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Part 3d: Spectra of Discrete-Time Signals

Outline
A. Definition of spectrum for discrete-time signals
B. Periodicity of discrete-time sinusoids
and complex exponential signals

C. Spectra of signals that asems of sinusoids
D. Spectra operiodic signals

o DFT (discrete Fourier transform)

o analysis / synthesis / properties
E. Spectra o6egments of signandaperiodic signals
F. Relationship between:

o spectrum of a continuous-time signal

o and spectrum of its samples
G. Bandwidth

Reading

e “Part 3d” lecture notes

e Text4.1.1

e Do not read Chapter 9!

o Wakefield Fourier series & DFT “quick primer”
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Introduction

Principal questions to be addressed:
e What, in a general sense, is the “spectrum” of a discrete-time signal?
e How does one assess the spectrum of a discrete-time signal?

Notes:

e As with continuous-time spectra, discrete-time spectra have two important roles:

e Analysis and design. Spectra are theoretical tools that enable one to understand, analyze, and design signals and systems.
e System component. The computation and manipulation of spectra is a component of many important systems.

e The motivation for studying the spectra of continuous-time signals was emphasized in the previous part of the course. A primary
reason for our interest in the spectra of discrete-time signals is that when a discrete-time [sigigaformed by sampling a
continuous-time signat(t), the spectrum of[n| has a close relationship to the spectrum of the continuous-time sigral

e |t is important to stress the similarity of the spectral concept for discrete-time signals to that for continuous-time signals.

Text Material

These lecture notes are intended to serve as text material for this section of the course. Though there is some discussion in Chapt
9 about the spectrum of discrete-time signals, it is not required or recommended reading. It does not give a general introductior
to the concept of spectrum, and it introduces the DFT via a frequency-bank approach, which is very different than the Chapter 3
approach to Fourier series and to our approach to the DFT. Moreover, the DFT formulas in Chapter 9 differ by a scale factor from
those that we use here and in the laboratory assignments.

These lectures introduce the concept for spectra of discrete-time signals with an “as similar as possible to continuous-time spectra
approach.
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A. Rough definition of spectrum and motivation for studying spectra

A.1l. Introduction to the concept of “spectrum”

This introduction parallels the introduction to spectrum for continuous-time signals.

Definition
Roughly speaking, the “spectrum” of a discrete-time signal is a representation of the signal as a sum of discrete-time complex
exponentials.

(Note that for brevity we have jumped right to complex exponentials, rather than first indicating that we are interested in how
signals are composed of sinusoids and subsequently splitting each sinusoid into two complex exponentials.)

e The spectrum describes the frequencies, amplitudes and phases of the discrete-time complex exponentials that combine to crea

the signal.

e The individual complex exponentials that sum to give the signal are catleghlex exponential components

e The spectrum describes the distribution of amplitude and phase versus frequency of the complex exponential components.

e For real signals, pairs of exponentials sum to form sinusoids.

e Sinusoidal and complex exponential components are also cgikxtral components

Plotting the spectra

We like to plot and visualize spectra. We plot lines at the frequencies of the exponential components. The height of the line is the
magnitude of the component. We label the line with the complex amplitude of the compemggntjth 2¢7 /4.

Alternatively, sometimes we make two line plots, one showingrgnitudeof each component and the other showing gatse
These are called theagnitude spectrumandphase spectrum respectively.

Representations

Again we have three representations.

e Formula

e List of (frequency, complex amplitude) pairs
e Plot

A.2. Why are we interested in the spectra of discrete-time signals?

We are interested in the spectra of discrete-time signals for all the reasons that we are interested in the spectra of continuous-tim
signals. Presumably this does not require further discussion. However, the importance of spectra will be implicitly emphasized by
the continued discussion and by continued examples of its application.

A.3. How does one assess the spectrum of a given signal?

As with continuous-time signals ...
e There is no single answare., there is no universal spectral concept in wide use.
e The answer/answers do not fit into one course. We begin to address this question in EECS 206. The answer continues in EEC
306 and beyond.
¢ We use different methods to assess the spectrum of different types of signals.
Specifically, in this section of the course, we will discuss
e The spectrum of a sum of sinusoids (with supgerto, c0)).
e The spectrum of periodic signals (with supp@rtoo, 00)) via thediscrete-time Fourier series which will be called the
Discrete Fourier Transform (DFT).
e The spectrum of a segment of a signal via the DFT, which leads to the following.
e The spectrum of aperiodic signals (not periodic) with finite support.
e The spectrum of aperiodic signals with infinite support via the DFT applied to successive segments.
e The relationship of the spectrum of a continuous-time signal to the spectrum of its samples.
e We won't discuss
e The spectrum of a signal with infinite support and finite energy vialtberete-time Fourier transform (theDTFT, which
is not the same as the DFT). This topic is discussed in EECS 451 and possibly in EECS 306.
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B. Periodicity of discrete-time sinusoids and complex exponentials

Before discussing spectra of discrete-time signals in detail, we need to analyze the periodicity of discrete-time sinusoids and
complex exponentials. There are a few wrinkles in discrete time that do not happen in continuous time.

B.1 Discrete-time sinusoids

The general discrete-time sinusoid is
z[n] = Acos(on + ¢),

wheren is an integer—oo < n < oo.
e Ais theamplitude.
For standard form we usé > 0 and usually4d > 0.
e ¢ is thephase
As with continuous-time signals, phagand phase + 27 are equivalent in the sense that

Acos(wn + ¢) = Acos(wn + m + 27), Vn € Z.

So for standard form we user < ¢ < 7.
e o is thefrequency, sometimes called thaigital frequency. The units ofv areradians per sample
One could also write the sinusoid 38:05(27Tfn + 9), wheref is a frequency irtycles per sample
However, the radians-per-sample units are quite prevalent in digital signal processing, so we focus on that choice here.
Each increment in time increasesn by & radians.
Itis generally assumed that> 0 when describing discrete-time sinusoidal signals.

Key differences between discrete-time sinusoids and continuous-time sinusoids, forthcoming.
¢ In discrete-time, some sinusoids are not periodic!

¢ In discrete-time, there are “equivalent” frequencies.

¢ In discrete-timeyw is not necessarily the fundamental frequency of the sinusoid!

Example
As a prelude to subsequent analyses, let us attempt to examine the spectrum of the signal

™ ™
=243 (— —) .
z[n] + 3cos A" + -
Following the continuous-time approach, we first decompose each sinusoidal signal into a sum of two complex exponential signals:
zn] =2+ ;e”ﬁej%” + §e‘”ﬁe_J%”.

A natural definition of the spectrum is the following set of (complex amplitude, frequency) pairs:

3 s 3 s
2e—am/T _ L 9 gn/7 T
{(26 ) 4>7 (270)7 <26 74>}7

?pectrum ofc[n]
]7r/7 ejﬂ'/7

—TT —

which we visualize as follows.

INH
N

What aboutz[n] = 2 + 3 cos(Zn + Z)?
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The preceding example is simple enough, but now consider plotting the spectrum of the continuous-time signal

1 7 1 m
=2+ 2n—t+ — | + 2n—t — — ).
x(t) cos( 5t 4) cos( 5t 4)

This signal has two terms with the same frequency so those two terms muasnii@ned(using phasors) before plotting the
spectrumz(t) = 2 + \/icos(27r%t) . Here it is “easy” to see which terms must be combin@icture)
In discrete time, there can be many sinusoids with having equivalent frequencies that must be combined before plotting a spectrum

Periodicity of discrete-time sinusoids

Fact B1
The discrete-time sinusoidal signdkos(wn + ¢) is periodic if and only if % is a rational number.,e., if and only if we can write
thefrequency @ in the formo = 22 M /N whereM andN are integers.

If the rational numbe//N is reduced so that the numerator and denominator have no common factors (except unity), then the
fundamental period is the denominatolN of the rational number.

In contrast, recall that for continuous-time signalgerysinusoid is periodic, and tHfandamental period is simply the reciprocal
of the frequency in Hz, and the frequency of a sinusoid is also its fundamental frequency.

Derivation
Recall the definition of periodicity:

A signalz[n] is N-periodic if and only if
z[n + N] = z[n], Vn € Z.
Thefundamental period Ny is the smallest such period.
Let us apply the definition to see when a discrete-time sinusoid is periodic. We want to know when thek¥esaanthat
Acos(w(n + N) + ¢) = Acos(wn + ¢), Vn € Z.
SinceA cos(&(n + N) + ¢) = Acos(wn + &N + ¢), we see that the above equality holds when and only wign= M - 27,
for some intege, or equivalently, when and only when= Qw%. In other wordsgw must be2r times a rational number.

Let us now find the fundamental period Afcos(wn + ¢). If the sinusoid is periodic, thef = 277% for some integer# andL.
In this case, the sinusoid is periodic with perivd= L or 2L or 3L or .. ., because for any such value 8f o N = Qw%N is an
integer multiple of2x.

What is the smallest period? If we eliminate any common factods ahd L, we can writev = 27rIL<—,', whereK’ andL’ have no
common factors except unity (1). By the same argument as befaxa,(on + ¢) is periodic with period.’. This is the smallest
possible period, so it is the fundamental period.

Example
(a) A cos(2min) is periodic with fundamental perially = 2. The frequency of this signal is =  radians per sample.
(b) A cos(2w2n) is periodic with fundamental perialy = 5. The frequency of this sinusoidds= 272 = Sr.

Notice that (b) has higher frequency than (a), yet (b) also has a longer fundamental period than (a).
This could not happen with continuous-time signals!

(©) Acos(zwgn) is periodic fundamental perialy = 5. The frequency of this sinusoid ds = 27r§ =

oo
3

Note that (b) and (c) have different frequencies, but the same fundamental period.
This could not happen with continuous-time signals!

(d) Acos(2n + 7/2) is not periodic because = 271 is not27 times a rational number.

T

(e) A cos(1.6mn) is periodic with fundamental periolly = 5, becausé = 1.6m = 27(0.8) = 273.
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Equivalent frequencies

3d.6

Recall that phase and phase + 27 are “equivalent” in the sense that the following signals are equal:
Acos(@wn + ¢) = Acos(wn + ¢ + 27), Vn € Z.

As we now demonstrate, in the case of discrete-time sinusoids, there are also eqfraalmmicies

Fact B2

Frequency and frequency + 27 are “equivalent” in the sense that the following signals are equal:
Acos((@ + 2m)n + ¢) = Acos(wn + 2mn + ¢) = Acos(on + @), Vn € Z.

This is another phenomena that is different for discrete time than for continuous time.

(The above derivation will not work if you try to replaeec Z with ¢ € R.)

Because of these equivalences, we usually limit attentiontav < 27 for sinusoidal signals.

Example The signals:os(£7mn + %) andcos(%&mn + %) areidenticalbecauset  and - areequivalent frequencies

_——= 5
Explanation:

11 +7r 1 n 10 +7r 9 1 P +7r 9 1 +7r
COS| —TnNn — = COS —= — n — = COS -Nn n — = COS -Nn — .
50 T3 57 T 3 ™5 ™mTy TE T3

Example The signalsos(£mn + %) andcos(2rn — %) areidenticalbecause-im and2r areequivalent frequencies
Explanation:

9 T\ 9 9 T\ 9 9 T\ 1 T\ 1 +7r Vn € 7
cos 57TTL 3 = cos 57TTL ™ 3 = cos 57‘[‘ T|n 3 = cos 57TTL 3 = cos 57Tn 5 ) n .

The following figure illustrates the difference between the continuous-time case and the discrete-time case.

xl(t) = cos(1/5* + 173) xl[n] = cos(1/5*n + T/3)

1 1
0.5 0.50 { L
,
0 0 ° J J

-0.5 -05

0 2 4 6 8 10 0 2 4 6 8 10

xz(t) = cos(11*v5*t + 173) xz[n] = cos(11*1v5*n + 1Y3)

0 2 4 6 8 10 0 2 4 6 8 10

xs(t) = cos(9*1Y5*t — Tv3) xa[n] = cos(9*1v5*n - 1U3)
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B.2 Complex exponentials

The general discrete-time complex exponential is
Al PeIen,
e Aisthe amplitude. We usé > 0.

e ¢ is the phase.
Phasep and phase + 27 are equivalent in the sense that

Ae? (92 010m _ fo1012T g 0n _ Aol Poion

Sowe use-7 < ¢ < 7. )
e & is the frequency. Its units are radians per sample. One could also write the exponeatigta$™™ wheref is frequency
in cycles per sample.
We alloww to be positive or negative. This is because we like to think of a cosine as being the sum of complex exponentials
having positive and negative frequencies.

1 - 1 .
Acos(wn + ¢) = §AeJ b §Aeﬂ bPo—a0m

Periodicity of discrete-time complex exponentials

Below, we list the periodicity properties of discrete-time exponentials. They are the same as discussed previously for discrete-time
sinusoids.

Fact B3
Ae?%e7“™ is periodic when and only whehis 27 times a rational number.

If & =27M/N whereM andN are integers having no common divisors, then the fundamental periéd is

Fact B4
Frequency and frequency + 27 are equivalent in the sense that

Aed Pl (@2mn _ fo1de10m12T _ Aol Peion

Discussion.

What do we make of the surprising fact that frequeb@nd frequency + 27 are equivalent? We conclude that when we consider
discrete-time sinusoids or complex exponentials, we can restrict frequencies to an interval &myiltite any other frequencies
outside this interval will be redundant.

e Sometimes people restrict attentionfter, 7) or (—m, ] or perhaps—, 7].

e Sometimes people restrict attention@o27).

e We'll do a bit of both.

C. The spectrum of a finite sum of discrete-time sinusoids

Our discussion of how to assess a spectrum parallels the discussion for continuous-time sinusoids. We begin by considering signal
that are finite sums of sinusoids. However, because of the possibility of equivalent frequencies, there are a couple of key difference:
in how discrete-time and continuous-time spectra are assessed.
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C.1. Example

A discrete-time signal that is a finite sum of sinusoids:

1 4
z[n] =3+ QCos(gwn + g) + 5003(§7m> + 2cos(§7m — g) :

As in the continuous-time approach, we exprelsg as a sum of complex exponentials:

L 1 5 .4 5
a:[n] = 34+ <ej7r/3ejg7m+e—Jw/3€—jgwn> + (iejgﬂn_i_ie—J%ﬂn)

+ <e—j7r/3ej%7rn _|_ej7T/3e—jg7T’l”L> '

It would now seem natural to identify the spectrum as the following set of complex ampli-
tude and frequency pairs:

e”/g,—gw : §,—é7r : e_”/g,—lw , (3,0), e”/?’,lw : §,%7r AT
5 23 5 5) 2°3

and to draw the spectrum as follows.

_ Spectrum ofc[n]??
5 3 5
eI ™/3 ] e IT/3) o17/3 ] eIT/3
l T I l I I >
—%7‘1’ —%7‘1’ —T —%71’0 %7‘(’ 7 %7‘(’ %71’ w

However, some of these exponentials have equivalent frequencies, so the above plot i
misleading! Specifically,

o Frequencie&%w andgw are equivalent because they differ dwy (or a multiple of2).

o Frequenciesr%r and%w, are equivalent for the same reason.

e Frequency;w is equivalent to-37, and—3 is equivalent tai.

We combine all exponentials having equivalent frequencies (using phasor addition) into
a single exponential component. In doing so, we get to choose which of the equivalent
frequencies the resulting exponential component will have.

There are two possible conventions:

e Two-sided spectra. Exponential components have frequencies in the irtervai.

e One-sided spectra. Exponential components have frequencies in the iffie2wal

Choosing between these two conventions is mainly a matter of taste.
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One-sided case

For the one-sided convention, we rewrite all of the complex exponentials in terms of equiv-
alent frequencies that are in the inter{@l27) and then combine phasors as follows:

1 s 4 9 T
= 2 - z = 9 Ton — =
x[n] 3+ cos(Bwn—l— 3> —1—5008(37m> + COS(57Tn 3)

=8 <ejﬂ/3ejém + e_”/?’e”%wn) + (33]%”” + §e_ngn>
2 2

+ <e—]7r/3€]%7m +e]7r/3e—]%7m>

5) 5)
= 3+ (e]ﬂ/?)e]%ﬂn + e—]w/?) e]%wn) + (iejgﬂn + 56] %wn)

—y7/3_ 921N gm/3 ]lﬂn)
(& e’s (& e’s
+ ( +

1 5 5
o (gt st + Qi Juin).
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Repeating:

x[n] =3+ (26377/36]%#71 + 26—377/363%7m> + (geJ%ﬂn 4 gej%m>

In terms of a list, we would write the one-sided spectrumaf as follows ¢f. MP3):
1 5 2 5 4 9
{(37 0)7 (2€]7r/3, 57‘-) ) (57 §7T> ) (57 §7T> 3 (Ze_Jﬂ/Sa gﬂ') } .

We draw the one-sided spectrum as follows.

+ One-sided spectrum afin|
3 5 5
erw/?) ] ] 26—377/3
1‘ 2 4 9 | A‘
0 =T 3T T 3T ET2m w

Alternatively, the one-sidethagnitude spectrumandphase spectrumare shown below.

One-sided magnitude spectrumagh|

3
1
0

%7‘(’ %71’ s %7‘(’ %71’ 2T w
' One-sided phase spectrumadfi]
T
/31 |
1 2 1 d 5 o
—7/3 =T ST s ST ST 2T w
—TT 1
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Two-sided case

For the two-sided convention, we rewrite all of the complex exponentials in terms of the
equivalent frequencies that are in the interfvat, 7] and then combine phasors as follows:

+ <e—]7r/3eJ%7Tn + e]7T/3e—]%7m>

5 o}

—7)3 —gimn /3 ]lwn)
(& € ’5 (& e’ 5
+ ( \,_/—{_ N~

1 1 o} o}
- o1 (e e ¢ (i o).

In terms of a list, we express tiwo-sided spectrumas follows:

2 1 1 5 2
(G5 (e o (om5m). (50)

We draw the two-sided spectrum as follows.

_ Two-sided spectrum af[n]
5 3 5
] 26973 | 209773 ]
\ | l —
—T —%7‘1’ —%7‘(’ 0 %71’ %71’ s w

Alternatively, we could draw the the magnitude spectrum and the phase spectrum.

Compare the one-sided and two-sided spectra above to see where the spectra lines go!
e One-sided spectra correspond naturally to the DFT.
e Two-sided spectra correspond naturally to the continuous-time case.
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C.2. Spectrum of a general sum of discrete-time sinusoids
More generally, consider a signal of the form
Nl
z[n] = Ao+ Z Ay cos(@rn + dr)
k=1
= Ao+ Ajcos(@in+ ¢1) + -+ Ans cos(Onmn + o),

whereN’, Ao, Ai,..., AN, @1,..., 0N, ¢1,...,dnN, are parameters that specifin]. We now rewrite this in several ways. First,
using Euler’s formula, we rewrite[n] as
N/
:z:[n] =Xo+ Z Re{XkeJ(Dkn}
k=1
where the phasor corresponding4@ cos(@in + ¢x) IS
Xk = AkeJ Pk .

(X is a complex number.)

Second, using the inverse Euler formula, we rewrite this as
Yo 1
z[n] = Xo + kz_:l {anerw + §X]:e—1wkn

To simplify this, we write it as follows:

NI
.’17[71]: Z ﬂke*ﬂ:}kn
k=—N'

where )
_ _ | 55Xk, k=1,...,N’
ﬁO—XO—A07 ﬁk_{ gX]:7 k:—l,...,—N,.
Finally, as needed we combine terms with equivalent frequencies, to obtain
N
x[n] = Z ape IR
k=—N

where{&;} is a set of frequencies with values between andr, anday, is the phasor that is the sum of the appropriats
corresponding to frequencies that are equivaleifto

= > Bj-

j:@j=0r+m2m, meZ
Note that
a_p =og, la—| = |ogl, Lo_ = —Lag.
We now use this expression to make the following definition.
Definition. The spectrum of a sum of sinusoids.

Thetwo-sided spectrumis

{la-n,&-n), ..., (@-1,0-1), (@0,0), (e1,@1), ..., (an,@n)}
={(ax,=&n), .-, (o], =@1), (20,0), (a1,@1), ..., (an,&n)}-
Theone-sided spectrums
{(a0,0), (a1,é1), ..., (an,on) (0N, O_N +27), ..., (1,01 +27), }

:{(a070)7 (alv‘:}l)v EREE) (O‘Nv‘:)N)(O‘?V727T_‘:}N)7 ceey (a1(727r_®1)7 }
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Notes.As with continuous-time spectra, we have the following properties.

e The spectrumi.e., one of these lists, is considered to be a simpler, more compact representation of the[sigmnal, just a
few numbers.

e The “spectrum” is often called tHeequency-domain representationof the signal. In contrasi[n] is called theime-domain
representationof the signal.

e The termase? “+™ is called thecomplex exponential componenbr spectral componentof z[n] at frequencyoy.

e To obtain a useful visualization, we often plot the spectrum. That is, for kasle draw aspectral line at frequencyy; with
height equal tday, |, and we label the line with the value af;, which is in general is complex.

¢ Alternatively, we sometimes separate the spectrum into magnitude and phase parts. For example, the two-sided versions of thes
are shown below.
Themagnitude spectrumis

{(|O‘*N|7Q7N)7 ’ (|O‘*1|7"‘Aj71)7 (|a0|70)7 (|O{1|,(Ij1), ’ (|O‘N|7‘DN)}
= {(|aN|7_"‘AjN)7 ) (|041|,—(:)1), (|a0|70)7 (|O{1|,(Ij1), ’ (|O‘N|7@N)}v
which is even symmetric.
Thephase spectrumis
{(La—Nva)—N)v ) (La—lva)—l)v (ZO(0,0), (Za17@1)7 ) (LanaJN)}
= {(—ZOKN,_C:)N), ) (_4041,—@1), (ZO[O)O)v (Lalval)v ) (ZO(N,C:)N)},

which is odd symmetric.
And we might draw separate plots of the magnitude and phase. That is, fok,ehelmagnitude plot has a line of height|
at frequencyv, and the phase plot has a line of height;, at frequencyvy.

e Often, but certainly not always, we are more interested in the magnitude spectrum than the phase spectrum.

Example Determine what signal[n] (in standard form) has the spectrum shown below.

One-sided spectrum afn]
36—]71'/2 3ejw/2
eI T/4 | 1 | e—Im/4
1 | | .
0 /3 S Y 57/3  2m w

Reading off the exponential components, we see that
z[n] = 24 &/t 4 3072 Fn g 16 4 36 ™/20 H Ny g 1T/ Ae) T

= 24 (ejw/4ej§n+e—]7r/4e]%“n) + <3e—Jw/2€j3T”n+ge]7r/Qe]5T"n) + el

2+ (ej T/4e1 E 4 eTIm/4ed %") + (367j /20 N 4 369/ 207 37"") +em™
™ 3T
= 2+ 2COS(§n +7/4) + 6cos(In —7/2) 4 cos(mn).

Notice the use of equivalent frequencies in the middle of the derivation:

Is z[n] periodic? Yes, because all of the frequencies of the sinusoidal compone#tstares a rational number.

What is the period of[n]? The three components have periods: 6, 8, and 2, the LCM of whigh is 24.

10F T T T T

o .THMM .THMM AR
Yy FYEVCIISVIRN

U1
a
\ 4

x[n]

o

0

lO

20

30

n
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The special case o = 7.

You may have noticed that we have mentioned that the two-side interval colHerhe) or (—, 7] or [—m, 7r]. The reason for
this flexibility is thatr and—= are equivalent frequencies.

The following three figures show three equally valid two-sided spectra for the signal
z[n] = cos(mn) = (=1)™.

The three figures correspond to the following three equivalent expressions for this particular signal:

1 1
Z‘[TL] — §ej7rn + §e—J7rn _ e]ﬂ'n — e—jﬂ'n.
1/2 T 1/2
| .
-7 T w
1
- 0 s w
1
- 0 s w
In contrast, there is only one appropriate way to show the one-sided spectrum for this signal.
0 T 2T @

Exercise. Sketch the spectrum of the following signal
z(t) = V2 cos(mn + 7/4).

Surprised? Can you think of another signal that yields the same result?

This exercise should convince you that the frequehey 7 requires special care.
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D. The spectrum of a periodic discrete-time signal
The preceding notes describe how to determine the spectra of signals that are sums-of-sinusoids.

But what is the spectrum of a (periodic) signal like the following?

301 "
2 1B T

-1 1 2 3 4 7 n

Or, perhaps more interestingly, what is the spectrum of a sequence of samples of an analog signal, such as the following portion o
an audio signal?

Discrete-time signal

Taee 1o T et

g 0 ° ® ® STeee,
LU0 el feee” elle®
7320 7330 7340 7350 7360

n

The answer to both of these questions is provided by the Discrete Fourier Transform (DFT).

Recall that from the Fourier series theorem we learned that the spectrum of a periodic continuous-time signal withi iseriod
concentrated at frequencies that are multiplesdf ahd that the Fourier series analysis formula determines the specific component

at each of these frequencies. In this section we learn of an analogous theorem that indicates that the spectrum of a periodic discret
time signal with periodV is concentrated at frequencies that are multiplesgfV. The theorem also provides an analysis formula

for determining the specific component at each of these frequencies.

D.1 The DFT Theorem

The spectrum of a discrete-time periodic signal derives from the following theorem.
TheDiscrete Fourier Transform (DFT) Theorem (aka The Discrete-Time Fourier Series Theorem)

Anyperiodic signatz[n] with period N can be written as a sum &f complex exponentials with frequencies

2w 27 2w
—1, =2, ..., —(N—-1). -1
07 N I N ] ) N ( ) (3d )
Specifically, there ar& DFT coefficients denotedX [0}, X[1], ..., X[N — 1] such that:[n] can be expressed by the following
synthesis formula
N-1
z[n] = ZX[k] o Fhn Vn € Z.
k=0

The DFT coefficients are determined from the sigrial via the followinganalysis formula:

N-1
1 x
X[k =5 D alnle? ®, k=0, N -1
n=0

Note that frequencie%k and%r (k 4+ N) are equivalent frequencies, so we do not need termsindthV or k = N + 1 etc.
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Notes

o We will derive this theorem later. Unlike the Fourier Series Theorem, its derivation is well within the scope of this class!

e The terme? F*n appearing in the synthesis formula is tb@mplex exponential componen{equivalently, thespectral
componen) of z[n] at frequency2X k.

e The theorem says thany periodic discrete-time signal can be represented as the sum of atNmosiplex exponential

components with frequencies coming from the&®t3r 1, 272, ..., 2% (N —1)}.

This means that the spectrum of a periodic signal with pelNad concentrated at these frequencies (or a subset thereof).

e The synthesis formula is very much like the synthesis formula for the Fourier series of a continuous-time periodic signal,
except that only inite number of frequencies/exponential components are used. This stems from the fact that for discrete-
time complex exponentials, every frequency outside the rdager) is equivalent to some frequency within the range

[0, 27).
Furthermore, all of the information about a discrete-time periodic signal is contained/\1 ¢signal values over one period:
z[0],...,2[IN —1]. Since N values is enough to describgn], it is logical to expect that we should need at moat

frequency components to describje|. (If more thanN frequency components were needed, then the spectrum of a signal
would be a less concise description of the signal that the time-domain values, which would greatly diminish its utility!)

e For periodic signals, it is natural then to use the following list as the definition afnbesided spectrum

%XNL@,(XM,%&),(XM,%@)P”,CﬂN—H,%XN—lO.}

Thus, finding the spectrum of a periodic discrete-time signal involves finding its period and findikigit'e
We could also define ®vo-sided spectrumfrom the DFT coefficients. However, as described later, the two-sided spectrum
is somewhat messier.

e When we compute th& [k]'s using the analysis formula, there is no need to combine exponential components with equivalent
frequencies, as we did previously when finding the spectrum of a finite sum of sinusoids. In essence, the DFT analysis
formula has already done this for us.

e To aid the understanding of the synthesis and analysis formulas, it can be useful to view them in long form:

Thesynthesis formula
N-1

zln] = S X[k]e? FF = X[0] + X[1] & T + X[2] ! F2" 4 ... 4 X[N — 1] & F -1,
k=0

Theanalysis formula:

N-1
1 x 1 x ™ x
Xkl =+ )" aln]e? Fhn = ¥ (:c[O] +z[l]e? T 4 g2]e? 2 4. 4 2[N — 1]e? %(N*U") .
n=0

Notice how similar these formulas are; they only differ by th& Hnd by the sign in the exponent.
An elementary example of computing these formulas is given in Section D.2.

e The frequencer/N is called theundamental or first harmonic frequency.
The frequencyzﬁ”k is called thekth-harmonic frequency.

The component at frequengy /N is called theundamental or first harmonic component.
The component at frequen%ﬁk is called thekth-harmonic component.

e The analysis formula may be viewed as operating on a periodic signg{actually, just onz[0], ..., z[N — 1]) and pro-
ducingN DFT coefficientsX[0], ..., X[N — 1]. This operation is considered to béransform of the signak[n] into the
set of coefficients{[0], ..., X[N — 1]. This is whytransform appears in the nani@iscrete Fourier Transform.

Similarly, the synthesis formula may be viewed as operating on Fourier coefficidf}s. .., X[N — 1] and producing a
signalz[n]. This operation is considered to beiawerse transform.
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Itis customary to writeX [k] as a shorthand forX (0], ..., X[N — 1]}, just as the notation#{n]” usually refers to an entire
signal. So there are two possible meanings for the notatlji|": it could mean thekth coefficient, or it could mean the
entire set ofV coefficients.

The termDiscrete Fourier Transform (DFT) commonly refers both to thgrocesf applying the analysis formula as well
as to the coefficientX [k] that result from this process. For example, people often 3g¥'is the DFT ofz[n].”

The process of applying the analysis formulate] is often called “finding/taking the DFT af[n]” or, sometimes, “DFT'ing
x[n].” Similarly, the process of synthesizingn] from the DFT coefficients([k] is often called “finding/taking the inverse
DFT of X [k],” or “inverse DFT'ing X [k].

It is traditional to useX [k] to denote the DFT of[n], Y[k] to denote the DFT of[n], X1 [k] to denote the DFT of [n],
and so on.

WhenN is a power of 2j.e, N = 2™ for somem € N, there is fast algorithm for computing the DFiTe(, the analysis
formula), called thefast Fourier transform (FFT). Because the synthesis formula and the analysis formula are so very
similar, a slight variation on the FFT algorithm, called theerse FFT can also be used to compute the synthesis formula.
These algorithms have enabled the widespread use of the DFT in the analysis, design, and implementation of signals anc
systems. The FFT is one of the most important tools of modern signal processing and is at the core of many of the ubiquitous
digital signal processing devices around us.

The FFT algorithm is available in MrLAB through the command# andifft . If you use these commands, be aware
of a factor of N difference between our definition of the DFT andMAB s convention.

e To compute our definition of the DFT (analysis), u¥e:= 1/N * fft(x)

e To compute our definition of the inverse DFT (synthesis), uses N * ifft(X)

Since the summand in the analysis formula is periodic with pelNodhe limits of the summation could be replaced with
any interval of lengthv.

If a signal has periodV, then it also has period®2 and period 3V and so on. Thus, when applying DFT analysis, we can
choose which periodv to use. Usually, but certainly not always, we chodé¢o be thefundamental period. When we
want to specify explicitly the value aV used, we will say “theV-point DFT.” As discussed in Section D.4, usingy Dr

3N (etc.) instead ofV does not change the spectrum.

The DFT Theorem applies both to real signals and to complex signals.

Observe that according to the analysis formula, coefficid is computed by correlating[n] with the complex exponen-
tial e=7 ¥ %" and then dividing byV. This NV is the energy of one period of the exponential:

N-1 9 N-1

-7 27 fom
g ’e N = E 1=N.
n=0 n=0

Suggested reading. The discussion of “signal components” at the end of Section IlIB of the “Introduction to Signals” by
DLN. This section will help one to understand why the analysis formula has the form that it has.

In the terminology of that discussion:
e X[k] e’ ¥k is the component of[n] that is likee? ¥ ",
¢ X[k] measures the similarity af{n] to the exponential.

The reader is encouraged to review the discussion of Fourier series for continuous-time signals and observe the similarities
with the DFT for discrete-time periodic signals. The principal differences are

e ¢ is replaced by,

e T is replaced byV

e The DFT synthesis formula has only terms.

e The DFT analysis formula uses a sum rather than an integral.
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DFT Examples

Example Find the spectrum of the signal
z[n] =5+ 3(—=1)" + 8cos(2n + 3).
Before jumping into the DFT, we must ask:aif| periodic? Here
1
z[n] =5 + 3 cos(mn) + 8cos(2r—n + 3).
™

Sincel/ is irrational, this signal is not periodic. So we cannot apply the DFT. But we can still determine the specirur of

. One-sided spectrum afin|
5 4e73 4e=73
3
0 2 T 2t —2 2w W

Be sure to think about why the componentras “3” rather than “3/2.”

Equivalent frequencies revisited

The most important uses of equivalent frequencies are the following

—a & —é g 2m 27 _
e ju.m:ej(QTr o)n e ]Nkn:e]N(N k).

Computing the DFT

There are three basic methods for “manually” determining the DFT of a signal:
e using the DFT analysis formula,
e matching the DFT coefficients “by inspection,”
e combining the above with DFT properties.

The same techniques also work for the inverse DFT since it is almost the same formula!

Recall theN-point DFT formulas:

N-1 N
Z x[n]e™? 27 kn Synthesisz[n] = X[k] e Lkn
n=0 k=0

=

Analysis: X [k] = !

2|

Example Find the spectrum of the following signal. (Using talysis formula.)

25

S R R R

This signal is periodic. Its fundamental periodVg = 4, so we choos& = N, = 4 for the DFT.
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Applying the analysis formula:
3
1 - 1 - - ﬂ -
X[k] = 1 nz::ox[n] e I kN — 1 [:z:[O] e VR 4 1] e TR 4 g[2) e R 4 g[3] e 27’“3}

15+25+15+5), k=0 15, k=0
15—25j—15+55), k=1 ) —bj, k=1

15-25+15-5), k=2 )0, k=2
15+ 255 — 15— 55), k=3 55, k=3.

1 . B
= [15+ 2567 FF 4 1567 4 e R

N N N N
NN NN

The frequencies that correspond to these DFT coefficients are multipeg 4f So in list form the spectrum is
{(15,0), (5e*”/2,7r/2) , (5e”/2,37r/2)} .

Graphically, the spectrum of this signal is the following.

One-sided spectrum afn]
15
5e~77/2 5ol /2
| 1 .
0 /2 ™ 3m/2 2r O

Itis also useful to be able to expregs] as a sum of complex exponentials or sinusoids. Applying the synthesis formula:

3
eln] = Y X[k T = X[0]e? T 4 X[1] ! T + X [2] ! F2 4 X[3] 2 FIn
k=0
ﬂ = ﬂ = 2
= 15+ 5e 9™/ 2) N 4 5o /267 3 = 15 4 5e I/ 2e) T 4 B /2 M = 15 + 10 cos(fn - g),

where we used the fact thad /2 and—7/2 are equivalent frequencies. In this case, one could also recognize the final expression
for z[n] directly from its spectrum.

Example (Usingcoefficient matching)

Determine the 32-point DFT the following signgl] = 20 sin2(%”n).

The N-point DFT allows us to express/é-periodic signal as a sum @f complex exponentials:
Nl 2 2 2
z[n] = Y X[k]e! ¥F" = X[0] + X[1]&! ¥ + X[2] ! N2 4 ... 4 X[N — 1]/ ¥ (N7Dn, (3d-2)
k=0

If we can find such an expression directly, then we do not need to use the analysis formula.
In this case, apply an inverse Euler identity:

3m SR S ’
2OSin2(§n):20 -

) >

2
27w 2m
7 E256n _ ,—7%56n
e’ 32 e 32 2 .27
20( 2 :5(2—8‘]3212n—€ 33212n)
J
— 10 5 ]%—72‘-1271 5 —j%—ngn — 10 5 j%—ngn 5 j%—gQOTL
= — 5e — de =10 — 5e — de ,

where in the last line we used the fact tha%g 12 and%—gZO are equivalent frequencies. Considering the final form, comparing to
(3d-2) we see that th&2-point DFT of z[n] is given by:

10, k=0
~5, k=12
XM=Y 5 k=20

0, otherwise.
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We see that this signal has a DC term and two other complex exponential terms.
Example (Using theanalysis formula.)

Determine the 32-point DFT the following signgln] = (1/5)". Note that this is an infinite duration signal, so we are only
computing the DFT of a segment of it for< n < 31. We choseV = 32 here simply for illustration.

Substitutey[n] into the analysis formula and use a geometric series formula to help simplify:

1 31 ) 1 31 , n
_ n 7‘]—"]6’)7,: —155k
VI = 2o/ e B = 53 (a/me)

32
1 1-— ((1/5)6_1?372k) B 1 1_1/532
32 1-(1/5)e 75k 321 (1/5)e 7 BF

A plot of the magnitude spectrum shows that this signal has nearly the same power at all frequencies, with a bit more at the lower
frequencies.

Example (Usingproperties.)
Determine the 32-point DFT the following signgh] = 40sin® (3% (n — 4)) + 7(1/5)".

We see that[n] = 2z[n — 4] + Ty[n] . Theshift property of the DFT is the following.
If s[n] = z[n — ng), thenS[k] = X [k] =7 & kno,

Thus, using the shift property and theearity of the DFT, we see that

7 1-1/552 B
20+ 33 1179y k=0
_10ea A2 4 T 1157 b g9
Z[k] = 2X k] e M 4 7Y [K] = 2 1-(/p)et B2
—10e—7 35 (420) AP S V- S N, V)

pI3
32 1-(1/5)e™? 22207

1—1/5%2

— otherwise
1-(1/5)e 7 32

L
32

So what?

After we know how to compute the DFT of a signal, what can we do? There are an enormous number of applications; the DFT and
its fast computational version, the FFT, are the foundation for much of signal processing.
e As demonstrated in lecture, we can perform audio signal compression by discarding frequency components with small DFT
coefficients. This is the essence of how MP3 works.
¢ In lab you will see how to use the DFT to remove a contaminating tone from an audio signal.
o If we start with a continuous-time signal and sample it to form a discrete-time signal and then compute the DFT of that discrete-
time signal, then we will soon discuss how the DFT coefficients are related to the spectrum of the original continuous-time
signal. This is how instruments like digital oscilloscopes display the (approximate) spectrum of continuous-time signals.
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Example (Using theanalysis formula, a long example.)

Determine the 32-point DFT the following signan] = |sin(22n)|. Note that the period of this signal ¥, = 8, but there are
still reasons why one might want to compute fKiegpoint DFT for IV larger thanV,; we choseV = 32 here simply for illustration.

Now substituter[n] into the analysis formula and use Euler to help simplify:

31 31
X[k] = 1 Z |sin(3—ﬂn) 7 35kn [Z sin( o1 35kn _ Z sin(3—7rn) nggk”]
32 4" g 32 a7
15 3w 31 3 37
2= 2 n=16 2)
M5 31
_ i Z (e] 2%6n _ e 2r Gn) e 2%kn _ Z (e] 2r6n _ e 32671) e 2r kr;|
64'7 Ln=0 n=16
M5 31
- b S (ejg—gwfm _ en@—;wmn) =S (eJ%(Gfk)n _ eﬂ$(6+k)n)]
64'7 Ln=0 n=16
31 31
_ Gi ZeJ (6-k)n _ Zej FE-0n_ §° @ HO-Hn . § o %’5(26k)n] .
J n=16 n=16

Apparently we will have to consider the cages- 6 andk = 26 separately. Foothervalues ofk we apply a geometric series
formula to find:

[1 126-0\"C | (e ]
X[k] B 1 — e’ 3 —le/3 ( 1)k 1— (_l)k N ( 1)k 1— (_l)k
64y 1— el 35(6-k) 1 — e’ 35(26-k) 1 — el 35 (6-F) 1 — o 35 (26—k)
1— (—1)* 1 1 1—(=1)F 1—e 356k _[1 —135(6-k)]
- 325 1 - B6-H 1 _eBE-R ] 32 1o BRI e BE6H)

1_(_1)k e] 32(6 k)_e] 5 (—6—k)
33 [1_ 0BG Rl _ B o

I (—1)k eI 5k sin(226)

16 1_ o B6-F) _ B (6-h 4 2520
_1- (—1)* sin(226)

16 eI 5k _ 01556 _ e135(-6) L 155(-k)
_1- (—1)* sin(3%)

8 cos(22k) — cos(3F)’

This is too messy to serve as a classroom example. However, the originalgighial real and even, so the above manipulations
show that with enough simplification, we can indeed find DFT coefficients that are real.

Fork = 6 we have s

Zl_z 735200 _ il: 1+ il: el B2 | _
64'7 n=0 n=0 n=16 n=16

and similarlyX[26] = 0. So our final answer is

0, k=16,26 0, k even

Xk =4 1-(=1* sin() otherwise — ) 1
8 cos(g—gk) - cos(%ﬁ) 4 COS(%]@) - COS(S?W)

Admittedly this problem would be easier to solve (approximately) usimgIMB .
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D.3 Derivation of the DFT

To demonstrate the validity of the theorem, we will first show that when the analysis formul[fpris substituted into the
synthesis formula, the resultisn]. We will then show that when the synthesis formula holds, the analysis formula is the one and
only way to determine the coefficients.

These demonstrations rely on the following fact, which we will derive before demonstrating the validity of the DFT Theorem. This
fact will also be useful at other times in the course.

Fact D1

Nz‘:lejzﬁw(k,m)n_ N, k=m, k=m=+N, k=m+2N,...
. 1 0, otherwise.
n—=

Derivation.

e Case 1. Whek = m + [N forl € Z, the exponent of each term is O or an integer multiplezafmaking each term equal 1.
Hence, in this casg " ' e & (h=m)n — N,

e Case 2. Whek ## m + [N for every integel, to simplify notation, let: = ¢’ F (k=m) Notice thatz = 1 in this case. Using
this definition and applying the finite geometric series formula:

N-1 N-1 2m (o (ko
Ze-]%"(k_m)n: Zzn: l—zN _ 1—€jN(k m)N _ 1—e]2 (k TI’L) _ 1—1 :0
1-2 1—z 1-2 1—z ’
n=0 n=0
since the exponent in numeratopismes a multiple or.
Derivation of the DFT Theorem
Substituting the analysis formula féf k] into the synthesis formulas gives
N-1 N-1 1 N-1
27 27 ’ 27
XK T = Y lﬁ 3 afn/je? Fhn ] o FFkn
k=0 k=0 n’=0
usingn’ in analysis formula since already used in synthesis formula
1 N-1 N-1
2 —_n' .
= 5 > zfn] lz e Fhn—n )] rearranging terms
n’=0 k=0
1 . .
= Nm[n]N:x[n] if n=0,...,N — 1, using Fact D1.

Specifically, the rightmost sum equals 0 when the exponentis nonzerashenn’ # n, and equalév when the exponent is zero,
i.e, whenn’ = n. Thereforegz[n'] is multiplied by 0 whem' # n, and byN whenn' = n.

So, we have just shown that if we apply the analysis formula to any signglthen we when apply the synthesis formula to the
resultingX [k]'s, we will get back thez[n]'s that we started with fon = 0,..., N — 1.

But could there bether X [k]'s that also could be used to synthesize the sigfia]? The answer is “no” as shown in the next
argument.

Finally, we show that if the synthesis formula holds, the coefficients must be calculated via the analysis formula. Suppose we have
someX [k]'s for which the synthesis formula holdss.,

N-1
27
z[n] = X[k]e? Nk, n=0,...
k=0

We want to show that thesg[k]'s must be those that come from the analysis formula.

We correlate both sides of this equation wigh~ *'7. That is, we first multiply both sides of the above synthesis formula by

27

!’ * !’
(eﬂ Fk ”) = e~ 7% ¥ n a5 follows

N-1
x[n] eI Kk — lz X k] eJ%k”] eI Kk,
k=0
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Since this equality holds for = 0,..., N — 1, we now sum over all these valuesraf

N—-1 N—1[N-1
—zm 2z —zm
z[n]ed Fkn = g g X[k|e? Fhn| ema Nk
n=0 n=0 Lk=0

N-1 N—-1

= ) X[k lz e’ ZN"(’“’C')”] rearranging terms
k=0 n=0

— X[¥]N,

where the last equality is due to Fact D1 again. Specifically, the rightmost sum equals 0 when the exponent isi ratwhes
k # k', and equalsV when the exponent is zerbe., whenk = k’. Therefore X [k] is multiplied by 0 wherk # £/, and by N
whenk = k’. Rearranging the last equality and usinm place ofk’ yields

1 N-1
X[k] = 7 >_ alnje™? %,
n=0

which is the analysis formula given in the DFT Theorem.
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D.4 Properties of the DFT
This section lists a number of useful properties of the DFT.

D1. Uniqueness
There is a one-to-one relationship between periodic signals with pAfriadd sets of DFT coefficients. Specifically, for any given
signalz[n], the analysis formula gives the unique set of coefficients from which the synthesis formulazyiglds

This implies that the DFT coefficients can sometimes be found by means other than the analysis éognpuspection. That is,
if by some means you find [£] such that

N-1 ,
= X[k]e/ ¥k
k=0
then thisX [k] is necessarily the DFT that would be computed by the analysis formula.
Similarly, for any given set of DFT coefficienf§[%], the synthesis formula gives the unique sigefal] with period N from which

the analysis formula yieldX [k]. That is, if by some means you find a sign@b] such that

1 N-1

X[k = > an] e Fhn,
n=0

then that signat[n] is the one and only signal having[k] as its coefficients.

Another statement of the one-to-oneness is thai i.] andz,[n] are distinct periodic signalsg., z1[n] # z2[n] for at least one
value ofn, each with periodV, then for at least onk, X; [k] # Xs[k].

D2. Mean value
X [0] is the mean or DC value afln].

This is because

2‘||._
||Dﬂ2
||Dﬂ2

D3. Summation interval
For aN-periodic signalz[n]|, one can compute the DFT coefficients by summing over any time interval of I&hgth

1 N-1 1 m+N-—1
_ 2% kn —9 2% kn
7Nz=: nle /N =~ P x[n]e N Ym € Z.
D4. Conjugate symmetry(important)
When the signat[n] is real,

X[N — k] = X*[K], k=1,...,.N -1

andX[0] = X*[0] soX[0] is real.

This shows that if one knowX [k] for k = 0, ..., N/2, then one can easily find the remainifgk|’s. This “redundancy” is often
exploited in digital implementations to reduce memory requirements.

Note thatX [N — k] is the spectral component at frequer%gy N — k), which is equivalent to frequeney2”k

Derivation. (This property does not apply to complex signals!)

1 = 2 i 1 i 2
= 5 Deterw| <L P e
=0 n=0

=2
|3

z[n] ¢! ¥+ because([n] is real soz*[n] = z[n]

2=
23
ol
— O

I
2| =
(]

z[n] e~ ¥ (V=Mn pecauséZk and— 22 (N — k) are equivalent frequencies

].

3
Il
o

I
>
=
-
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D5. Sinusoids(important)
Conjugate pairs of coefficients synthesize a sinusoid When the sigrias real,
X[k ¥ 4 XN — k]! FW—Fn - — x[g]e? Fhn + X*[k]e? Fhn
= 2|X|[k] |cos(ﬁkn + LX[k]).

Thus, when looking at a spectrum, one should “see” sinusoidal signal components, one for each conjugate pair of coefficients.

D6. Linearity
Supposexr[n] andy[n] are periodic with periodv and haveX [k] andY [k] as theirN-point DFTSs, respectively. Then thé-point
DFT of s[n] = az[n] + By[n] is S[k] = aX[k] + BY [K].

Similarly, if X [k] andY [k] are sequences of lengi¥ with inverse DFTs given by[n] andy[n], then the inverse DFT af X [k] +
BY [k] is az[n] + By[n].

The derivations of these properties are left as exercises.

D7. Parseval's theorem
For a real or complex signai[n] that is periodic with periodV, we can computer the average power in the time domain or in the
frequency domain as follows:

N-1 N-1
1
ignal MS(z) = — 2= X[k |2
signal average power MS(z) = T;) |z[n] | kz=o | X K] |
Recall that the average power of\&periodic signalz[n] is
1 M 1 N-1
_ . _ 2 _ — 2
MS(@) = lim = e >0 feln] P = 5 D lalnl
n=—M n=0
Derivation.
1 N-1 N—
MS(z) = N 2 |z[n] N;
] M-t N-1 * ] M-t N-1
_ 2rkn ; - * -7 %% kn
= 5>l [Z X[k] & ] synthesis formula= > z[n] lz X*[k]e™ ]
N-1 1 N-1
— * -7 3 kn .
= ) X*[K] [ﬁ > zln]e? ] rearranging
k=0 n=0
N-1
= X*[k] X k] by the analysis formula
k=0
N-1
= | X [k] |
k=0

A7 n:o,:l:N,:l:QN,.,, .
ol = { 0, otherwise. (Picture)
N-1
1 2" kn __ 1 o A .
o zln - ﬁA =N (Picture) .

Time domainMS$(z) = & A2, Frequency domaiS(z) = S h ! [X[K] 2 = £ H(4)% = N(£)? = 42/N.
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The following properties will be emphasized less in this class.

D8. Choice of period
Suppose|n] is periodic with periodV, supposeX [k] is the N-point DFT ofz[n], and suppos&’[k] is the 2N-point DFT oft[n].
Then,
vor | X[k/2], k=0,2,4,...,2N -2
X'lk] = { 0, otherwise.

This means that the (one-sided) spectrum based onXhpdint DFT is the same as that based onMgoint DFT. For example
if N is even, the spectrum based on thé-point DFT is

%XWL@,(TDL%@)P”<X@N—ﬂ,%XﬂV—m>}

= {(X[o],o), (X[1],2§1>, <X[N—1],2§(N—1))},

which is the one-sided spectrum based onXhpoint DFT.
The derivation is left as an exercise.

D9. Time shift
If 2[n] has DFTX[k], thens[n] = z[n — ng] has DFT coefficients

2m

S[k] = X[k]e™? ¥

k}’no

This shows, not surprisingly, that a time shift causes a phase shift of each spectral component, where the phase shift is proportione
to the frequency of the component. The derivation is left as an exercise.

D10. Frequency shift
If z[n] has DFTX[k], theny[n] = z[n] e’ ¥ ™ has DFT coefficienfs

Y[k] = X[k —m].

This shows that multiplying a signal by a complex exponential has the effect of shifting the spectrum of the signal. The derivation
is left as an exercise.

D11. Time scaling

This is not as straightforward as in the continuous-time case and will not be discussed here, except to indicatésthgiositive
integer, thery[n] = z[nm]| is asubsampledversion ofz[n], which is well defined. (In contrast, the expressign/m] is not
defined for all values ofi.) See EECS 451 for thorough coverage.

D12. Finite sums?
Since the DFT synthesis formula is a finite sum, we can compute the values “exactly” (to within the precision of our computers),
unlike in the case of continuous-time signals where we usually have to make finite approximations to the infinite sums.

However, for data compression problems such as MP3 audio coding, we can save memory by discarding small DFT coefficients
thereby reducing the finite sum to an even smaller number of terms, at the expense of imperfect signal synthesis.

D13. Technicalities?
Since the sums in the synthesis and analysis formulas are finite, no technical conditions are needed as are required for the Fourit
series.

D14. Real and even signals
If z[n] is real and everu(—n] = z[n]), then the DFT coefficients are real.

Example (Picture) y[n] = 24z[n| — 16x[n — 4] wherez[n] is the impulse train worked out earlier with= 1 and N = 8.

V[k] = 24X k] — 16X [k]e 7 FMF = 241 —161(~1)F =3 — 2(-1)F = { é Zg:ﬁn (Picture)

Soz[n] = 1+ 10cos(%n) + 2 cos(3n) + 10 cos(3n) + cos(mn).

1There is a subtle technicality here; the expresgieam must be interpreted moduly.
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Two-sided spectra and the DFT

What if we are interested intavo-sided spectruminstead of a one-sided spectrum? Then we need to examine each frequency in
the list (3d-1) in the DFT theorem above and adjusghyas necessary to find equivalent frequencies that are in the fange).

For most of the frequencies it is easy to see what is needed. However, for the frequencies atrpedard that the necessary
adjustment depends on whethéris even or odd. Working through the details, one finds that the two-sided spectrum of a periodic
signal with periodV is concentrated at the following frequencies:

2w (N 2 21 2w . 27 2w (N .
-m =57 <7 — 1>, el _WZ _Wl’ 0, W1, W2’ o N <§ — 1> whenN is even
2w (N —1 2 2 2m . 27 2 (N —1
- | —— e, ——=2, ——1 —1, —2, ..., — [ —— henN i
N(2>, TN N’O’N’N’ ,N<2> whenN is odd

It is a bit inconvenient that the two-sided spectrum depends on whattigreven or odd, and this “messiness” is probably why

the DFT is usually defined so as to directly give a one-sided spectrum. We will mostly use the one-sided spectrum. However,
for relating discrete-time and continuous-time spectra, we need two-sided spectra, so we illustrate some two-sided spectra usin
examples.

Example If N = 6, which is even, then the following figure shows thBBT frequenciesfor a one-sided spectrum.

k=0 k=1 k=2 k=3 k=4 k=5
The following figure shows the frequencies for a two-sided spectrurivfer 6.
k=-3k=-2k=-1 k=0 k=1 k=2

Notice that there is no componentaince—= andr are equivalent frequencies so there is no need for both. This makes the
spectrum appear somehow “asymmetric” for even valugs .of

Our decision to use frequencies oVerr, ) rather than ovef—, ] is arbitrary, and not a universal convention. However, the
command.

choice given here is consistent withAviLAB ’s fftshift

Example If N = 5, which is odd, then the following figure shows the 5 DFT frequencies for a one-sided spectrum.

k=0 k=1 k=2 k=3 k=4 .
The following figure shows the frequencies for tNe= 5 two-sided spectrum.
k=-2 k=-1 k=0 k=1 k=2 .

The odd case looks more symmetric than the even case. However, even vaNieseofised more frequently in practice because

the FFT is fastest wheN is a power of 2.

In summary, wherV is even, the two-sided spectrum is

() (5 (5)- - (ovn )

(x[0],0), (Xm

—1
"N

and whenN is odd the two-sided spectrum is the following

(-5 ) 67

(X[0].0) (Xm

N -3

(*;

2w

—1

"N

).

) (

(]

x72], 2%o

2
1] .22
|5

)) (X[N—z],—%%), (X[N—l],—%rl),
)

N -1

) o
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E. The spectra of segments of a signal

Question: How can we assess the spectrum of a signal that is not periodic?

For example, what if the signal has finite support? Or what if the signal has infinite support, but is not periodic?
Observation: The DFT analysis formula uses only a finite segment of a signal.

Signals with finite support

To assess the spectrum of a sigmpt] with finite supporf{n,,...,n2}, we can apply the DFT analysis formula directly to the
signal over its support interval.

Let us begin by defining(¢) to be a periodic signal that equalB:| on the intervaln, ..., ns} and simply repeats this behavior
on other intervals of the same length. That isNet= no — ny + 1, and let

[e )

Z[n] = Z z[n —mN].

m=—0o0

The signalz[n] is called theperiodic extensionof z[n]. Its periodNN is the support length af[n].

Example Here is a signal with finite support.

z[n]
25 I
15
5\ T T ? T >
0 1 2 3 4 5 n
Here is its periodic extension.
Z[n]
25 I I
L e sl [ T .« 7 L. :
-2 -1 0 1 2 3 4 5 6 7

Returning to the general case, taking fiiepoint DFT of Z[n], we find

N-1
ln] = > X[k]e’ ¥F"  (synthesis formula)
k=0

where
1 & 2x
X[k =+ > &nJe? ¥k (analysis formula)
n=ni
and where we have used the fact that the analysis formula can have summation limits that cover any interval®t length

Now we note that since
z[n] = Z[n] forny < n < ng,

we also have
N,

—

z[n] = X[k] & Fhn, n1 <n < na, (synthesis formula)
k=0
1 & 2x
Xkl =+ > a[n]e? ¥k (analysis formula)
n=ni

Thus we may view the two formulas above as synthesis and analysis formulas for a spectral represenfafjofiloé synthesis
formula shows that, on its support intervaln| can be viewed as the sum of complex exponentials with frequencies that are
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multiples of27/N. The analysis formula shows how to find the spectral components. It is important to note that the synthesis
formula yieldsz[n] only in the support interval. Outside the support interval it yields, rather thanc[n] = 0.

In summary, for a signal with finite support, we take the (one-sided) spectrum to be

{(X[O],O), <X[1],%”1>, <X[2],2§2), <X[N—1],2§(N—1)>.}

just as we did for periodic signals.

Note. Though we have introduced the DFT as fundamentally applying to periodic signals and secondarily applying to signals with
finite support, some people take the opposite point of view, which is also valid.

Aperiodic signals with infinite support

A common approach to assessing the spectrum of an aperiodic signal with infinite support is to choose aiVjrdegee the
time axis into segment®, N — 1], [V, 2N — 1], [2N,3N — 1], etc, and apply the above DFT approach to each segment. This
yields a sequence of spectra, one for each segment.

Since the signal is not periodic, the data within each segment will be different. Thus the spectrum will differ from segment to
segment. For example, the spectrum of the signal

z[n] = cos(3.2n)
is shown below for two different segments of length= 128.

0.35 ‘

0.3~ -

0.25 - —

0.2 —

0.15+ -
0.1 —
0.05|~ T TT -
0 1
0 1 2 3 4 5 6 7
radians/sample
0.35
0.3 —
0.25 - —
0.2+ —
0.15+ -

0.1~

0.05

radians/sample

Notice that these two spectra are quite similar. Notice also that even though the signal is a pure sinusoidal signal, whose spectrun
according to the discussion of Section C, is concentrated entirely at frequencies 3.2 and -3.2, the spectra above show a couple ¢
strong components in the vicinity of 3.2 and -3.2, and small components at other harmonic frequencies. This may be viewed as
being due to the fact that we are using harmonic frequencies to synthesize a sinusoid whose frequency is not harmonic. It may als
be viewed as being due to the fact that these spectra are actually the spectra of a periodic eXtérsfiafin]. A more thorough
discussion, which would derive the actual form of the spectra shown above, is left to future courses.

The fact that we now have two different ways of assessing the spectrum of signals atieh-ascos(3.2n), as in Section C and
as discussed here, may seem somewhat disconcerting. But this is reflective of the fact that, as mentioned spdirpings a
broad concept, like “economy” or “health,” that has no simple, universal definition.
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Spectrograms.

Let us also mention that there are aperiodic signals for which it makes very good sense that the spectrum should differ from segmer
to segment. For example, the signal produced by musical instrument can be viewed as having a spectrum that changes with eac
note. This and other examples can be found in Section 3.5 of the text and in the Demos on the CD ROM relating to Chapter 3.

For such signals, itis common practice to apply the DFT in a sliding fashion. That s, the DFT is applied successively to overlapping
intervals[0, N — 1], [M,M + N — 1], [2M,N + 2M — 1], and so on, wherd/ < N. A spectrogramis a plot showing the
magnitudes of the DFT coefficients for each interval (usually by representing the magnitude as a color or graylevel) plotted over the
starting time of the interval. For example a spectrogram of someone speaking the five letters ‘e’, ‘a’, ‘r’, ‘t’, ‘h’ is showA.below

Spectrogram of "earth" with fS =11025

5000
4000
>
£ 3000
5 1-20
O
®
* 2000 1-60
-80
1000
~100
0
dB

2The colors in this plot are visible when the pdf file is displayed on a color monitor.
The axes have been labelled in terms of the continuous-time values using the methods described in the next section.



Here is another aperiodic signal

First block

ccccccccccc
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F. The relationship between the spectrum of a continuous-time signal and that of its samples

Frequently, we are often interested in the spectrum of some continuous-time signal, but for practical reasons, we sample the signe
and work with the resulting discrete-time signal. If possible, we would like to be able to deduce the spectrum of the continuous-time
signal from that of the discrete-time signal. This section shows how this can be done, at least approximately.

Example We first illustrate the idea with the simplest possible example: a continuous-time sinusoidal signal.
x(t) = cos(27 fot) — | SampleTy | — z[n] = x(nTy)

z[n] = x(nTs) = cos(27 fo(nTs)) = cos(2m foTsn)
so we see that a continuous-time sinusoid of frequggdecomes, after sampling, a discrete-time sinusoid of frequency

C:)O = 27Tf0Ts = 271'? (3d'3)

S

Using the sampling relationship:

Example Supposefy = 20Hz, andT; = 0.02s sof; = 50Hz. Andwy = 2720/50 = 47 /5.

Then the spectra af(¢t) andz[n] are as follows.

Spectrum ofc(t)
1/2 [ 1/2
— I -
-25 -20 0 20 25 f [Hz]
Spectrum ofc[n]
1/2 1/2
— 1 .
— _4?77 4?” T w

What if we do not have an equation for the signal?

In the preceding example, we have an analytical expressian(fpiso we can draw “theoretical” spectra. In practice, if we have
a “mystery signal”z(t) whose spectrum we would like to examine, we must take a finite numbesf samples of that signal,
compute the DFTX [k] of those samples, and then somehow relate¥id’s to the spectrum original signalt).

The nature of what that DFT-based spectrum will look like will depend somewhat on the valuéhat is chosen.
The following figure shows the DFT coefficients for various choices¥dor the preceding example.

Consider first the choic& = 40, which is a multiple of the fundamental periodadf] which is Ny = 5 in the preceding example.
Then

2 1  2x 1 x 1 2 1 ™
Z‘[n] = COS(Q?Tgn) = 563 ¥2n + 5 R 58]?‘_016n + 56_1 TEaon
so by coefficient matching we see that the 40-point DFE|ef is given by
1/2, k=16
X[kl=1< 1/2, k=24
0, otherwise.

But what if N = 41? Then we cannot use coefficient matching sih€gil # 2/5 for any integerM.

But we can still find the 41-point DFT af[n] usingfft , the result of which is shown in the figure. Now instead of a “clean line”
we get peaks at 16 and 24 but the peaks are a bit “smeared out.” Using alarijex N = 401 shown in the figure, tightens up
the lines.
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DFT of sampled sinusoidal signal

x(t)

3t N=40 ;
=~ 2f .
x
1t ]
a/ Va AV} /T, Va Y
0 10 20 30 40
3t N=41 .
=~ 2f .
x
1 - T T -
dmmmmo@@@@@@?? Pon0? ??@Q@Ooooo@om
0 10 20 30 40
3t N=401 ]
= 2f
x
l L

From the synthesis equation

Combining this with the relationship (3d-3) we hafig/ fs = k/N. However, this is only valid foty < 7. For® > 7 we must
consider the equivalent frequency betweenand0. In summary:

f Ef, k=0,...,N/2-1
f{ %];kfsa k:N/2,...,N—]_, (3d-4)

These are the formulas that any “digital spectrum analyzer” must use when displaying the DFT coefficients of samples of a
continuous-time signal with the axes labeled in terms of Hz.
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Further analysis

For concreteness, consider a periodic continuous-time sigpvith periodT’, and consider sampling it with sampling interval
T, < T. Then the resulting discrete-time signal is
z[n] = z(nTy) .

By the Fourier Series theorem(t) may be expressed as a sum of complex exponential components:

oo
k
§ akGJQTth

k=—oc0

1/ —j2mkt
a = = z(t)e 7= Tt dt.
T Jer)

Can we compute or approximate thg's from the samples of(¢), i.e., from z[n]? This question is answered by the following.

Fact F1

Let z(t) be a periodic signal with peridfl, letz[n] = 2(nTs) be the discrete-time signal formed by samplit{g) with sampling
intervalT's = T/N, whereN > 1, and letX [k] denote theV-point DFT ofz[n]. (Itis easy to see thafn] is periodic with period
N.) Claim:

where

o ~ X[k] fork < N.

Derivation:

To see how they;'s can be approximated, we will use the fact that sificex T', x(t) varies little over mosf; second intervals.
Thus, it may be approximated with
z(t) = z(nTs) = z[n], fornTy <t < nTy + Ts.

We will also use the following approximation, the validity of which is discussed shortly:
eI Tt oy gm12mgnTe _ o= %ﬂk”, whennTy < t < nT, + Ts.

With these approximations, we now proceed by rewriting the integral in the analysis formula as aSumegrals over intervals
of lengthT; seconds, wherd& = T'/T:

ap = _/ e ]27r£tdt

N-— nTs +TS
= = Z/ 1277t d4  integrating over short intervals
n=0
1 NZlo T +TS 27
A= / e ? ¥km d¢  using the above approximations
T nT.
n=0
1 Nol 2r nTa+Ts
= =Y z[n] e‘JW’m/ dt rearranging terms
T n=0 nT;
N-1

1 ™ . .
= 7 > aln] e~ ®knT computing the integral
n=0

z[n] e 7 FF usingN = T/T,
= X|[k] thekth coefficientinN-point DFT ofz[n].

This fact shows that thkth Fourier coefficienty, is approximately equal to thieth DFT coefficientX [k] in an N-point DFT of
z[n]. This means that the DFT coefficielt k] indicates the presenceirt) of the spectral componerf( (3d-4)):

k
NT

X[k]e??" Tt at frequency; = fb,
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wherefs = 1/T; is the sampling frequency. In other words, the component at frequ:eacyzﬁk in the discrete-time signal[n]
represents a spectral component in the continuous-time sigt)at frequency]% fs-

On the other hand, the fact that, ~ X[k] seems to contradict the fact that there are infinitely mieyfor a continuous-time
periodic signal, but only finitely man¥ [k]'s. This apparent paradox is resolved by noting that the approximation

27

k
e 12Tt g eI NRN whennTy < t < nTy + Ty

is valid when and only when the exponential varies little within e&clsecond interval. Since the exponential is periodic with
periodT'/k, this approximation is valid when and only wh&éh< T'/k, or equivalently, when

T
k<< —==N.
< T.

Thus we see that the approximatiap ~ X [k] is valid only whenk < N. (Actually, it turns out to be fairly good as long as
k< N/2)

In summary, we have shown how to approximately compute the Fourier series coefficightsf a continuous-time signal from
its samples. And the computation turns out to be the DFT!

We have also shown that the approximation is valid whest N = T'/T. This indicates that where possible, one should choose
the sampling interval’y to be small enough so that the's can be well approximated over whatever range of frequencies are of
interest.

With this approximation for the Fourier series coefficients, one can now use the DFT coefficients to approximate the (two-sided)
spectrum of the continuous-time signgt) as follows

{(X*[K],—%fs> o (X*[l],—%fs>, (X[0],0), (X[l],%fs> o (X[K],%fs>, }

where K is the largest value of for which we believer;, ~ X[k]. Note that we are, in effect, approximating the spectrum as
having no components above frequetcy;.

Although we know the approximation is valid only fbr< N, it is quite common to use the entire set of DFT coefficients in an
approximation for the spectrum aft). Specifically, it is common to plot the one-sided spectrum

{0, (xunga). (¥ 34) o (X -0 T8

However, when interpreting such a plot, one must recall that such a spectrum is accurate only for valkesNdf Moreover,
whenk > N/2, the termX[k] = X*[N — k]. Thus if anything, fork > N/2, the spectral line shown at frequendyf; is

indicative of what happens at frequen@){rjg—’“)fs, notat what happens at frequenﬁlfs.
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Example The following figure shows a continuous-time signal, its samples, the magnitudes of its DFT coefficients, the one-sided
magnitude spectrum of the discrete-time signal, the two-sided magnitude spectrum of the discrete-time signal, and the approximat
continuous-time spectrum. The sampling ratgis- 11, 025 samples/sec.

fs:11025 Tg=0.007, fO:143 Discrete-time signal
0.15 1 0.15
0.1 1 0.1
— 005 1 — 0.05 Am» M%N
e = {
X x
0 1 0 w 1
-0.05 -0.05
-0.1 -0.1
0.005 0.01 0.015 0.02 0 50 100 150 200
t[s] n
DFT of x[n], N=232 Two-sided spectrum of x[n]
0.04 1 0.04
0.035 1 0.035
0.03 Peak line at k=6. What f? 1 0.03 1 bar(2*pi*(k—-N/2)/N, fftshift(abs(X)))
= 0.025 1 0.025
=
= 002 0.02
0.015 0.015
0.01 0.01
0.005 0.005
0 0
0 58 116 174 232
K -Tt -T72 w w2 s
One-sided spectrum of x[n] Two-sided spectrum of x(t)
0.04 1 0.04
0.035 1 0.035
0.03 w=27nk/N 1 0.03} bar((k—N/2)/N*fs, fftghift(abs(X)))
0.025 1 0.025
0.02 0.02} Peak line at k=6 [j fF285Hz
0.015 0.015
0.01 0.01
0.005 0.005
0

0
-5513 -2756 0 2756 5513
0 2 w 312 21
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G. Bandwidth

One of the primary motivations for assessing the spectrum of signal is to find the range of frequencies occupied by it. This range
is often called the signal’s “band of spectral occupancy,” or, more simplyesiency band The width of the frequency band is
called thebandwidth.

As one example, signals with non-overlapping spectra do not interfere with each other. So if we know the frequency band occupied
by each of a set of signals, we can determine if they interfere. As another example, certain communicaticangpadiare, limit
propagation to signals with spectral components in a certain range. If we know the frequency band occupied by a signal, we can
determine if it will propagate.

Most signals of practical interest, such as that shown in the previous section, have spectral components extending over a broa
range of frequencies. We are not really interested in the entire range of frequencies over which the spectrum is not zero. Rathe
we are interested in the range of frequencies over which the spectrum is “significantly large.” As such, we need a definition of
“significantly large” to define the concepts of “frequency band” and “bandwidth.” There are a number of such definitions in use.
The definition given below is based on one such definition.

Definition:

The “band of spectral occupancy” frequency band of a signalz[n] is the smallest interval of frequencies that includes all
frequencies at which the magnitude spectrum is at least one half as large as the maximum value of the magnitude spectrum.
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Signal compression

The following figure, discussed in detail in lecture, describes how discarding small frequency components can greatly reduce
storage (like MP3) with only modest signal distortion.

Original audio signal, Fs=8192 Magnitude spectrum
800}
0.5¢f
__600f
S o =
= = 400}
05 200}
‘ ‘ ‘ ‘ ‘ ‘ Ao L
2000 4000 6000 8000 1000012000 0 5000 10000
k
1
05¢f
0 12880 nonzero DFT coefficients
_05 L
_1 L L L
8000 8050 8100 8150 8200
Compressed audio signal, Fs=8192 Sparsified magnitude spectrum
800}
__600f
= =
> = 400}
200}
AR . Ll L L
2000 4000 6000 8000 1000012000 0 5000 10000
k
1
0.5¢f
E 0 562 nonzero DFT coefficients
with |X[k]| > 20
-0.5

_l L L L
8000 8050 8100 8150 8200
n
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Noise removal by filtering with the DFT

Here are three (of many) applications of the DFT.
e Signal compressiore(g, MP3, JPEG)

e Digital spectrum analyzer®(g, digital 'scopes)
e Noise removal (filtering)

We have discussed the 1st two applications, now we turn to the third.

The following figure, discussed in detail in lecture, shows a signal with noise, and shows that removing the high frequency compo-
nents can eliminate a lot of noise yet retain the dominant signal components.

Continuous-time signal with NOISE Discrete—time signal
0.3 0.3
RMS error = 0.09
0.2 f5:11025 0.2
N N { \ M ‘ AVM
e £
><N 0 ><N 0 ﬁ HTT hT‘ H ﬂTJ‘v {{ ﬁ h ‘HT[.,
‘lH H‘ m M | lﬁ Ml M
-0.1 -0.1
-0.2 -0.2
0.005 0.01 0.015 0.02 0 50 100 150 200
t[s] n
DFT of x2[n], N=232 Two-sided spectrum of >(2[n]
0.04 0.04
0.035 0.035
0.03 0.03
g 0.025 0.025
N
X 0.02 0.02
0.015 0.015
0.01 0.01
0.005 0.005
0 0
0 58 116 174 232
K -T -T72 W w2 T
Two-sided spectrum of y[n] Filtered discrete-time signal
0.04 0.15 RMS error = 0.03
0.035
0.1
0.03
0.025 — 0.05
=)
0.02 >
0
0.015 Ul
0.01 -0.05
0.005
-0.1
0
0 50 100 150 200
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3d.40

The family of Fourier transforms

In introducing the concept afpectra we mentioned that there are various definitions of spectra depending on the type of signal

being considered.

Periodic signals

Continuous-timé& -periodic
Synthesis

[e 9]
x(t) = Z ape? 2T

k=—o0

Analysis (ourier series)

1 K
ap = = z(t)e 72Tt dt
T Jiry
Frequencies:
k
—kely.
fe {T € }

Discrete-timeN -periodic
Synthesis

k=0
Analysis Discrete Fourier transform)
1 = 2
X[k =+ ;O z[n] e~ Fhn

Frequencies:

2T
0 —k.:k=0,.... N—1;.
wE{Nk’ k=0,..., }

Aperiodic signals

Continuous-time
Synthesis

ot)= [ X(peia
Analysis Fourier transform)
X(f):/ x(t)e 727t qt

Frequencies:
fekRr

Discrete-time
Synthesis

afn)= = [

=5 _ﬂX(@)eJ‘:’”d@

Analysis QDiscrete-time Fourier transform)

oo

X(@)= Z z[n]e7om

n—=—oo

Frequencies:
w € [—m, 7.



