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III.  Signal Similarity Measures

In many situations, we need a quantitative measure of the similarity of two signals.  For
example,  suppose  x(t)  is the signal some system should ideally produce,  y(t)  is the
signal the system actually produces.  Then, as a measure of how well the system has
performed, we need a quantitative measure of how similar y(t)  is to  x(t).  As another
example, suppose r(t)  is a measured signal that is either the "desired" signal  s1(t)  plus
some measurement noise, or the "desired" signal  s2(t)  plus some measurement noise,
and suppose a system must be built that decides which of the two desired signals the
measured signal  r(t)  contains.  Such a system needs a signal similarity measure in
order to compare  r(t)  to  s1(t)  and  r(t)  to  s2(t).

In summary, signal similarity measures are needed for quantitative performance
measures for the systems we design and as an integral piece of certain systems.  In the
following we introduce and discuss the two most important signal similarity measures.

A.  Difference Energy, Mean-Squared Difference and Mean-Squared Error

The difference energy between signals  x(t)  and  y(t)  is simply the energy of the
difference signal  x(t)-y(t).  For continuous-time signals, the difference energy over the
time interval  (t1,t2)  is

E(x-y)  =   ∫
t1

t2
 (x(t)-y(t))

2
  dt .

Similarly, for discrete-time signals  x[n]  and  y[n], the difference energy over the time
interval [n1,n2]  is

E(x-y)  =  ∑
n1

n2
 (x[n]-y[n])2 .

A closely related signal similarity measure is the mean-squared difference (MSD)
between signals  x(t)  and  y(t), which is simply the mean-squared value of the
difference signal  x(t)-y(t).  For continuous-time signals, the MSD over the time
interval  (t1,t2)  is

MSD(x,y)  =  
1

t2-t1 ∫
t1

t2
 (x(t)-y(t))

2
  dt  =   

1
t2-t1  E(x-y) .

Similarly, for discrete-time signals, the MSD over the time interval [n1,n2]  is

MSD(x,y)  =  
1

n2-n1+1 ∑
n1

n2
 (x[n]-y[n])2 =  

1
n2-n1+1  E(x-y) .

When one of the signals, say  x(t),  is considered to be the "desired" signal and the
other, say  y(t),  is considered to be an approximation to it, then the difference signal
x(t)-y(t)  is considered to be an error signal, and the mean-squared difference is called
the mean-squared error and abbreviated MSE(x,y)  or simply  MSE.  MSE is
considered a measure of the quality of  y(t)  as an approximation to  x(t),  with small
MSE indicating good quality.

In many situations, the significance of a particular value of MSE generally depends on
the size or strength of the signal  x(t).  For example, an MSE value of 10 is considered
large if the squared signal values of the desired signal are mostly smaller than 10, and is
considered small if the squared values of the desired signal are much larger than 10.
For such reasons, it is common to use signal-to-noise ratio as a measure of signal
quality, which is defined by

SNR(x,y)  =  
σ2(x)

MSE   ,

where  σ2(x),  which is t\he variance of  x(t),  is used as the measure of signal size.
Large signal-to-noise ratio indicates good quality.
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B.  Signal Correlation

Another measure of the similarity of signals  x(t)  and  y(t)  is their correlation, which
is defined

C(x,y)  =  ∫
t1

t2
 x(t) y(t) dt ,

where  (t1,t2)  is the time interval of interest.  Similarly, the correlation between two
discrete-time signals  x[n]  and  y[n]  is defined as

C(x,y)  =  ∑
n1

n2
 x[n] y[n] ,

where  [n1,n2]  is the time interval of interest.  The discussion to follow focuses on con-
tinuous-time signals.  But everything applies equally to discrete-time signals.

To get a feeling for why correlation is a good measure of signal similarity examine
consider the signal  x(t)  shown below
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and consider the similarity of each of the signals below,  y1(t),  y2(t),  y3(t),  y4(t),  to
x(t).
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As a reference,  x(t)  is shown with a dotted line in each of the above plots.   Also
shown below each signal is a plot of the product of  x(t)  with the signal.  The correla-
tion between  x(t)  and the given signal, which is the area under this plot, is also marked
on the plot.  Intuitively, we see that  x(t)  is more like  y1(t)  than the other signals, and
this is reflected in  C(x,y1)  being larger than the other correlations.  What is happening
is that  y1(t)  tends to be positive where  x(t)  is positive and negative where  x(t)  is
negative.  Thus, the product  x(t) y1(t)  is mostly positive, and the correlation  C(x,y1)
is large.  The signal  y2(t)  has the same sign as  x(t)  less often.  Thus  x(t) y2(t)  has
negative area cancelling some of the positive area, leading to a smaller value of
correlation.  This is taken to the extreme in  x(t) y3(t),  for which the positive area is
nearly completely cancelled by the negative area, causing  C(x,y3)  to be zero.  The
fourth signal,  y4(t),  almost always has the oppposite sign of  x(t),  causing  x(t) y4(t)
to be almost entirely negative, leading to  C(x,y3)  being very negative.

These examples show that  C(x,y)  tends to be large when  y(t)  follows the same trends
as  x(t) -- positive at times  t  that  x(t)  is positive,  negative at times  t  that  x(t)  is
negative.  This explains why the everyday word "correlation" is taken as the name for
the similarity measure  C(x,y).  We say that  x(t)  and  y(t)  are positively or negatively
correlated, according to whether  C(x,y)  is positive or negative.  When  C(x,y) = 0,
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we say the signals are uncorrelated, meaning that they are very different in the sense
that the positivity of one at time  t  gives no clues as to the positivity of the other.

As a next set of examples consider correlating  x(t)  with  y1(t),  shown above, and also
with  y5(t) = 3 y2(t).
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W observe that even though  x(t)  is intuitively more similar to  y1(t)  than to  y5(t),
the correlation  C(x,y1)  is smaller than the correlation  C(x,y5).  What is happening is
that correlation is being heavily influenced by the fact that  y5(t)  is considerably larger
signal than  y1(t),  i.e. it has much larger energy.  In many situations, it is important to
prevent correlation from being influenced by signal size.  In such cases, it is customary
to use normalized correlation as defined by

CN(x,y)   =   
C(x,y)

√E(x)√E(y)
   =   

1
√E(x)√E(y)

  ∫
t1

t2
 x(t) y(t) dt

as the signal similarity measure.  Here, we have divided  C(x,y)  by the square root of
the energies of both signals.  The following lists the values of  C(x,y)  and  CN(x,y)

y1(t) y2(t) y3(t) y4(t) y5(t)

E(y) 5.42 5.44 4.95 5.42 49.0

C(x,y) 3.47 2.06 -0.08 -3.67 6.19

CN(x,y) 0.89 0.53 -0.02 -0.94 0.53

We see now that  CN(x,y5) = CN(x,y2),  i.e. that normalized correlation is not affected
by the size of the  y5(t).

If, as suggested by the example above, normalized correlation is not affected by the
sizes of the signals, then there ought to be some largest value that it can have.  The
following inequality, called the Cauchy-Schwarz inequality, shows that the normalized
correlation can never be larger than one, nor less than negative one.

√E(x) √E(y)  ≤  C(x,y) ≤ √E(x) √E(y)

Equivalently,

-1  ≤  CN(x,y)  ≤  1 .

The proof of this inequality is beyond the scope of the course11.

Notice that  if  y(t)  is simply an amplitude scaling of  x(t),  as in  y(t) = a x(t)  for all t,
where  a > 0,  then

11One may find a version of the Cauchy-Schwarz inequality in most linear algebra textbooks.
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E(y)  =  E(ax)  =  ∫
t1

t2
 ( a x(t) )2 dt  =  a2 ∫

t1

t2
 x2(t) dt  =  a2 E(x)

C(x,y)  =  ∫
t1

t2
 x(t) a x(t) dt  =  a ∫

t1

t2
 x2(t) dt  =  a E(x)

 √E(x) √E(y)  =  √E(x) √a2
 E(s)  = a E(x) .

Thus in the case we see that

C(x,y) = √E(x) √E(y)

or equivalently

CN(x,y) = 1 ,

i.e. the Cauchy-Schwarz relation holds with equality.  In fact, this is the only way to
obtain equality.  That is, it can be shown that

C(x,y) = √E(x) √E(y),  or equivalently,  CN(x,y) = 1,

when and only when   x(t)  and  y(t)  are the same except for a positive multiplicative
scaling, i.e. when and only when

y(t)  =  a x(t)  for some  a > 0  and all  t .

Similarly, it can be shown that the only way for  C(x,y)  to equal  -√E(x) √E(y),  or
equivalently for  CN(x,y)  to equal  -1,  is when and only when  x(t)  and  y(t)  are the
same except for a negative multiplicative scaling, i.e. when and only

y(t)  =  a x(t)  for some  a < 0  and all  t .

A corollary to the Cauchy-Schwarz inequality is the fact that the correlation of a signal
with itself equals the signals energy, i.e.

C(x,x)  =  E(x)   for any signal  x.

The relation between correlation and mean-squared difference energy:  The
relation between mean-squared difference and signal correlation is

E(x-y)  =  E(x) - 2 C(x,y) + E(y) .

Thus, for example, a large positive correlation  C(x,y)  implies a small difference
energy  E(x-y).  This relation is demonstrated below.

       E(x-y) =  ∫
t1

t2
 (x(t)-y(t))2

  dt   =  ∫
t1

t2
 (x

2
 (t) -2 x(t) y(t) + y(t)

2
 ) dt

=  ∫
t1

t2
 x2(t) - 2 ∫

t1

t2
 x(t) y(t) dt  +  ∫

t1

t2
 y2(t) dt

=   E(x) - 2 C(x,y) + E(y)

Since difference energy and correlation are closely related, the choice of which to use is
a matter of taste, of convenience, or dependent upon other factors.  For example,
correlation  C(x,y)  tends to preferred over difference energy in situations where one
signal, say  x,  is much larger than the other,  y,  is small.  In this case  E(x-y) ≅  E(x),
which indicates that  E(x-y)  depends very weakly on the smaller signal.  Thus, it  is
very sensitive to noise and computational roundoff errors.  In contrast,  C(x,y)  is
always greatly influenced by  y.  For example, when  y  is much smaller than  x,
doubling  y  causes  C(x,y)  to double, but has little effect on  E(x-y).  Thus correlation
is less sensitive to noise and roundoff errors.
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The uses of correlation in EECS 206

Correlation will be used in a couple of the lab assignments as a method for detecting,
classifying or recognizing signals.  It will also be seen later that one of the principal
analysis techniques that we study (Fourier analysis) and the principal kind of systems
we study (linear time-invariant filters) are based on correlation.  That Fourier analysis
is based on correlation relates to the discussion below about "signal components".

Signal components12

The question addressed in this subsection is:  What does it mean for one signal to be a
component of another?  Specifically, suppose we are given signals  x(t)  and  p(t)  (or
x[n]  and  p[n]  in the discrete-time case).

• Is there a component of  x(t)  that is like  p(t)?  (or of  x[n]  that is like  p[n]?)

• If so, how much  p(t)  is in  x(t)?  (or  p[n]  in  x[n]?)

• How to define "how much of ___ is in ___ "?

For example, is there a component of  x(t)  that is like  p(t) = cos(3t)?

Vector geometry:  Such questions are similar to the following traditional questions
in vector geometry:  Suppose  x = (x1,...,xN)  and  p = (p1,...,pN)  are N-tuple vectors,
illustrated below.

x
p

• Is there a component of  x  that is like  p?

• How much of  p  is in  x?

The conventional approach to answering these questions in vector geometry is to find
the value  α   such that  α  p  is as close to  x  as possible, i.e. such that  ||x-αp||  is as
small as possible, where  ||u-v||  denotes the Euclidean distance between  u  and  v,  as
defined by

||u-v||  =  √∑i=1

N

 (ui-vi)
2
 

For example,  α  p  for one choice of  α  is illustrated below.

α p

||x-αp||
x

p

Actually, it is a bit easier to find the value of  α   that minimizes  ||x-αy||2,  because this
avoids the square root.  To find the proper  α ,  let's equate to zero the derivative of
||x-αy||2  with respect to  α ,  and solve for  α .  First let's rewrite  ||x-αy||2:

||x-αp||
2
   =  ∑

i=1

N

 (xi-αpi)2  =  ∑
i=1

N

 x
2
i  - 2α ∑

i=1

N

 xi pi + α2 ∑
i=1

N

 p
2
i

=  ||x||2 - 2 α  (x o p)  + α2
 ||p||2

12This section should be skipped or skimmed on first reading.  It becomes suggested reading, but not required, when Fourier
analsysi is introduced, as in Chapter 3 of our text.
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where  ||x||  and  ||p||  are the lengths of  x  and  p,  respectively,  and  (x o p)  is the dot
product defined by

(x o p)  =  ∑
i=1

N

 xi pi

Now differentiating and equating to zero gives

0  =  
d

dα ||x-αp||2  =  
d

dα ( )||x||2 - 2 α  (x  o p)  + α 2
 ||p ||2

=  -2 (x o p)  + 2α||p||2 ,

which yields

α   =  
(x o p)
||p||2

We conclude that the component of  x  that is like  p  is   
(x o p)
||p||2

 p .

Fact:  α  = 
(x o p)
||p||2

  is the unique value of  α   that makes the residual vector  (x-αp)  and

p  orthogonal,  where  u  and  v  are said to be orthogonal if  u o v = 0.

Proof:  The dot product of  (x-αp)  and  p  is

(x-αp) o p  =  (x o p) - α(p o p)    by the linearity of the dot product

   =  (x o p) - α ||p||2

which is zero when and only when  α = 
(x o p)

||p||2
 , i.e. when and only when  (x-αp)  and  p

are orthogonal.

With this fact in mind, we see that the component of  x  that is like  p  is the vector in
the direction of  p  obtained by projecting  x  onto the direction of  p  as illustrated
below.

x
p

α  p

Back to signals:  Let us now return to the original questions for signals:  Suppose we
are given signals  x(t)  and  p(t).

• Is there a component of  x(t)  that is like  p(t)?

• If so, how much  p(t)  is in  x(t)?

• How to define "how much of ___ is in ___ "?

Our approach will be to find the value  α   such that the difference energy
E(x(t)−α  p(t))  is as small as possible.  We will then say that  "α  p(t)  is the component
of  x(t)  that is like  p(t)"  and  "α   is the amount of  p(t)  that is in  x(t)".  The same
approach applies to discrete-time signals.

The idea is that the question we are asking is just like the question for vectors, and we
can use the same approach.  The only difference is that instead of Euclidean distance as
a measure of similarity we use difference energy.  Indeed, for discrete-time signals the
question is exactly the same, because the signals are vectors and difference energy is
Euclidean distance squared.  Thus in the discrete-time case, we can simply use the
answers to the vector question.  In doing so, we recognize that what is called "dot
product" in the "vector domain", is just what we have called "correlation".  Morever, it
is easy to check that with "correlation" replacing "dot product", "energy" replacing
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"length squared", and "uncorrelated" replacing "orthogonal", the answer we found to
the vector question applies to continuous-time signals as well as to discrete-time signals.
Therefore, we immediately obtain the following:

• The value of  α  that minimizes the difference energy   E(x(t) − α p(t))  is

α  = 
c(x,p)
E(p)  .

• The amount  p(t)  that is in  x(t)  is  
c(x,p)
E(p)  .

• The component of  x(t)  that is like  p(t)  is  
c(x,p)
E(p)  p(t) . (++)

• α  = 
c(x,p)
E(p)    is the unique value that makes the difference signal  (x(t)-αp(t))

and  p(t)  uncorrelated.

• These answers apply to discrete-time signals as well, with  p[n]  replacing
p(t).

• These answers apply to complex-valued signals, in discrete or continuous
time.  (Correlation between complex-valued signals is discussed below.)

Comments:  Engineers have long recognized the connnections between signals and
vectors.  As a result, basic ideas from geometry, and more generally from linear alge-
bra, are commonly used in signals and systems analysis.  One of the most beneficial
transferences is the idea that we can draw geometric pictures that represent signals and
their relationships, such as those on the previous pages.  For example, uncorrelated sig-
nals are drawn at right angles to one another.  It often happens that a geometric picture
will help one to understand some complex signal situation.  It is also true that studying
linear algebra will lead to increased understanding of signals and systems.  For exam-
ple, you might wish to learn as much as possible about linear algebra in Math 216 and
to take Math 419 as an elective.
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III. Basic Signal Processing Tasks

In this section, we describe three broad and nearly ubiquitous tasks that require the
processing of signals.  That is, there is need to develop systems that perform these tasks.
Much of the remainder of the course will be devoted to developing techniques to design
and improve such systems.

The first two tasks have a similar flavor.  In each, the signal to be processed contains a
component that interests us and a component that does not.  That is, the signal  r(t)  to
be processed can be modeled as

r(t) = s(t) + n(t) ,

where  s(t)  is the component that interests us and  n(t)  is the component that does not.
For example, the component that interests us might be the signal produced by someone
speaking into a microphone, and the component that does not might be the signal pro-
duced by background noise.  In the first task, called signal recovery or noise reduction,
the goal is to recover the signal component  s(t)  that interests us.  For example, we
might wish to recover the speech signal without the background noise.  In the second
task, called signal detection or signal classification or signal recognition, we wish to
make a decision about the signal component that interests us.  For example, we might
wish to decide the identity of the speaker or what the speaker has said.  These two tasks
will be introduced in the next two subsections.

In each of the tasks, the noise  n(t)  is not a known signal.  If it were known, we could
simply subtract it from  r(t),  and there would be no need for a signal recovery or sig-
nal detection system.  We also assume that the desired signal  s(t),  or some aspect of it,
is not known.  If  s(t)  were entirely known, we could dispense with  r(t),  and simply
display the signal  s(t).  On the other hand, there must be something we do know about
s(t)  and  n(t),  such as their signal value or signal shape characteristics.  Indeed, there
must be something we know that is different for  s(t)  than for  n(t).  Otherwise, we
will have no way to separate one from the other.  For example, much of the course will
be devoted to developing systems that work when  s(t)  and  n(t)  have spectra that
differ in known ways, e.g. one contains only low frequencies and the other contains
only high frequencies.

The third task to be discussed is signal digitization.  Nowadays, when signals such as
audio or pictures or video must be processed, stored or transmitted, it is generally done
in digital fashion, i.e. the data is converted to binary.  This is done because excellent
digital techniques have been found, and because the bits so produced can be processed,
transmitted and stored rapidly and reliably.

A.  Signal Recovery/Extraction/Enhancement

Suppose we are given a signal  r(t)  with two components,

r(t)  =  s(t) + n(t) ,

and our task is to design a system, such as illustrated below, which processes  r(t)  in
order to produce  s(t),  or more precisely, an approximation  ŝ(t)  to  s(t).

signal recovery/
enhancement/

extraction 
system

 

r(t)

input
signal

output
signal

s(t)^

We consider  r(t)  to be the original or measured or received signal,  s(t)  to be the
desired signal, and  n(t)  to be noise.  It is sometimes called signal recovery, because
the system is recovering the signal  s(t)  from the noise corrupted signal  r(t).  It is also
called noise reduction or noise suppression, because it attempts to do precisely this.
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Examples of signals requiring recovery/extraction/enhancement include:

• An audio signal, especially when it is particularly faint, or when the micro-
phone is part of a hearing aid, or when there is much background noise, such
as in an automobile or helicopter or crowded cocktail party.

• A photograph or movie or video taken in faint light

• A signal being played back on an analog tape player (video or audio).  Mag-
netic tapes introduce significant amounts of noise due to the granularity of the
magnetic media.

• An AM or FM radio signal, or an analog TV signal, as it emerges from the
receiving antenna.  There is always lots of background noise, much of it due
to other radio signals.

• A digital communication signal as it emerges from the receiving wire, antenna
or other sensor.  This signal must be extracted from background noise and
from all other communication signals on the same medium.

Linear Filters:  There are many possible approaches to signal recovery.  In this
course, we focus mostly on linear filtering, which is the most common approach.  Let
us introduce it with an example.  Suppose  s(t)  is an audio signal, for example the one
shown below.

-0.5

0

0.5

Suppose the measured signal is  r(t) =  s(t) + n(t),  where  n(t)  looks like the signal
below.

-0.5
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Then r(t)  is

-0.5

0

0.5

Since the noise signal fluctuates more rapidly than the audio signal13, a natural approach
to reducing the noise is to use a running-average filter.  That is, we design a system that
replaces  r(t)  by an average of  r(t)  over an interval up to time  t.  Specifically, it
replaces  r(t)  with the average over the of  r(t)  over the time interval  (t-T,t),  where
T  is chosen small enough that the audio signal  s(t)  changes little in the interval and
large enough that the noise signal fluctuates a great deal in the interval and,
consequently, averages to a small value.  In other words, the running-average filter
produces the output signal

13This is the signal-shape charactertistic that differentiates the  s(t)  from  n(t)  in this example.
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ŝ(t)  =  
1
T ∫

t-T

t

 r(t') dt' .

When such a filter is applied to  r(t),  it has the effect of smoothing the signal  r(t).  In
our example, it produces the signal shown below, which sounds much more like  s(t)
than does  r(t).  Notice that the filtering has not only reduced the noise, but it has also
modified the desired signal somewhat.

-0.2

0

0.2

While the running average filter is fairly common, there are many other linear filters.
As a precursor to introducing the full variety of possible linear filters, let us note that
by applying the change of variables  t" = t'-t  to the above integral, we may rewrite the
running average filter as producing

ŝ(t)  =  
1
T ∫

-T

0

 r(t+t") dt" ,

which in turn may be rewritten as

ŝ(t)  =  ∫
-∞

∞
 r(t+t") w(t") dt" .

where

w(t")  =  
 

 1

T, -T≤t"≤0

0, else
.

Other linear filters are obtained by replacing the function  w(t"),  which we call a
weighting function, by something else.  That is, the output is produced by a running
average, except that the average is with respect to a weighting function  w(t").  We
obtain different linear filters by making different choices of  w(t").  For example, if we
choose

w(t")  =  
 

 e3t", t"≤0

0,   t">0

Then

ŝ(t)  =  ∫
-∞

0

 r(t+t") e3t" dt"

In this case, we see that  ŝ(t)  is the average of all past values of  r(t).  However, in
computing the average, past values are multiplied by exponentially decreasing weights.

By careful choice of the weighting function  w(t"),  one can develop filters that do a
better job of extracting a signal from noise than the running average filter.  Quite a
different sort of weighting function is needed to perform the complex task of extracting
a single radio signal from all those at other frequencies.  As the course progresses, we
will develop better and better techniques for designing filters for recovering signals or
suppressing noise.

Actually, in this course, we will focus primarily on discrete-time linear filters for
filtering discrete-time signals.  (Chapters 5-8 of our text.)  Specifically, a discrete-time
filter performs the analogous operation
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ŝ[n]  = ∑
k=-∞

∞
 r[n+k] w[k] ,

where the  w[k]'s  are a sequence of weights that distinguish one linear filter from
another.  For example, if  w[k] = 1/M,  k = -M+1,...,0,  then we obtain a discrete-time
running average filter, which produces

ŝ[n]  =  
1
M ∑

k=n-M+1

n
 r[k]  .

Performance Measure:  As engineers, wherever possible we wish to quantify the
goodness of the systems that we build.  In this course, for the signal recovery task, we
will use mean-squared error (MSE) as our measure of goodness.  Specifically, if the
signal  s(t)  has support interval  (t1,t2),  then

MSE  =  
1

t2-t1 ∫
t1

t2
 (s(t)- ŝ(t))2 dt

Our goal, then, is to design a system that makes  MSE as small as possible.

One be aware that MSE is sensitive to scale and to time shifts.  For example, suppose
the signal recovery system has completely eliminated the noise, but has scaled and
delayed the somewhat, for example, suppose it prodcues  ŝ(t) = 1.2 s(t-.1).  Then, even
though the system has done well, the measured MSE may be large.  In such cases, we
may wish to allow  ŝ(t)  to be scaled and time-shifted before measuring MSE.

Other Signal Recovery Tasks:  There are other situations where the desired signal
and noise are not simply added.  Rather  r(t)  depends on the desired signal  s(t)  in
some more complicated way.  For example, in AM radio transmission the audio signal
we wish to recover is the envelope of the transmitted signal (minus a constant), and it is
desired to recover this audio signal from the transmitted signal plus noise. In tomo-
graphic imaging (e.g. X-ray, MRI, PET, etc.), the desired signal is a two or three-
dimensional image, which must be extracted from a complex set of measurements.  The
same is true of synthetic aperture radar.  These are advanced topics that will not be
pursued in this course or in these notes.

B . Signal Detection/Classification/Recognition

Suppose we are given a signal  r(t)  with two components,

r(t)  =  s(t) + n(t) ,

and our task is to design a system, such as illustrated below, which processes  r(t)  and
produces a decision about  s(t).

signal detection
classification
recognition 

system
 

r(t)

input
signal

decision

There are three closely related versions of this, introduced below along with examples.

1. Signal/No Signal?  In this case,  s(t) = 0  or  s(t) = v(t),  where  v(t)  is some
known or partially known desired signal.  From  r(t),  the system must decide
which of these two possibilities has occurred.  This is considered to be a detec-
tion or recognition task because the goal is to detect or recognize whether or not
u(t)  has occurred.  Some specific examples are given below.

•  Radar:  Decide if the signal  r(t)  from the receive antenna contains a reflected
pulse at time  to.  The same issues apply to sonar.
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•  Dollar bill changer:  Decide if the signal  r(t)  obtained by optically scanning a
bill is due to a genuine dollar bill.

•  Fingerprint recognition:  Decide if the signal  r(t)  obtained by optically scan-
ning a fingerprint contains the fingerprint of John Smith.  Similar tasks include
recognition from retinal scans or voice prints.

•  Heart monitoring.  Decide if an ekg signal  r(t)  contains a characteristic indi-
cating a heart defect.

2. Which Signal?  Here,  s(t) = v1(t)  or  v2(t)  or  ...  or  vM(t),  where  M  is
some finite integer and the  vi(t)  are known signals.  From  r(t)  decide which of
the  vi(t)'s  is contained in  r(t).  This is considered to be a classification or
recognition task because the goal is to classify  r(t)  according to which  vi(t)  has
occurred, or equivalently to recognize which  vi(t)  has occurred.  Some specific
examples are give below.

•  Digital communication receiver:  Decide if the received signal  r(t)  contains
the signal representing "zero" or the signal representing "one".  That is, the sys-
tem must decide if the transmitter sent "zero" or "one".  In some systems, the
transmitter has more than two signals that it might send, and so the receiver must
make a multivalued decision.

•  Optical character recognition:  Decide if a character printed on paper is  a or b
or c or ... .  This is especially challenging when the characters are handwritten.

•  Spoken word recognition:  Decide what spoken word is present in the signal
r(t)  recorded by a microphone.

•  The "signal/no signal" task may be considered to be a special case of the "which
signal task".

3. Signal? And if So Which Signal?  This is a combination of the two previous
subtasks.  Suppose  s(t)  equals  0  or  v1(t)  or  v2(t)  or  ...  or  vM(t).  From
r(t)  decide whether or not  s(t) = 0,  and if not, decide which of the  vi(t)'s  is
contained in  r(t).  Examples:

•  Digital communication receiver:  Some digital communication systems operate
asynchronously in the sense that the receiver does not know when the bits will be
transmitted.  In this case, the receiver must decide if a bit is present, and if so, is
it a zero or a one.

•  Personal identification system:  Decide if a thumb has been placed on the
electronic thumbpad, and if so, whose thumb.

•  Touch-tone telephone decoder:  Decide if the signal from a telephone contains
a key press, and if so, which key has been pressed.

 •  Spoken word recognition:  Decide is a word has been spoken and if so, what
word.

For brevity, we will use the term detection as a broad term encompassing all of the
above.

Detection Systems:  As illustrated below, a detection system ordinarily has two sub-
systems:  the first processes the received signal in order to produce a number (or
several numbers) from which a decision can be made.  The second makes the decision
based on the number (or numbers) produced by the first.  The number or numbers
produced by the first system are called decision statistics or feature values, and the
first subsystem is called a decision statistic calculator or a feature calculator.  The
second subsystem is called the decision maker or decision device.  We will discuss two
general types of detection systems, corresponding to two types of decision statistic
generators -- energy detectors and correlating detectors.
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decision statistic
calculator

decision
makerr(t)

decision
statisticinput

signal decision

Quality/Performance Measures:  For detection systems, the most commonly used
measure of performance is the error frequency, which as its name suggests, is simply
the frequency with which its decisions are incorrect.  We let the symbol  fe  denote the
error frequency.  The typical goal is to design the detection system to minimize  fe.

In some situations, certain types of errors are more significant than others.  For
example, from the point of view of the owner of a dollar bill recognizer, classifying a
counterfeit bill as valid is a more significant error than classifying a genuine dollar bill
as invalid.  In such cases, one will want to keep track of the frequency of the different
types of errors.  And one may choose to minimize the total frequency of errors subject
to constraints on the frequencies of certain specific types of errors.  For example, the
owner of a dollar bill recognizer might insist that detector make as few errors as
possible, subject to the constraint that it classifiy counterfeit bills as valid no more than
one time in a million.

Energy Detectors for Deciding Signal/No Signal:  For the "signal/no signal"
task, the detector must decide whether  r(t)  contains signal AND noise, i.e.  r(t) = v(t)
+ n(t),  or just noise, i.e.  r(t) = n(t).  Since it is natural to expect that  r(t)  will have
larger energy in the former case than in the latter, it is natural to choose the energy
E(r)  of  r(t)  as the decision statistic.  (One would normally measure the energy of  r(t)
over the support interval of  v(t).)  The decision maker would then decide that  v(t)  is
present if the energy is sufficiently large, and would decide that  v(t)  is not present
otherwise.  To make such a decision, one needs to specify a threshold, denoted τ, and
the decision rule becomes

v(t)  is present if  E(r) ≥ τ,  and  v(t)  is not present if  E(r) < τ .

How to choose the threshold?  The first thing to note that is that the noise signal  n(t)  is
usually random.  That is, it is not known in advance, and it is different every time we
measure it.  In particular, the energy of the noise will vary from decision to decision.
However, based on past experience, it is usually possible to estimate the average value
of the noise energy, which we denote  

–
 E(n).  Then we can say that when  v(t)  is not

present, the signal  r(t) = n(t)  has a random energy value, with average  
–
 E(n).  On the

other hand, when the signal  v(t)  is present, the energy of  r(t),  though still random
tends to be larger.  Specifically, it ordinarily has average energy equal14 to  E(v) +–
 E(n).  In summary, when the signal  v(t)  is present, the average energy of  r(t)  is
E(v) + 

–
 E(n),  and when  v(t)  is not present, the average energy of  r(t)  is  

–
 E(n).  It is

natural then to choose a threshold that lies half way between these two average energy
values.  That is, we choose

τ  =  
1
2 (E(v) + 

–
 E(n)) + 

1
2 

–
 E(n)  =  

1
2 E(v) + 

–
 E(n) .

Energy detectors can also be used for the "which signal" task, provided the signals
v1(t),  v2(t),  ... , vM(t)  have sufficiently different energies -- so different that the
differences will not be obscured by the noise.  In this case, the typical decision maker
strategy is to compare  E(r)  to the average energies  E(v1)+

–
 E(n),  E(v2)+

–
 E(n), ...,

E(vM)+
–
 E(n)  that one expects if the various  vi(t)'s  were present.  The decision maker

then decides in favor of the signal  vi(t)  such that  E(vi)+
–
 E(n)  is closest to  E(r).

Correlating Detectors for the "Which Signal Task":  For the "which signal"
task, an alternate and usually more effective method of detection (than energy detec-
tion) is to directly compare  r(t)  to each of the signals  v1(t), v2(t), ..., vM (t).

14This is because  v(t)  and  n(t)  are usually uncorrelated.
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Accordingly, we need a measure of similarity, and we will choose correlation.  Specifi-
cally, the correlation between two continuous-time signals  x(t)  and  y(t)  is defined to
be

C(x,y)  =  ∫
t1

t2
 x(t) y(t) dt ,

where  (t1,t2)  is the time interval of interest.  Similarly, the correlation between two
discrete-time signals  x[n]  and  y[n]  is defined to be

C(x,y)  =  ∑
n1

n2
 x[n] y[n] .

For brevity, we will continue the discussion presuming continuous-time signals.  To see
why correlation is a good measure of similarity to use in detection, consider the signal
pairs shown below, in which a signal  r(t)  is compared to the three possibilities  v1(t),
v2(t)  and  v3(t).  To aid the comparisons,  r(t)  is plotted above each signal.  One can
see that  r(t)  and  v1(t)  are similar in that, roughly speaking, where one is positive, the
other is as well; where one is negative the other is as well.  Moreover,  r(t)  roughly
follows the shape of  v1(t).  On the other hand, the signals  r(t)  and  v2(t)  are rather
dissimilar.  Where  v2(t) is positive,  r(t)  is sometimes negative; where  v2(t)  is
increasing,  r(t)  is sometimes decreasing.  Finally, r(t)  and  v3(t)  are very dissimilar.
Indeed,  r(t)  is very much like the negative of  v3(t).  If one were to make a decision
about which of the three signals  v1(t), v2(t), v3(t)  was contained in  r(t)  based on
visually comparing  r(t)  to the these signals, one would clearly choose  v1(t).  And
indeed this is correct, because  r(t)  was generated by adding noise to  v1(t).

Let us now consider how the same decision could be based on correlation.  To do so,
let's examine the value of correlation for each pair of signals.  The product of each pair
of signals is shown below the pair.  Correlation is the integral of the product, i.e. the
area under the plot of the product signal.  For the first pair, the product is almost
entirely positive, and the correlation is large.  For the second pair, the product is
approximately half negative and half positive, and the correlation is small because the
positive and negative areas of the product tend to cancel each other.  Finally, for the
third pair, the product is mostly negative, and the correlation gives a large negative
value.
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   C(r,v1) = 16.7     C(r,v2) = 0.82       C(r,v3) = -16.7
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If a detection system had to decide from the three correlation values which of the three
signals  v1(t), v2(t), v3(t)  was contained in  r(t),  clearly it should choose the one
corresponding to the largest correlation, namely,  v1(t).

Though correlation would work well in the example above, consider what would have
happened if, for example,  v2(t)  were 100 times larger.  In this case, it is easy to see
that the correlation  C(r,v2) = 82,  rather than  0.82.  Thus even though  v2  has a very
different shape than  r(t),  a decision based solely on the size of the correlation would
make the wrong decision.  We can remedy this potential shortcoming by normalizing
correlation.  That is, it is better to make a decision based on normalized correlation,
which is defined by

CN(x,y)   =   
C(x,y)

√E(x)√E(y)
   =   

1
√E(x)√E(y)

  ∫
t1

t2
 x(t) y(t) dt

where  E(x)  and  E(y)  are the energies over the interval  (t1,t2)  of  x  and  y, respec-
tively.  If the energies of the  vi(t)'s  are the same, then signal  vi(t)  that has the largest
correlation  C(r,vi)  also has the largest normalized correlation  CN(r,vi).   However,
when the  vi(t)'s  have different energies, the normalized correlation accounts properly
for such and permits the decision to be properly based.

Having discussed correlation, we can now completely describe a typical correlating
detector.  Suppose we must decide which of the signals  v1(t), v2(t), ..., vM(t)  is
contained in  r(t).  The decision statistic calculator computes and outputs  CN(r,v1),
CN(r,v2), ..., CN(r,vM).  The decision maker makes finds the largest of these, and
outputs the corresponding decision.

Comparison of Energy and Correlating Detectors:  There are some situations
where energy detectors cannot be used and some where correlating detectors cannot be
used.  For example, energy detectors cannot be used for the "which signal" problem
when the signals have the same energy, which is often the case in digital communi-
cations.  On the other hand, correlating detectors cannot be used when the precise shape
of the signals is not known.  For example, in Marconi's original transatlantic radio
transmission, the transmitted signal was generated by a spark, with no known signal
shape.  Clearly, a correlating detector was out of the question!

In situations where both energy and correlating detectors can be used, it is usually
found that the latter performs significantly better than the former, i.e. it makes fewer
errors.

C. Signal Digitization for Data Storage and Transmission

In today's world where signal processing is increasingly done by general or special
purpose computers, it is necessary to convert signals into digital form.  Moreover sig-
nal storage and transmission are increasingly done in digital fashion.  Again, this
necessitates conversion to digital form.  Such conversion involves two steps:  (1)
sampling, and  (2) representing each sample as a binary number.  Both of these steps
generally involve losses, i.e. changes to the signal.  Sampling is the topic of Chapter 4
and will be extensively discussed there.  Converting to bits will be the subject of one of
our lab assignments.  However, let us describe here the most elementary method of
converting samples to bits, called uniform scalar quantization.

With uniform scalar quantization, if we wish to represent a sample value  x[n]  with  b
bits, then as illustrated below for the case that  b = 3, we divide the range of sample
values,  (xmin,xmax)  into  2b  nonoverlapping bins of width  ∆ = (xmax-xmin)/2b.  These
bins are indexed from left to right by the integers  0, 1, 2, ..., 2b-1, and each of these
integers is represented as a  b-bit  binary number.  For example, if  b = 3, then  5 ⇔
101.  Let  xi = xmin + ∆/2 + i∆  denote the center of the ith bin.  Now, if the sample
x[n]  to be quantized lies in the ith bin, then we represent it by the binary representation
of  i,  and we consider  x[n]  to have been quantized to the value  ci.  Note that when
using this binary number in a processing task, we consider it to represent the value  ci,
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and must act accordingly.  Actually, if the processing is done in a general purpose
computer, we might convert  i  to binary using one of the standard conventions that are
convenient for doing arithmetic, such as "two's complement".

x in xmax

0 1 2 3 4 5 6 7

c0 c1 c c3 c4 c5 c6 c7

000 001 10 011 100 101 10 111
bin index:

binary representation:

∆

A system that does both sampling and uniform scalar quantization is called an analog-
to-digital converter.

There are more sophisticated methods for converting samples to bits that produce many
fewer bits.  These are generally called data compression methods.  Examples include
JPEG image compression, MP3 audio compression, and CELP speech compression,
which is the system used in digital cellular telephones, digital answering machines, and
the like.  A simplified version of a JPEG like image compression system is included in
one of the lab assignments.  Generally speaking, data compression is done in order to
reduce the amount of memory needed to store a signal or the amount of time needed to
transmit a signal.  When the signal actually needs to be processed or played, the
compressed representation must ordinarily be changed back into a representation like
the one produced by a uniform scalar quantizer.  This is called decompression.

Concluding Remarks

Having discussed several basic signal processing tasks, it should be mentioned that from
now on, we will not focus on them in future lectures.  Instead we will focus on
developing tools and techniques that enable systems to perform these tasks well.  In
particular, we will discuss sampling (Chapter 4 of our text), spectra (Chapter 3 and
handouts) and linear filters (Chapters 5-8).  Although these signal processing tasks will
not be the focus of the lectures, from time to time we will discuss how the techniques
being developed in lecture apply to them.  On the other hand, these basic signal
processing tasks will be the focus of a number of the lab assignments in this course.
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Appendix A:  Complex-Valued Signals

Complex-valued signals will be introduced in Chapter 2 as a way to simplify certain
calculations involving sinusoidal signals.  This appendix briefly summarizes the
properties, statistics of complex signals and elementary operations on them.  It should
be read after complex signals are introduced in lecture.

Definition:  A complex-valued signal is simply a signal whose values at each time are
complex.  As such, it has a real part and an imaginary part, a magnitude and a phase.
For example, if

z(t)  =  x(t) + j y(t)  =  r(t) e
jφ(t)
  ,

then  x(t)  is the real part,  y(t)  is the imaginary part,  r(t)  is the amplitude and  φ(t)
is the angle or phase.

Signal Characteristics and Statistics:

The following table shows the definitions of the signal characteristics mentioned
previously for real-valued signals, with the exception of signal value distribution, which
is not easily summarized in table form.

Continuous-time signal  z(t) Discrete-time signal z[n]

z(t) = x(t) + j y(t) z[n] = x[n] + j y[n]

support interval [t1,t2] {n1,n1+1,...,n2}

duration t2-t1 n2-n1+1

mean value: M(z)  =  
1

t2-t1 ∫
t1

t2
 z(t) dt M(z)  =  

1
n2-n1+1 ∑

n=n1

n2
 z[n]

         = M(x) + j M(y)        = M(x) + j M(y)

magnitude: |z(t)| = √x2(t)+y2(t) |z[n]| = √x2[n]+y2[n]

squared value,aka
instantaneous power: |z(t)|2 = x2(t)+y2(t) |z[n]|2 = x2[n]+y2[n]

mean-squared value,
aka average power:    MS(z) = 

1
t2-t1 ∫

t1

t2
 |z(t)|2 dt MS(z) =  

1
n2-n1+1 ∑

n=n1

n2
 |z[n]|2

    = MS(x) + MS(y)       =  MS(x) + MS(y)

RMS value: RMS(z)  =  √MS(z) RMS(z)  =  √MS(z)

energy: E(z)  =  ∫
t1

t2
 |z(t)|2 dt E(x)  = ∑

n=n1

n2
 |z[n]|2

    =  E(x) + E(y)            =  E(x) + E(y)

Periodicity of complex continuous-time signals:

A complex continuous-time signal  z(t)  is said to be periodic with period  T  if  z(t+T)
= z(t)  for all values of  t.  This is equivalent to saying that both  x(t)  and  y(t)  are
periodic with period  T.

1.  A continuous-time signal  z(t)  with period  T  is also periodic with period  nT
for any positive integer  n.

2.  The fundamental period To  is the smallest period.  The reciprocal of  To  is
called the fundamental frequency  fo  of the signal.  That is, fo = 1/To.

3.   z(t)  is periodic with period  T  if and only if  T  is an integer multiple of  To.
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4.  If signals  z(t)  and  z'(t)  are both periodic with period  T,  then the sum of these
two signals,  w(t) = z(t) + z'(t)  is also periodic with period  T.  This same
property holds when three or more signals are summed.

5.  The sum of two signals with fundamental period  To  is periodic with period  To,
but its fundamental period might be less than  To.

6.  The sum of two signals with differing fundamental periods, T1 and T2, will be
periodic when and only when the ratio of their fundamental periods equals the
ratio of two integers.  The fundamental period of the sum is the least common
multiple of  T1  and  T2.  The fundamental frequency of the sum is the greatest
common divisor of the fundamemental frequencies of the two sinusoids.

Periodicity of complex discrete-time signals:

A complex discrete-time signal  z[n]  is said to be periodic with period N  if  z[n+N] =
z[n]  for all integers  n.  This is equivalent to saying that both  x[n]  and  y[n]  are
periodic with period  N.

1.  A discrete-time signal with period  N  is also periodic with period  mN  for any
positive integer  m.

2.  The fundamental period, denoted  No,  is the smallest period.  The reciprocal of
No  is called the fundamental frequency  fo  of the signal.  That is,  fo = 1/No.

3.   z[n]  is periodic with period  N  if and only if  N  is an integer multiple of  No.

4.  If signals  z[n]  and  z'[n]  are both periodic with period  N,  then the sum of
these two signals,  w[n] = z[n] + z'[n]  is also periodic with period  N.  This same
property holds when three or more signals are summed.

5.  The sum of two signals with fundamental period  No  is periodic with period  No,
but its fundamental period might be less than  No.

6. The sum of two signals with differing fundamental periods,  N1  and  N2,  is
periodic with fundamental period equal to the least common multiple of  N1  and
N2  and fundamental frequency equal to the greatest common divisor of their
fundamental frequencies  f1  and  f2.  Note that unlike continuous-time case, the
ratio of the fundamental periods of discrete-time periodic signals is always the
ratio of two integers.  Therefore, the sum is always periodic.

Elementary Operations On One Complex Signal

These are illustrated for continuous-time signals, but apply equally to discrete-time
signals.

Adding a constant:  z'(t) = z(t) + c ,  where  c  is a real or complex number.

Amplitude scaling:  z'(t) = c z(t) ,   where  c  is a real or complex number.

This has the effect of scaling both the average and the mean-squared values.
Specifically,  M(z') = c M(z)  and  MS(z') = |c|2 MS(z).

Time shifting:  If  z(t)  is a signal and  T  is some number,  then the signal

z'(t) = z(t-T) = x(t-T) + j y(t-T)

 is a time-shifted version of  x(t).

Time reflection/reversal:  The time reflected or time reversed version of a signal
z(t)  is

z'(t) = z(-t).

Time scaling:  The operation of time-scaling a signal  x(t)  produces a signal

z'(t) = z(ct)
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where  c  is some positive real-valued constant.

Combinations of the above operations:  In the future we will frequently
encounter signals obtained by combining several of the operations introduced above,
for example,

z'(t) = 3 z(-2(t-1)) .

Elementary Operations on Two or More Complex Signals

These are illustrated for continuous-time signals, but apply equally to discrete-time
signals.

Summing:  w(t)  =  z(t) + ẑ(t) .

Linear combining:  w(t) = c1 z1(t) + c2 z2(t) + c3 z3(t) ,  where  c1,c2,c3  are real or
complex numbers.

Multiplying:  w(t)  =  z(t) z(t) .

Concatenating:  Concatenation is the process of appending one signal to the end of
another.

Correlation

The correlation between continuous-time complex signals  z(t)  and  ẑ(t)  is

C(z,ẑ)  =  ∫
t1

t2
 z(t) ẑ*(t) dt ,

where  (t1,t2)  is the time interval of interest.  Similarly, the correlation between
discrete-time complex signals  z[n]  and  ẑ[n]  is defined to be

C(z,ẑ)  =  ∑
n1

n2
 z[n] ẑ*[n] .

Why the complex conjugate?  The reason is that this enables the relation  E(z) = C(z,z)
to continue to be valid.  Specifically,

C(z,z)  =   ∫
t1

t2
 z(t) z*(t) dt  = E(z) .

Unfortunately, correlation for complex-valued signals is not symmetric, i.e.  C(z,ẑ) ≠
C(ẑ,z).  However, there is a close relation between  C(z,ẑ)  and  C(ẑ,z), namely,

C(ẑ,z)  =  C*(z,ẑ) .

This is because

C(ẑ,z)  =  ∫
t1

t2
 ẑ(t) z*(t) dt  =   

 



 



∫
t1

t2
 z(t) ẑ*(t) dt

*
  =  C*(z,ẑ) .

The normalized correlation between signals  z  and  ẑ  is

CN(z,ẑ)   =   
C(z,ẑ)

√E(z)√E(ẑ)
  .

The Cauchy-Schwarz Inequality continues to hold for complex signals.  That is,

|CN(z,ẑ)| ≤ 1,

with equality if and only if one signal is an amplitude scaling of the complex conjugate
of the other; i.e.  y(t) = c x(t)  for some real or complex constant  c.
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Appendix B:  Trigonometric Identities and Facts About Complex Exponen-
tials

Trigonometric Identities

We will not use these much, but nevertheless it is nice to have a table.  The first five
comprise Table 2.2 on p. 14 of DSP First.

1. sin2 θ + cos2 θ   = 1

2. cos 2θ  =  cos2 θ - sin2 θ

3. sin 2θ  =  2 sin θ cos θ

4. sin(α±β)  =  sin α cos β ± cos α sin β

5. cos(α±β)  =  cos α cos β -+ sin α sin β

6. sin α  sin β  =  
1
2  cos(α-β) - 

1
2 cos(α+β)

7. cos α cos β  =  
1
2  cos(α-β) + 

1
2 cos(α+β)

8. sin α cos β  =  
1
2  sin(α+β) + 

1
2 sin(α-β)

9. cos α sin β  =  
1
2  sin(α+β) - 

1
2 sin(α-β)

10.  sin α  + sin β  =  2 sin 
1
2(α+β) cos 

1
2(α-β)

11.  sin α  - sin β  =  2 cos 
1
2(α+β) sin 

1
2(α-β)

12.  cos α + cos β  =  2 cos 
1
2(α+β) cos 

1
2(α-β)

13.  cos α - cos β  =  -2 sin 
1
2(α+β) sin 

1
2(α-β)

14.  sin2 θ  =  
1
2(1-cos 2θ)

15.  cos2 θ  =  
1
2(1+cos 2θ)

16.  sin θ  =  cos(θ-
π
2)

17. cos θ  = sin(θ+
π
2)
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Useful Facts About Complex Exponentials

1. e
jθ
 

 = cos θ + j sin θ (Euler's formula)

2. cos θ = 
1
2  


 


e
jθ
 

+e
-jθ
  (Inverse Euler formula)

3. sin θ = 
1
2j  


 


e
jθ
 

-e
-jθ
  (Another Inverse Euler formula)

4. 1  =  e
j2π
    =  e

j2πn
      for any integer  n

5. -1  =  e
jπ
    =  e

-jπ
 

6. (-1)
n
   =  e

jπn
 

7. j  =  e
jπ/2
  

8. -j  =  
1
j   =  e

-jπ/2
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Problems

Elementary Signal Characteristics

1. State the defining formula for:

(a)  The support interval of a continuous-time signal signal  x(t).

(b)  The duration of a continuous-time signal  x(t).

(c)  The mean value of the continuous-time signal  x(t)  over the time interval
[t1,t2].

(d)  The average power of the continuous-time signal  x(t)  over the time interval
[t1,t2].

(e)  The energy of the continuous-time signal  x(t)  over the time interval [t1,t2].

2. The continuous-time signal  x(t) = 3 cos(2π100t)  is sampled with sampling inter-
val  Ts = 0.005 msec,  creating the discrete-time signal  x[n].  Find a simple for-
mula for  x[n]  that does not include a cosine or any other trigonometric function.

3. Consider the two continuous-time signals shown below:

x1(t) x2(t)

-1

0

1

-1

0

1

From which of the above signals could each of the following discrete-time signals
be obtained by sampling.  Find the sampling interval in each case.  If more than
one sampling interval is possible, find the smallest among those that are possible.

(a) y1[n]

-1

0

1

(b) y2[n]

-1

0

1

(c) y3[n]

-1

0

1

4. Find the support interval, the mean value, the mean-squared value, and the
energy of each the following signals, with the last three values computed over the
support interval of the signal.

(a) x1(t) 
t

2 4 6 8 10

2

-1
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(b) x2(t)
t

2 4 6 8 10

2

-1

5. Derive the relationship between the mean-squared value, the variance and the
mean value:

MS(x)  =  σ2(x) + M2(x) (x)

6. Match each signal below with its signal value distribution.

Signals:
(a)    b)         (c)          (d)

x

t

2 4

2

 2 4

2

t

x

   2 4

2

t

x

 0 10 20 30 40 50 60 70 80 90 100
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t

x

0

.2

Signal value distributions:
(i)       (ii)         (iii)    (iv)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

100

200

300

400

500

600

700

800

900

x
0 0.2        

2
x

       
2

x

     
2

x

    (v)      (vi)               (vii)

2
x

   2

x
2

x

(Tip:  You can work this problem from both ends.  For each signal, you can look
at the range of signal values, and see what you can deduce about which values
occur more frequently than others.  Also, look at each signal value distribution
and see what you can deduce about the signal from which it came.)

7. The function below

is the signal value distribution of which of the following signals

1(t)

.

2(t)

.

3(t)

.
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8. A discrete-time signal  x[n]  has the histogram shown below.

1 3 5 70

10

20

30

40

50

60

70

80

90

100

x

(a)  Find, approximately, the mean value of  x[n].

(b)  Find, approximately, the mean-squared value of  x[n].

Periodicity

9. (a)  State the condition defining the periodicity of a signal  x(t).

(b)  State the definition of the fundamental period of a periodic signal  x(t).

10. Which of the signals shown below are periodic?  For those that are periodic, find
their fundamental period.

(a)   xa(t) =  3 sin(2t)

(b)   xb(t) =  4 sin(et)

(c)   xc(t)  =  cos(t2+2t+1)

(d)   x4(t)  = 4(-1)
floor(t/3)

  ,   where   floor(z) = largest integer ≤ z

11. Let  s(t) = A cos(ωt+φ).

(a)  Show that  s(t)  is periodic with fundamental period of  2π/ω.

(b)  Find the mean value of  s(t)  over one period.

(c)  Show that the average power of this signal over one period is  A2/2.

12. Show that if  x(t)  and  y(t)  are periodic with period  T,  and  a  and  b  are
arbitrary numbers,  then  z(t) = a x(t) + b y(t)  is  also periodic with period T.

13. (a)  Show that if   x(t)  is periodic with period  T  and  a  is a positive number,
then  y(t) = x(at)  is periodic with period  T/a.

(b)  Repeat Part (a) with the word "period" replaced by "fundamental period".

14. Which of the signals below are periodic?  For those that are periodic, find their
fundamental period.

(a)   xa(t)  =  cos(2t) + sin(3t)

(b)   xb(t)  =  cos(2πt) + sin(6πt)

(c)   xc(t)  = cos(2t) + sin(6πt )

15. Let  x(t) = 3 cos(2t).  Is  y(t) = 4 x(2t-3)  periodic?  If so, find its fundamental
period.

Envelope

16. Find a formula for the envelope of the signal  x(t) = sin(100t) sin(3t).
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Elementary Operations on One Signal

17. Let  y(t) = x(t) + c.  Let  (t1,t2)  be the time interval of interest.

(a)  Derive a formula for the mean  M(y)  of  y(t)  in terms of  c  and the mean
M(x)  of  x.  (Hint:  Start by writing the defining formula for what you need to
find, namely,  for  M(y).)

(b)  Derive a formula for the mean-squared value  MS(y)  of  y(t)  in terms of c,
the mean-squared value  MS(x)  of  x,  and the mean value  M(x).  (Hint:  Start
by writing the defining formula for what you need to find, namely,  for  MS(y).)

18. Let  y(t) = c x(t) .  Let  (t1,t2)  be the time interval of interest.

(a)  Derive a formula for the average  M(y)  of  y(t)  in terms of  c  and the
mean  M(x)  of  x.

(b)  Derive a formula for the mean-squared value  MS(y)  of  y(t)  in terms of c,
the mean-squared value  MS(x)  of  x,  and the mean value  M(x).

19. Let  y(t) = a x(t) + b.  Let  (t1,t2)  be the time interval of interest.

(a)  Derive a formula for the mean  M(y)  of  y(t)  in terms of  a,  b,  and the
mean  M(x)  of  x.

(b)  Derive a formula for the mean-squared value  MS(y)  of  y(t)  in terms of a,
b, the mean-squared value  MS(x)  of  x,  and the mean value  M(x).

20. Let  y(t) = x(at),  where  x(t)  is a signal with support interval  (t1,t2).

(a)  Find the support interval of  y(t).

(a)  Derive a formula for the mean  M(y)  of  y(t), over its support interval, in
terms of  a  and the mean  M(x)  of  x.

(b)  Derive a formula for the mean-squared value  MS(y)  of  y(t), over its
support interval, in terms of a  and the mean-squared value  MS(x)  of  x.

21. Let  x(t)  =  t
1

1

.  Plot the following signals:

(a)  y1(t) = -2 x(3t-2)

(b)  y2(t) = 3 x(-2t+6)

22.  Let   x(t)  and  y(t)  be as shown below.  Find numbers  a  and  T  such that  y(t)
= a x(t-T)

2 4

2

-1
t

x(t)

    
-1

y(t)

(No systematic procedure has been developed to solve this problem.  Use your
creativity.)
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23. Let   x( t )  = 
1

1

t

Which of the following shows  y(t) = 3 x( 
t
2 - 1)?

(a) -1

3

0 1
t

(b) -1

3

0 1
t

(c) 1

3

2 3 4
t

0   

(d) 1

3

2
t

0

(e) 1 2
t

3

0

Elementary Operations on Two or More Signals

24. For the signals shown below, find numbers  a1, a2, a3, a4  such that

y(t) = a1 x1(t) + a2 x2(t) + a3 x3(t) + a4 x4(t) .

(The  ai's  can be positive, negative or zero.)

1

1

x1(t)

21

1

x2(t)

1

1

x3(t)

1

1

2

x4(t)

      21

1

y(t)

(Hint:  You might think about choosing the  ai's  to match some particular feature
of  y(t)  first.)

25. For each of the following, either prove the statement or provide a simple exam-
ple demonstrating that the statement is false.

(a)  The duration of  z(t) = x(t) + y(t)  equals the sum of the durations of  x(t)
and  y(t).

(b)  The energy of  z(t) = x(t) + y(t)  equals the sum of the energies of  x(t)  and
y(t).

(c)  The mean of  z(t) = x(t) + y(t)  equals the sum of the means of  x(t)  and
y(t).
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26. For each of the following collections of signals, determine whether or not the
sum is periodic.  Find the fundamental period of the periodic ones.

(a)  x(t)  =  3 sin(20πt),   y(t) = 4 cos(40πt)

(b)  x(t)  =  3 sin(20πt),   y(t) = 4 cos(21πt)

(c)  x(t)  =  3 sin(2t),     y(t) = 4 cos(√ 2t)

(d)  x(t)  =  3 sin(20πt),    y(t) =  4 cos(40πt),    z(t) = 3 sin(50πt)

27. For each of the following pairs of signals, find  E(x),  E(y) and  E(x+y)  and
compare  E(x) + E(y)  to  E(x+y).

(a) x(t) = 
t

3

2

 ,  y(t) = 
t

3

1

(b) x(t) = t

3

2
, y(t) = t

3

2

28. Let  z(t) = x(t) + y(t).  Show that  E(z) = E(x) + 2 C(x,y) + E(y) .

Mean-Squared Error

29. Assuming  x(t)  and  y(t)  are known signals,  find an expression for the value of
α  that  MSE(x,αy)  is minimized.

Signal Correlation

30. (a)  State the defining formula for the correlation between two continuous-time
signals  s(t)  and  r(t), where the time interval of interest is  (3,4).

(b)  State the defining formula for the correlation between two continuous-time
signals  s(t)  and  r(t), where the time interval of interest is  (3,4).

31. Which of the signals  x1(t), x2(t), x3(t)  shown below is most correlated with
y(t),  also shown below?  (Use normalized correlation.)

y(t)

x1(t)

x2(t)

x3(t)

t

t

t

t

1 2 3

1 2 3

1 2 3

1 2 3

1

1

1

1
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32. Show that normalized correlation CN(x,y)  between signals  x(t) and  y(t)  equals
the unnormalized correlation  C(x',y')  between the normalized versions of these
signals  x'(t) = x(t)/√E(x)  and  y'(t) = x(t)/√E(y),  which have energy 1.

33. Show that normalized correlation is not affected by a scaling of either signal, i.e.
CN(ax,y) = CN(x,y).

34. Show that correlation is linear, i.e.  C(a x1+b x2,y) = a C(x1,y) + b C(x2,y).

35. Show that if  x(t)  and  y(t)  are uncorrelated, then energy of their sum equals the
sum of their energies, i.e.  E(x+y) = E(x+y).

36. Show that a constant signal  x(t) = a  is uncorrelated with any signal  y(t)  that has
zero mean, i.e. if  M(y) = 0,  then  C(x,y) = 0.

37. Show that normalized correlation between  x(t) = cos(ωt)  and  y(t) = cos(ωt+φ)
is  CN(x,y) = cos(φ).

38. Suppose  x(t) = 2t, 0≤t≤1  and  x(t) = 0, for other t,  and suppose  y(t)  is a signal
with energy  3  such that  CN(x,y) = -1.  Find  y(t).

39. Continuous-time signals  x(t)  and  y(t)  each have support interval  [0,3]  and
average value   2.  Their (unnormalized) correlation is   C(x,y) = 1.   If  z =
3y+2,  find  C(x,z).

40. Continuous-time signals  x(t)  and  y(t)  have  E(x) = 1,  E(y) = 2,  and E(x+y) =
5, where  E( )  denotes energy.  Find the (unnormalized) correlation  C(x,y).

41. Continuous-time signals  x(t)  and  y(t)  have energies  E(x) = 2,  E(y) = 2,  and
are uncorrelated.  Find  E(x-y).

42. Let  z(t) = x(t) + y(t).  Let  (t1,t2)  be a time interval of interest.   Show that

E(z) = E(x) + 2 C(x,y) + E(y),

where as usual  E  denotes energy and  C  denotes correlation.
(One may conclude from this that   E(z) = E(x) + E(y)  when and only when  x
and  y  are uncorrelated.)

43. Given  E(x),  E(y)  and  E(x+y)  find  CN(x,y).

44. Given  E(x),  C(x,y),  what can be said about  E(y)?

Signal components

45. Find the component of the signal  x(t) = 

1 2

1
2

t

3

  that is like:

(a)  p1(t) = 

1 2

1
t

3

(a)  p2(t) = 

1 2

1
t

3

(a)  p3(t) = 

1 2

1
t

3
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(a)  p4(t) = 

1 2

1
t

3

Basic Signal Processing Tasks

46. Consider the running average filter such that when the input signal is  x(t),  the
output signal is

y(t)  =  12  ∫
t-2

t

 x(s) ds

Find an expression for  y(t)  when  x(t) = sin(3t).  Use trigonometric identities to
simplify as much as possible.

47. Consider the signal/no signal detection system shown below:

decision statistic
calculator

decision
makerr(t)

ecision
statisticinput

signal ecision

Two histograms for the decision statistic are shown below.  Each histogram is based
on 10,000 decision statistic measurements.

"no signal present" histogram    "signal present" histogram

0 5 10 15 20
0

100

200

300

400

500

0 5 10 15 20
0

100

200

300

400

500

Assuming we want to minimize the number of decision errors, when the decision
statistic is  5,  what decision should the decision maker make.

48. A standard audio CD is produced by uniform scalar quantizing the samples of an
audio signal and producing  16 bits per sample.  The sampling rate is 44,100
samples sec.  The quantizer produces 16 bits per sample.

(a)  How many quantization bins does the quantizer have?

(b)  How many bits per second are produced by the quantizer?  (Consider just the
bits representing the left channel.




