© J. Fessler, June 9, 2003, 12:47 (student version)

21

Part 2. Sinusoidal Signals

Outline
e Introduction to three representations:
o formulaz(t) = A cos(27 fot + @)
o amplitude, frequency (or period), phase
o graph/plot
e Converting between these three representations
e Signal characteristics for sinusoids
e Operations on sinusoids: adding / multiplying
e Simplify sums of sinusoidef same frequency
o trigonometry
o phasors
e Complex arithmetic
o cartesian / polar / complex exponential form
o Euler’s identities
o addition/subtraction
o multiplication / division
o polynomial roots
e Complex exponential signals
e Beat frequencies
Reading: Ch. 2 of textbook, Appendix A.
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Overview of sinusoids

Why?

e Occur in nature
o tuning fork
o flute
o spring-mass system
o solution to many differential equations

e Engineering systems
o power generation (rotating equipment)
o laser
o resonator circuit (capacitor and inductor)
o oscillator (modulators for comm)

e Linear time-invariant (LTI) systems, aka filters
o sinusoidal signal in~ | LTI system| — sinusoidal signal out

This property is unigue to sinusoidal signals!

o motivates considering other signals as sums of sinusoids

Example Audio recording of tuning fork from across a room in presence of multitude of reflections. Still sinusoidal!

Sinusoidal signals

For a while now we will focus oontinuous-time sinusoidal signals, described by the following general formula:

z(t) = Acos(@t + @) (2-1)

wo

This signal, which is a function of the continuous-time variabis described by three parameters.
e Ais theamplitude (signal unitsg.g, volts, Amperes, etc.).
e fy is thefrequency (Hz=cycle/second, kilohertz: kH283Hz, megahertz: MHz+0%Hz)
e ¢ is thephase(in radians)

Certain properties of the cosine function determine the sensible ranges for the three parameters.
¢ We always choose the amplitude> 0 and usuallyd > 0.
Why? Because of this property: cos(d) = cos(6 + ) = cos(f — 7). So:

—Acos(2nfot + ¢') = Acos(2m fot + ¢’ + )
——
newqo

So a negative sign can be absorbed into the phase term.
¢ For sinusoidal signals, we always choose the frequégcy 0.
Why? Because of the propeftys(—6) = cos(6). So:

cos(2m(—fo)t + ¢') = cos(—[27 fot — ¢']) = cos(2m fot — ¢ ).
~——
newo

So a sinusoid with a negative frequency is indistinguishable from a sinusoid with a positive frequency but with the opposite
phase. So we always just use the positive frequency.
Later in the chapter we will consider complex exponential signals that can have positive or negative frequencies. But not for
sinusoidal signals!

e We usually focus on values of the phasthat are in the range-, 7.
Why? Because of this particularly important property of the cosine functieié + n2x) = cos() for n € Z. In other words,
the cosine function is periodic with fundamental perad In other words, we can add or subtract multiple2offrom the
phase without changing the sinusoidal signal at all.
So we may as well add or subtract multipleaffrom the phase until the phase satisfies < ¢ < 7. This phase is called
theprincipal value.
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Example
cos(2mt + 31m/3) = cos(2nt + 317w /3 — 5 - 2w) = cos(2wt + 7/3).
e Why do we use only cosine rather than either cosine or sin?
Because of this propertgin(6) = cos(6 — 7/2).
So we can take any signal expressed in terms ofith&inction and rewrite it in terms of thes form given above as follows:
Asin(27 fot + ¢') = Acos (27rfot + ¢ — 71'/2]).
N——
new o

WhenA > 0andfy > 0 and—7 < ¢ < 7, we say that (2-1) is istandard form.
Of these three parameters, frequencyis particularly important. The frequency determines the rate of oscillation of the sinusoid,
the number of cycles per second. A larger frequency value (we say: “a higher frequency”) corresponds to more oscillations per

unit time.

The following figures show(t) = 4 cos(2r fot) for various frequencieg.

4t x(t), fo=0Hz

4 0.1 02
4 421, fo=10Hz
’ 0.1 02

” 0.1 02 t

Here are a few other comments about sinusoidal signals.
e wy = 27 fy is theradian frequency in units of radians/second.
Conventional engineering units for frequency are Hz, not radians per second.
There is little reason to use the notationover2x f, except perhaps laziness...
e We say “sinusoid” even though we usually wréies.
The reasons for choosirgs rather tharsin will be clear when we discuss complex signals later in this chapter.

e All continuous-time sinusoidal signals aperiodic, so f; is in fact thefundamental frequency, but we usually just say
frequencywhen discussing sinusoids.

e The (fundamentalperiod of a sinusoid isly, = 1/ fo. Why? Because:

z(t + To) = Acos(2mfo(t + To) + ¢) = Acos(2m fot + ¢ + 27r@) = Acos(2mfot + ¢) = z(t) .
1

So an alternate general form for a sinusoidal signal would be:

x(t) = Acos (27rTi0t + ¢> .

As long as you put the argument in the for@w*- something- ¢ + ¢” then the “something” will be the frequency and its
reciprocal will be the period.
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The three representations

At this point we have three representations of a sinusoidal signal:
e formulaz(t) = Acos(27 fot + @)
o list of 3 parameters: amplitude, frequency (or period), phase
e graph/plot
o (Later we will have a very important fourth representationsfisctrum.)

One must be able to convert between these representations.

Converting between the formula and the list of three parameters is obvious by inspection.

For manual graphing, (given the formula or the parameters) the following procedure can be helpful.

e First plot the sinusoiavithoutthe phase shifp, i.e., plot the signat(t) =
This is easy since the periodTs = 1/ fo.

A cos(27 fot).

e Then notice that:(t) = A cos(27 fot + ¢), SO we simply need tphase shiftthe signak(t) by the amoun, keeping in mind

that a27 phase shift would be a complete cycle of the sinusoid.

Example Sketchu(t) = 2 cos(3t — 2F).
First drawc(t) = 2 cos(2m£t), which has periody = 6.

/u c(t)

-2

12

Now we shift this signal by a phase 2# /3 which is 1/3th of a period, or 2 time units in this case.

1)

14 ¢t

Formula from graph

To complete the story, we must also be able to examine a graph of a sinusoidal signal and determine its parameters. The amplitud

A and the periody are easily determined by inspection.

To determine the phase, first find the time location of the peak that is neatest@ocall it, sayt,. Now a maximum of a cosine

occurs when its argument is i0g., when2r fot, + ¢ = 0. Thus the phase i

5pp = —27 fotp, = —27

tp
Ty

Since the location of the

peak nearest to= 0 will be within +£7/2 of ¢t = 0, the phase computed according to the above formula will always be between

—m andm, as desired.

Example Consider the signal(t) pictured above, but suppose we only had the graph and not the formula. From the graph we see

thatA = 2 andT, = 6. The nearest peak is f = 2, so the phase is

t 2
= 912 = 95~ =2
¢ =2 = 2

so we havex(t) = 2 cos(2r#t — 2m/3) which indeed agrees with the origi

/3

nal formula.
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Signal characteristics of sinusoids

In Partl we defined about a dozen signal characteristics. Some of them are obvious for sinusoidal signals: the support is the
reals, the duration is infinite, the minimum-sA and the maximum igl, the energy is infinite (unles4 = 0), and the period is

To =1/ fo.

Here are some of the more interesting ones:
e M(x) = 0. Sinusoids are symmetric about the horizontal axis so the average value is zero.
e MS(x) = A%/2.
The derivation of this very important average power relationship is left as an exercise.
e From the two preceding characteristics, one can work out the RMS value, the variance, and the standard deviation.
e The signal value distribution of a sinusoidal signal was shown in a figure in Part1.
e The natural definition of the envelope would be simply a constant signal with value

Example For AC power line, we know that the frequency is abfiut= 60Hz. What about the amplitudé?

Is the conventional number “115V” the amplitude? No! Actually, 115V is the RMS voltage!

For a sinusoid, the RMS value igMS(z) = 1/A2/2, so for AC power lines115V = A/v/2 s0A = 115V /2 ~ 162.6V.

Why is it expressed in RMS rather than in amplitude?

Because the power dissipated in a resistor with a sinusoidal voltage across it of RMS value equal to 115V is the same power tha
would be dissipated by that resistor with a 115V constant (DC) voltage across it. So the “effective” power is the RMS power.

Effect of simple signal operations on sinusoids

Suppose we start with a sinusai(t) = A cos(27 fot + ¢) and then apply a simple signal operation to it. What happens?

e Amplitude scalingy(t) = cx(t)

N cA cos(2m fot + &), c>0
y(t) = lc|Acos(2m fot + ¢ —m), ¢ <O.

So amplitude scaling, scales the amplitude, naturally enough. (There is some rhyme and reason to the terminology...)
(If ¢ is negative, then both the amplitude and phase will change when we write the signal in standard form.)

e Time scaling:y(t) = x(at)
y(t) = Acos(2m fo(at) + ¢) = Acos(2m afy t + @)
~~
f&: new frequency

So the effect of time scaling is to scale thequency of the sinusoidal signal.
What happens if a is negative?

e Time shift:y(t) = z(t — to)

y(t) = Acos(2m fo(t — to) + ¢) = Acos(2m fot + ¢ — 27 foto)
—_————
¢': new phase

So the effect of time shift is to cause a correspongingse shiftof the sinusoidal signal.
Note that the units of the expressi®nfyt, is radians, as required.

e Squaringy(t) = z2(t)
2 A2

y(t) = A% cos®(2m fot + @) = A? + - cos(2m(2fo)t + 2¢)

sincecos?(#) = 1 + £ cos(26).

In each case, amplitude scaling, time scaling, and time shift, a sinusoidal signal remains a sinusoidal signal but one of its three
parameters is changed by the operation.
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Operations with two (or more) sinusoids

If we have two sinusoidal signals; (t) andz.(t), the two most interesting ways to “combine” them would be to add them or to
multiply them.

First, considemultiplication . (Why should we care? AM radio is one example.)
Supposer; (t) = Ay cos(2m f1t + ¢1) andxa(t) = Az cos(27 fot + ¢2). What happens when we multiply?

To analyze the product of these signals, recall the following identity:
cos(a) cos(B) = % cos(a — ) + % cos(a + 0). (2-2)

Thus

m(t) x1(t) 22(t) = [A1 cos(2m f1t + ¢1)] [A2 cos(2 fat + ¢2)]

A12A2 005(27T(f1 — f2)t+¢1 — ¢>2) + A12A2 COS(QW(ﬁ + fo)t + é1 + ¢>2).

So the result of multiplying two sinusoidal signals correspondssionaof two sinusoidal signals.
For this and other reasons, we focus almost entirely on sums of sinusoidal signals for the rest of the course!

Before we consider sums, we again ask, why should we care?
One example would be audio recording of a tuning fork from across a room in the presence of a reflection:

y(t) = apz(t — to) + arx(t — t1).

(Picture)

The question to be answered is: will the recorded signal be a sinusoid, or will it be some other shape?
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Sums of sinusoidal signals of theamefrequency
Case 1. Same frequensgme phasdifferent amplitudes.

Ajq cos(2m fot + @) + Ag cos(27 fot + @) = (A1 + Az) cos(27 fot + ).
This case only requires arithmetic.

Case 2. Same frequendjfferentphasessameamplitudes.
To solve this case, we need to use tricks from trigopnometry, using the identity (2-2) above.

Acos(2m fot + ¢1) + Acos(2m fot + ¢o)

_ 1 P1td2 p2—¢1\ 1 P1+¢2  P2—
= 24 5 cos(2ﬂf0t+ 5 5 ) + 5 cos(2ﬂf0t+ 5 + 5 )
— —
a B a B
= 2Acos<m> cos(27rf0t+ P12 )
2 2
——
new amplituded’ new phase

So if we have same phase but different amplitudes or same amplitude but different phases, as long as the frequency is the same w
end up with a new sinusoid of some different amplitude and phase (but same frequency).

Special cases
e 91 = ¢ = A’ =2A which s calledconstructive interference
e ¢1 = ¢o =7 = A’ = 0 which is calleddestructive interference

Example

What if the phaseandthe amplitudes are different? Remarkably, we still end up with a new sinusoid of some different amplitude
and phase (but same frequency).

Case 3. Same frequendyfferentphasesdifferentamplitudes.

Amazing fact:
Aj cos(2m fot + ¢1) + Az cos(27 fot + ¢2) = A cos(27 fot + &)
for some amplitudel and some phasg

In words: adding together two (or more!) in sinusoidal sigrdlthe same frequengyelds a sinusoidal signal of that frequency
with some amplitude and phase.

How do we find A and ¢?

Hard way: trial and error trigonometry. It can be much messier than what we did in Case 2!
Systematic way: using complex phasors.

Example Simplify the following sum of sinusoidal signals:
2 cos(27 fot + m/4) + 2v/2 cos(2m fot — 7/2).

Solving this by trigonometry would be painful!
Solution using phasors:

27/ + 2262 = V24 V2 - 2V2) = V2 — )2 =277/ = Ae??
So we concludel = 2 and¢ = —7/4. Thus
2cos(2m fot +7/4) + 2V/2 cos(27 fot — m/2) = 2 cos(27 fot — 7/4).
To solve this example problem we usemplex numbers This problem illustrates one of several uses we will have for complex

numbers in this course, so at this point we temporarily digress from signals to review complex numbers. After the review we will
return to the study of sums of sinusoidal signals of the same frequency.

(The next chapter discusses sums of sinusoidal signals with different frequencies.)
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Complex numbers

The first question one might ask is “why were complex numbers invented?”

One answer would be: to resolve a problem in algebra: finding the roots of a polynomial. If we limited ourselves to real numbers,
then different polynomials of the same order would have different numbers of roots. By allowing consideration of complex
numbers, all polynomials of degré¢ have roots, some of which may be complex. This fact is so important that it is called the
fundamental theorem of algebra

Example Consider the innocent looking polynomial? + 1. What are its roots? To find the roots, we equate the polynomial to
zero and solvez? 4+ 1 = 0, soz? = —1. No real number satisfies this equality, but if we define the follovinnaginary number:

J =V _17
then there are two roots: = £, which is consistent with the fact that this is a second-degree polynomial.
One might say thatwas “invented” so that the fundamental theorem of algebra wadvkist degree polynomial hak/ roots.

(We usgyrather than for complex numbers sincetraditionally denotes electrical current in EE texts.)

Arithmetic

Cartesian form:
z==xz+ )y =Re{z} + yIm{z}.

The set of alcomplex numbersis denotedC, and is often visualized using tltemplex plane
Im

Fundamental operations (fer = x; + jy1 andzs = x5 + Jy2):
e Equality:
21 = 29 iff T = T andy1 = Y2
e Addition (Picture)
21+ 2z = (214 9y1) + (T2 +3y2) = (21 +22) + 7 (Y1 + ¥2)
e Scaling by a real number
cz=c(x+jyy)=cr+jcy (Picture)

e Multiplication

z1 22 = (x1+3y1) - (x2 + 3y2) = T122 + JT1Y2 + J Y122 — Y1Y2 = (x122 — Y1y2) + 7 (T1Y2 + T2y1)
——

sincey® = —1
e The usual properties of arithmetic apply: commutative, associative, distributive.

Complexconjugate (Picture)
2=z —gy

Thereal part andimaginary part:
z+z* z—z"

Re{z} = 5 Im{z} = 5

Themagnitude:

|2l = Va? +y°

Thesquared magnitude
|Z|2 —_ ZZ* —_ 1‘2 +y2
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Division (complex conjugate of denominator simplifies this to a multiplication problem)

2 zmz 2z Tt gy T2y (3% +yiye) 9 (Tays — Taye) (xlxz +y1y2> (w)
2 27 | mtiye T -y ¥3 + 5 '

3+ 3 x3 +y3

Example Find z; /z; whenz; = —8 — 78v/3 andzy = 4 — 741/3.

21 —8—38vV3  (-8-38V3)(4+4V3) p32+3z3)+]@32—3mv§)_1_ V3
2 4—34V3 42 1 (44/3)2 64 A

Polar form

The multiplication and division operations look pretty messy. Is there an easier way? Yegsbldstorm :

z=x+ 3y =rs0, r=|z|=vaZ+y? >0, 0 = arctan(y/x).

Obviouslyr is themagnitude. And we calld theangle

y=rsind

r=rcosf Re

The expressioarctan(y/x) must be interpreted carefully! A better expression wouldiegan(y, ) since the result depends not
just on the ratio, but also on theignsof the real and imaginary parts of In fact, MATLAB has a commandtan2 that has two
arguments precisely for this reason.

When we write “arctan” we mean “arctan but possibly wittadded or subtracted” so that the result is a value in the range
—7 < 0 < 7, depending on the signs efandy. The following diagram illustrates.

A
Im

0 = arctan(y/x) + | 6 = arctan(y/x)

2<0< <6< 7/2
m2sfsw 056/ arctan(y/x), x>0
arctan(y/z) +m, x<0,y>0

arctan(y/z) —m, <0, y<0

Re /2, z=0,y>0
—7/2, z=0,y<0
0 = arctan(y/z) — w| 6 = arctan(y/z) 0 (irrelevant) r=0,y=0

—r<6< —7/2: —m/2<6<0

Be careful when using your calculator’s arctan function!

Example Convertz = —2 — 32 to polar form.
r=|z| = /(=2)2 + (-2)2 = 2v/2 andf = arctan(—2/—2) = /4 — © = —37/4, becauserctan(1) = /4.
Soz = 2v/2e7737/%_ (Picture) .

Operations in polar form (wherg = r1£60; andze = ro£65).
° Multiplication 2129 = (7‘17“2)4(91 + 92)

e Division 21/2’2 = (7’1/7“2)4((91 — 92)

* Reciprocall /z = /-0
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Exponential form

2.10

Even more convenient: usxponential form: z = re’?.
So now we need to interpret the exponential function for complex arguments!
Important properties of the exponential function that we should maintain:
0
ec’ =1

° ea-i—b — eaeb

o (e*)" =e"*forn e Z
et =1+42z+22/21423/31 4.

The following law gives the unique definition that satisfies these properties:
Eulers law:e’? = cosf + j sin 6.
Example e’™ = cos7 + 7 sinm = —1. This equality is very important! Alsa™?" = —1.

More generallye®t7¢ = e®e?? = e*(cos @ + 5 sinf) fora, 0 € R

Relationships between the three forms:

z=x+)y=rL0 = (rcosf) + 7 (rsinf) =r (cosd + 7 sinf) = re’?

The following figure summarizes the “most important angles” around the unit circle and their sin and cos values.

Visualizinge’? using the unit circle

'\

Im (complex plane)
el JT/2 =3
0=m/2
0 =2m/3 < 0=m/3
0 = 3r/4 72 0=n/4
o N N2
0 =57/6 R S AN 0=m/6
2

\ ¢ 6=0

cosf = Re{eje}

V2/2 ~0.707 sinf = Im{e’?}
V3/2 ~ 0.866 e?? =cosh+ sinﬂ‘
Inverse Euler identities
e 4 e=20 e?0 — =20
cos = ——— sin = ——

2 ’ 27
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Operations in complex exponential form (whege= e’ andz, = rpe?%2):
e Multiplication z;zy = (r17)e’ (“1192) (Picture?)
e Division .
J
AL_ T T (61-62)

2o roelf2

e Reciprocall /z = Le™7¢

e Power (to an integet € Z): 2" = r"e?™

e Conjugatez* = re=7?

e Magnitude|z| = |re??| = |r||e??| = r| cos§ + j sinf| = r(cos § + sin? @) = r
In particular|e’?| = 1 for any6 € R.

Example Simplify 21/3e?™/6 4 2¢=77/3,

Since we need addition, we must convert to rectangular coordinates:

2V/3e?™/6 £ 2e79™/3 = 2/3[cos(m/6) + j sin(/6)] + 2[cos(7/3) + j sin(—7/3)]
= 2\/§[¢§/2+]1/2]+2[1/2+J_T‘/§] =[B+V3+[1-7V3] =4

This is exactly the type of manipulations we need for adding sinusoids of the same frequency.
Example Findz;/z, whenz; = 16e=727/3 andzy = 4 — 344/3.
¢ Cartesian solution desired
21 = 16e77%27/3 = 16(—1/2 — 7V/3/2) = -8 — 38/3
21 —8—78V3 (-8—78V3)(4+74v3) (—32432-3)+;(-32-32)y3) -3

2 4—4V3 42 4 (44/3)2 64
e Polar solution desired

2o =4 — 343 =142 142 . 3e7I7/3 =8 I™/3

A1 M — 9¢—I7/3

29 8e—17/3

Sanity check2e™7™/3 = 2[cos(—7/3) + 3 sin(—7/3)] = 2[1/2 — 7V/3/2] = 1 — 7/3, so the two answers indeed agree.

Complex roots

The roots of the polynomial®> + 1 = 0 arez = +3 = ++/—1. This is a second-degree polynomial so it has two roots.
One might say that was “invented” so that theindamental theorem of algebraworks: annth degree polynomial hasroots.

What are the roots of the polynomial + 8 = 07? It is a third-degree polynomial so it has three roots.
An equivalent question would be: determines)!/?.

Do we need to invent & —1 to solve this problem? Fortunately, no!

Strategy: solve® = —8 by using polar formz = re’?.

Sorde’d? = —8 = 8e7.

Equating themagnitudeswe see that® = 8 and sincer is real, we have = 2. That's the easy part.
Fact: ife’? = ¢’7, theng = v + k27 for some integek:.

Equating thephaseswe see30 = 7 + k27 s00 = % + k%” Picture

Choosing three consecutive integérs: —1,0, 1, we haved € {£n/3, 7}

So the roots are = 2¢/™ = —2 andz = 2exp(£y7/3) = 1 + 7/3.

Caution: MATLAB’'s (-8)7(1/3) only gives one of the three possible values!

Caution:‘ ()" = e whenn € Z ‘(integers). But (e9)/" = e (0/n+k27/n) for | € 7 andn € N.

More practice

Use thezdrill ~ mfile in DSP First toolbox for practice!



© J. Fessler, June 9, 2003, 12:47 (student version) 2.12

Sums of sinusoidal signal®f same frequency (This is a primary motivation for complex numbers!)

Example Find theamplitude A and thephase¢ of the following sum-of-sinusoids signal:

y(t) = 2 cos(5t + m/4) + 2v/2sin(5¢) ZA cos(5t + ¢).

Note that theéfrequency remains unchanged!

Most important formula cos() = Re{e’?} . |S0 A cos(2r fot + ¢) = Re{Ae? @mfot+#)}  Also recall thasin§ = cos( — %) .

y(t) = 2cos(bt+m/4)+ 2v/2 cos(5t — 7/2)
= Re{QeJ (Bt+m/4) 4 9,/9e) (5t*7f/2)}

= Re{ [ 2e77/% 4 2v/2e777/2| 25t note how the frequency ters® factors out!
phasorl  phasor2

= Re{ [2(\/5/2 +1v2/2) + 2\/5(—])} ert}
= Re{[ﬁ—]\/ﬂ eJ‘r’t}

= Re{2e9™/*e15t § — Re{?ej (5””/4)} = 2cos(5t — m/4)
phasor

The complex values first appear in polar form, yet we must add them so cartesian form is more convenient. Then the final form
requires polar form again.

This example was “cooked” for chalkboard use without a calculator.
In practice, these problems are solved easily using any scientific calculator that handles complex numbers in polar form.
You need such a calculator for the exams!

General rule for summing sinusoidal signals of the same frequency:

y(t) = Z Ay, cos(2m fot + ¢r) = Acos(2m fot + ¢), where| Ae?? = Z Ape? Pk,
k k

Note that all that really enters into the calculation is the sum of the terms of thedgeff*. These terms are callgghasors
particularly in the context of electrical circuits. This representation simplifies calculations with resistors, capacitors, and inductors
(RLC circuits) since one can solve many problems (for sinusoidal signals) using the phasors and the (complex) impedance of eact
circuit element.

Summary: the key step in this approach was writing
z(t) = Acos(2m fot + ¢) = Re{AeJ(2”f°t+¢)} )

A (complex) signal of the formi(t) = Ae’ ?37fot+¢) js called acomplex exponential signal
Another name for it is aotating phasor.

What about a signal of the form z(t) = exp(—2¢)? This is an ordinargxponential signal it is not “complex.”

Representinginusoidal signalsas the real part ofomplex exponential signalsallows us toadd such signals “easily” using
complex arithmetic rather thartrigonometry .
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Relationship between sinusoidal signals and complex exponential signals
¢ Viewpoint 1:

x(t) = Acos(27 fot + @) = Re{AeJ (2”f0t+¢)} = Re{ (Ae??) 22"t} where(Ae’?) is thephasor .
e Viewpoint 2:

A
a(t) = Acos(2nfot + ¢) = e Brhottd) 4 —ems(@mfotto)

b1 = o |

(Aej <1>) el 27 fot + % (Aefm) e 27 fot

Note that the phasor and its complex conjugate appear!
So a sinusoidal signal is the sum of tnaiating phasors.
Why? Because oinverse Euleridentity: cos§ = 7% + 2e77¢.

Note that there is aegative frequencyfor the second complex exponential.

This corresponds tomtating phasor that hasclockwiserotation in the complex plane.

We need the combination of the two rotating phasors having opposite directions of rotation so that when added together, the
imaginary parts cancel out and we are left with the real part which is the cosine part.

We never need a negative frequency for sinusoidal signals, only for complex exponential signals.

Plotting complex exponential signals

There are three ways to plot a complex exponential signal.

T(t) = Ae? BTt — Acos(27 fot 4 ¢) + 7 Asin(27 fot + ¢) = Re{Z(t)} + 3 Im{Z(t)} .

1. Separate plots of real and imaginary parts
(Picture) of two sinusoids

2. Plotin complex plane@tating phasor)
o magnituddz(t)| = A
o angleZz(t) = 2mw fot + ¢

(Picture) of counter-clockwise rotation (for positivg)

3. 3D plot: real and imaginary vs tin{@icture) of helix
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Complex signals

We began the course defining simple signal characteristics and simple signal operations. Those definitionseetsdioals
although many apply toomplex signalstoo.

A complex signal has eeal part and animaginary part as follows:
z2(t) = (t) + gy(t) .
Most signal characteristics are easy generalizations of those defined for real signals and are described at end of Part 1 lecture note

Example Mean of complex signal.

M(z) = — l/zz@)dt L (/2MU)+jy@ﬂdt

to—t1 )y, ot —t1 )y,

S /ﬂmﬂﬁh+3 ! ‘/2Mﬂd#:M@ﬂ+jM@y

to — 11 t1 to — 11 t1

An important difference is that for complex signal properties, anywhere we hajtizeed valuez?(t) before, we replace it with
themagnitude squared|z(t) |2 = z(t) 2*(t) = 22(t) + v%(t) .

t2
Example Theenergyof a complex signat(t) is| E(z) = / |z(t) |2 dt.
t1

Another related difference is that we define correlation for complex signals as follows:
to
0@¢g=/ S (1) Z(1) dt.
t1
One reason for this choice is that it satisfi&s) = C(z, 2).

Example Find the correlation between (t) = e~ 277t47/3) andzy(t) = e’ (2721t=7/4) gver the intervalo, 1/7].

1/7 1/7
C(z1,22) = / z1(t) z5(t) dt = / e (2rTttT/3) o=y (2m20t—m/4) gy
0 0
1/7 1/7
= e I7/12 / e I2mB gf — /12 / [cos(2728t) + 7 sin(2728¢t)] dt = 0,
0 0

since the integral is over 4 periods of the sinusoids.

(More generally, sucharmonically-related complex exponential signals are uncorrelated.)

Thesignal operationslike time scaling, time shift, etc. all apply to both the real part and the imaginary part.
Similar considerations fatiscrete-timesignals.

e’%te™2  t>0
0, otherwise.

E(z) = / V@FM:/ W“ﬁaﬂfm:/ e dr =1,
0 0 0 4

Note that the frequency (5 rad/s) had no effect on the energy!

Example Find the energy of the signal(t) = {
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Beat frequencieqCh. 3.2)
Are complex exponential signals useful for summing sinusoidal signals with different frequencies? Sometimes!
Ch. 3 onspectrais all about sinusoids of different frequencies!

Example Sum of two “nearly same” frequencies. (Same amplitude for simplicity, not necessity.)
x(t) = Acos(27 fit) + A cos(27 fat)
where|f2 — f1| is “small.”
Define the center frequengy= 142 andA = f, — f = f — fi for fo > fi.
(Picture) .
This type ofz(t) has a notable auditory property. Can we describe it mathematically?
x(t) = Re{Aeﬂﬂflt + Ae’ Q’szt}

— ARe{ej%r(ffA)t + e]27r(f+A)t}

_ ARe{eJ 21 ft (e—j 2wAL | eﬂwm)}

= ARe{eJ 2mfty cos(27rAt)}

= 24 cos(ZWAt)Re{ej 27rft} = 2A cos(2wAt) cos (27 ft).

No need to remember and use and trigonometry identities. Using complex exponential signals provides a systematic approach.

Alternatively, remembering thabs(a) cos(8) = 3 cos(a + ) + 3 cos(a — 3) we have

1 - 1 _

z(t) = 24 [5 cos(2m(f + A)t) + 3 cos(2m(f — A)t)
e omft+ 2mAL | + » cos(2nft — 2mAL
= 5 cos wft+ 7; +§cos( wft — 2w )
= 2Acos(2rAt) cos(2n ft) .

If A < f,then we have the product of a slowly changing sinusoidal signal times a higher frequency sinusoidal signal.
(Picture) of signals and their product.
Demo of closely spaced case and harmonically-related case.

Also try summing square wave and triangular wave.
Why similar? Sum of sinusoids!

Sinusoids? Enough already!
Yes, the real world has many signals that are far more interesting than sinusoidal signals.

Joseph Fourier showed in 1807 that most any signal can be expressed as the sum of (a lot of) sinusoidal signals (not of the sam
frequency though!), simply by carefully choosing the frequencies, amplitudes, and phases.

“Joe” did it almost 200 years ago without calculators oxMAB ...



