Notes: The Distortion of Transform Coding

We here derive the fact, used in Lab 5, that the overall MSE of a transform coder equals the sum of the MSE's of the scalar quantizers. As we will see, this is basically a corollary to Parseval's relation.

Parseval's Relation: (Property 13, Sec. 4.2.3, Lab 4) If $X[0], \ldots, X[N-1]$ is the $N-$ point $D F T$ of $x[0], \ldots, x[N-1]$, then

$$
\sum_{\mathrm{k}=0}^{\mathrm{N}-1}|\mathrm{X}[\mathrm{k}]|^{2}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}^{2}[\mathrm{n}]
$$

Transform Processing: Let us begin by considering a generic DFT-based "transform processing system" shown below, of which the transform coder considered in Lab 5 can be viewed as a special case.

Fact 1: The MSE between the input $x[0], \ldots, x[N-1]$ and the output $\hat{x}[0], \ldots, \hat{x}[N-1]$ of a transform processing system equals the sum of the MSE's between the DFT coefficients $X[0], \ldots, X[N-1]$ and the output $\hat{X}[0], \ldots$, $\hat{X}[\mathrm{~N}-1]$. That is,

$$
\operatorname{MSE}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=0}^{\mathrm{N}-1}(\mathrm{x}[\mathrm{n}]-\hat{\mathrm{x}}[\mathrm{n}])^{2}=\sum_{\mathrm{k}=0}^{\mathrm{N}-1}|\mathrm{X}[\mathrm{k}]-\hat{X}[\mathrm{k}]|^{2} .
$$

Derivation: We first observe that in the above diagram $\hat{X}[0], \ldots, \hat{X}[N-1]$ is the DFT of $\hat{x}[0], \ldots, \hat{x}[N-1]$. Moreover, since $\mathrm{X}[0], \ldots, \mathrm{X}[\mathrm{N}-1]$ is the DFT of $\mathrm{x}[0], \ldots, \mathrm{x}[\mathrm{N}-1]$, we conclude from the linearity of the DFT (Property 6, Sec. 4.2.3, Lab 4) that

$$
(X[0], \ldots, X[N-1]-\hat{X}[0], \ldots, \hat{X}[N-1]) \quad \text { is the DFT of }(x[0], \ldots, x[N-1]-\hat{x}[0], \ldots, \hat{x}[N-1])
$$

Therefore, Parsevals Relation shows

$$
\sum_{k=0}^{N-1}|X[k]-\hat{X}[k]|^{2}=\frac{1}{N} \sum_{n=0}^{N-1}(x[n]-\hat{X}[n])^{2}
$$

The coefficients in Lab 5: In Lab 5, we choose $N=8$, and we convert $X[0], \ldots, X[7]$ to $\mathrm{c}[0], \ldots, \mathrm{c}[7]$, where

$$
\begin{array}{lll}
c[0]=X[0], & c[1]=\sqrt{2} \operatorname{Re}\{X[1]\}, & c[2]=\sqrt{2} \operatorname{Re}\{X[2]\},
\end{array}, c[3]=\sqrt{2} \operatorname{Re}\{X[3]\}, ~ 子 \begin{array}{ll}
c[4]=X[4], & c[5]=\sqrt{2} \operatorname{Im}\{X[1]\},
\end{array}, c[6]=\sqrt{2} \operatorname{Im}\{X[2]\}, \quad c[7]=\sqrt{2} \operatorname{Im}\{X[3]\} .
$$

The $c[k]$'s are a kind of modified DFT. Notice that the $X[k]$'s can be recovered from the $c[k]$'s via

$$
\begin{aligned}
& X[0]=c[0], \quad X[1]=\frac{1}{\sqrt{2}}(c[1]+j c[5]), \quad X[2]=\frac{1}{\sqrt{2}}(c[2]+j c[6]), \quad X[3]=\frac{1}{\sqrt{2}}(c[3]+j c[7]), \\
& X[4]=c[4], \quad X[5]=X^{*}[3]=\frac{1}{\sqrt{2}}(c[3]-j c[7]), \quad X[6]=X^{*}[2]=\frac{1}{\sqrt{2}}(c[2]-j c[6]), \\
& X[7]=X^{*}[1]=\frac{1}{\sqrt{2}}(c[1]-j c[5])
\end{aligned}
$$

Parseval's Relation for the $c[k]$'s:

$$
\sum_{\mathrm{k}=0}^{\mathrm{N}-1} \mathrm{c}^{2}[\mathrm{k}]=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=0}^{\mathrm{N}-1} \mathrm{x}^{2}[\mathrm{n}]
$$

Derivation: This follows from the original Parseval's Relation and the easy to check fact that

$$
\sum_{k=0}^{N-1} c^{2}[k]=\sum_{k=0}^{N-1}|X[k]|^{2}
$$

Note for example that

$$
\begin{aligned}
|\mathrm{X}[1]-\hat{\mathrm{X}}[1]|^{2} & =\left(\operatorname { R e } \left(\mathrm{X}[1]-\operatorname{Re}(\hat{\mathrm{X}}[1])^{2}+\left(\operatorname { I m } \left(\mathrm{X}[1]-\operatorname{Im}(\hat{\mathrm{X}}[1])^{2}\right.\right.\right.\right. \\
& =\left(\frac{1}{\sqrt{2}} \mathrm{c}[1]-\frac{1}{\sqrt{2}} \hat{\mathrm{c}}[1]\right)^{2}+\left(\frac{1}{\sqrt{2}} \mathrm{c}[5]-\frac{1}{\sqrt{2}} \hat{\mathrm{c}}[5]\right)^{2} \\
& =\frac{1}{2}(\mathrm{c}[1]-\hat{\mathrm{c}}[1])^{2}+\frac{1}{2}(\mathrm{c}[1]-\hat{\mathrm{c}}[5])^{2}
\end{aligned}
$$

Fact 2: (MSE of the Transform Code) The MSE between the input $\mathrm{x}[0], \ldots, \mathrm{x}[\mathrm{N}-1]$ and the output $\hat{x}[0], \ldots$, $\hat{x}[N-1]$ of a transform code based on quantizing $c[0], \ldots, c[N-1]$ equals the sum of the MSE's for each $c[k]$, i.e.

$$
\operatorname{MSE}=\sum_{\mathrm{k}=0}^{\mathrm{N}-1} \operatorname{MSE}(\mathrm{k})
$$

where $\operatorname{MSE}(\mathrm{k})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=0}^{\mathrm{N}-1}(\mathrm{c}[\mathrm{k}]-\hat{\mathrm{c}}[\mathrm{k}])^{2}$.
Derivation: Like the original DFT, the modified transform, which produces the $\mathrm{c}[\mathrm{k}]$'s, has a linearity property and a Parseval's Relation. Thus, the derivation is the same as for Fact 1:

$$
(\mathrm{c}[0], \ldots, \mathrm{c}[\mathrm{~N}-1]-\hat{\mathrm{c}}[0], \ldots, \hat{\mathrm{c}}[\mathrm{~N}-1]) \quad \text { is the modified DFT of }(\mathrm{x}[0], \ldots, \mathrm{x}[\mathrm{~N}-1]-\hat{\mathrm{x}}[0], \ldots, \hat{\mathrm{x}}[\mathrm{~N}-1])
$$

Therefore, Parsevals Relation for the $\mathrm{c}[\mathrm{k}]$'s shows

$$
\sum_{\mathrm{k}=0}^{\mathrm{N}-1}|\mathrm{c}[\mathrm{k}]-\mathrm{c}[\mathrm{k}]|^{2}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{n}=0}^{\mathrm{N}-1}(\mathrm{x}[\mathrm{n}]-\hat{x}[\mathrm{n}])^{2} .
$$

