are used to send the binary sequence 0,0,1,0,1,1,1,..., withT = 2, the transmitted signal10 is the following.

-
t

6
x(t)

0 2 4 6 8 10 12 14

1

(This is an example of pulse-width modulation, which is described in more detail in EECS 353 and EECS 455.)

Concluding Remarks

The signal operations discussed in this section are elementary operations that are used in a variety of situations. One may view
them as basic tools or building blocks. The signal operations considered later in the course (e.g., Chapters 5-8 of the text) are more
sophisticated operations, which are developed with some specific task in mind. These operations can be thought of assystems; that
is, when the operation is applied to a signalx(t), the signalx(t) is viewed as the input to asystemthat performs the operation and
produces at its output another signaly(t), which is the result of the operation. In such cases, we often draw a block diagram like
the one shown below. Much of the course will be devoted to designing systems to perform the tasks described in the Section IV.

x(t)→ System→ y(t)

Example. Telephone system.

10As usual, vertical lines shown just emphasize the transitions between transmitted bits, as well as the jumps from 0 to 1 and 1 to 0.
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Effects of signal operations on signal characteristics

So far we have covered the following
• Signal characteristics (duration, energy, etc., about 13)
• Signal operations (amplitude scaling, etc., about 11)

It is logical to expect that performingoperations(even simple ones!) on signals will change theircharacteristics.
So we could now derive about13× 11 “properties” that describe the effect of operation X on characteristic Y.
Instead, we will work a couple examples that illustrate themethodsone can use to derive such properties when needed.

Example. Operation: time scaling. Characteristic: duration.

Supposex(t) is a finite-duration signal with support interval[t1, t2].
Let y(t) = x(2t). Find the duration ofy(t).

Answer.
Sincex(t) has support interval[t1, t2], its nonzero values occur whent1 ≤ t ≤ t2. (Use what is given about “input signal.”)
Sincey(t) = x(2t), its nonzero values occur whent1 ≤ 2t ≤ t2. (Use what is known about relationship betweeny andx.)
Rearranging, we see that the nonzero values ofy(t) occur whent1/2 ≤ t ≤ t2/2. (Use math.)
Thus, theduration of y(t) is t2/2− t1/2 = 1

2 (t2 − t1), so duration(y) = duration(x) / 2.

Example. Operation: time scaling. Characteristic: energy.

If y(t) = x(−2t), relate the energy ofy(t) to the energy ofx(t).
For simplicity we consider a finite-support signalx(t), with support[t1, t2].
By similar argument as above, the support interval ofy(t) is [−t2/2,−t1/2]. So the energyE(y) is given by:

E(y) =

∫ −t1/2
−t2/2

y2(t) dt (Definition)

=

∫ −t1/2
−t2/2

x2(−2t) dt (Substitute given relationship)

=

∫ t1
t2

x2(t′)
dt′

−2
(Calculus: lett′ = −2t)

Why? To make the integrand match the formula forE(x).

=

∫ t2
t1

x2(t′)
dt′

2
(Calculus: exchanging limits)

=
1

2

∫ t2
t1

x2(t′) dt′ =
1

2
E(x) (Using energy definition again)

Exercise: show the following.If y(t) = x(ct) for c 6= 0, thenE(y) = 1
|c|E(x).

Can one memorize all 100+ such properties? Can one “cram” them in before an exam? Unlikely.
Instead, one must learn these methods by working problems, paying attention to the tools used to find the solutions, so as to be able
to apply those tools when needed for future problems.

Example. Operation: signal addition. Characteristic: energy. (RelateE(x+ y) toE(x) andE(y) and ?.)

E(x+ y) =
∑
n

(x[n] + y[n])2 =
∑
n

x2[n] + 2
∑
n

x[n] y[n] +
∑
n

y2[n] = E(x) + 2
∑
n

x[n] y[n] + E(y) .

The term
∑
n x[n] y[n] is called thecorrelation of x[n] andy[n], and is central to the next topic!


