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Ch. 6. Frequency-Domain Analysis of Filters

Outline
• Frequency response of filters
• Response to sinusoids and complex exponentials
• Response to periodic signals
• Response to suddenly applied signals
• Frequency response of interconnected systems
• Filtering of sampled continuous-time signals

Introduction

The previous chapter focused on thetime domain properties of systems, using input signals consisting of unit-impulse functions,
step functions, etc.

In particular, we derived the key input-output relationship for LTI systems:

x[n]→ LTI with impulse responseh[n] → y[n] = x[n] ∗ h[n] .

This is a time domain relationship. The point of this chapter is to find afrequency domain relationship, which is often the basis
for filter design.

This means we consider sinusoidal signals.

Example.

x[n] = cos(
π

2
n)→ LTI h[n] = δ[n]− δ[n− 1] → y[n] = ?

(given in class)

Instead of generalizing further with sinusoids, we back up and consider complex exponential signals instead, and later analyze
sinusoids by combining two complex exponential signals.

Frequency response

The response of an LTI system with impulse responseh[n] to a complex exponential input signal with frequencyω̂ is the following.

x[n] = Ae φe ω̂n → LTI h[n] → y[n] = ?.

Applying the convolution sum:

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[n− k]h[k] =
∞∑

k=−∞

Ae φe ω̂(n−k)h[k] =

(
∞∑

k=−∞

h[k] e− ω̂k

)
Ae φe ω̂n.

So the output signaly[n] turns out to be the input signal scaled by a the complex value given by the summation in the parentheses.
This summation is so important that it is given a name: thefrequency responseof the system, and its own symbol1:

H(ω̂)
4
=

∞∑
k=−∞

h[k] e− ω̂k.

Note that the “ordinary”H will be used in Chapter 8 for something related but different.

The frequency response of a system is afunctionof frequencyω, because different frequency components are affected differently
by filters; some components are amplified, others attenuated, etc. The frequency response summarizes everything that happens to
a complex exponential input signal of any given frequency.

1For FIR filters, the sum only has a finite number of nonzero terms, so it is always well defined. For IIR filters, the frequency response is only well defined if
the system isstable, i.e., if the frequency response is absolutely summable.
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Example. Determine the response of thetwo-point moving average filter to a complex exponential signal with frequencyω̂.

x[n] = e ω̂n → h[n] = 1
2δ[n] +

1
2δ[n− 1] → y[n] = ?.

The frequency response is given by

H(ω̂) =
∞∑

k=−∞

h[k] e− ω̂k =
∞∑

k=−∞

(
1

2
δ[k] +

1

2
δ[k − 1]

)
e− ω̂k =

1

2
+
1

2
e− ω̂.

So for this system

x[n] = e ω̂n
T
→ y[n] =

(
1

2
+
1

2
e− ω̂

)
e ω̂n.

How do we get insight into what this means? By displaying the frequency responsegraphically.

SinceH(ω̂) is a complex value for any given frequencyω̂, we usually expressH(ω̂) in terms of its magnitude and phase:

H(ω̂) = |H(ω̂)| e\H(ω̂).

• |H(ω̂)| =
√
Re{H(ω̂)}2 + Im{H(ω̂)}2 is called themagnitude responseof the system.

• \H(ω̂) is called thephase responseof the system.

Usually we plot these two quantities over the range−π to π

This form allows a concise input-output relationship for complex exponential signals:

x[n] = Ae φe ω̂n
T
→ y[n] = |H(ω̂)|A︸ ︷︷ ︸

new
amplitude

e (\H(ω̂)+φ)︸ ︷︷ ︸
new

phase

e ω̂n︸︷︷︸
input

exponential
signal

.

For the example above, we have

H(ω̂) =
1

2
+
1

2
e− ω̂ =

1

2
(1 + cos ω̂ −  sin ω̂) =

1 + cos ω̂

2
+ 
− sin ω̂

2

so

|H(ω̂)| =

√(
1 + cos ω̂

2

)2
+

(
− sin ω̂

2

)2
= |cos(ω̂/2)|

\H(ω̂) = tan−1
(
− sin ω̂

1 + cos ω̂

)
=

{
−ω̂/2, |ω̂| ≤ π
periodic, otherwise.

Alternative derivation using “phase splitting” trick:

H(ω̂) =
1

2
+
1

2
e− ω̂ = e− ω̂/2

1

2

[
e ω̂/2 + e− ω̂/2

]
= e− ω̂/2 cos(ω̂/2).

So the magnitude response and the frequency response have the following graphs.

-
ω̂π−π

6Magnitude response|H(ω̂)|
1

-
ω̂π−π

6Phase response\H(ω̂)

−π/2

π/2
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What can we learn from these pictures?

For example, if the input is a constant signal, such asx[n] = 5 = 5e 0n, then the output signal isy[n] = 5H(0) e 0n = 5.

If the input isx[n] = (−1)n = e πn, then the output signal isy[n] = H(π) e πn = 0.

So this system completely removes a sinusoidal frequency component with frequencyω̂ = π.

Whether removing this frequency component is important or not depends on the application.

Ideal magnitude responses

Here are examples of magnitude responses that are often needed in practical applications.(Picture)
• lowpass filter
• highpass filter
• bandpass filter
• bandstop filter
• notch filter
• resonator

(We focus on the magnitude response here, but in some applications the phase response is also important.)

These are calledideal frequency response functions. But in practice we cannot design filters that have exactly these frequency
responses so we make compromises.

What type of filter is the two-point moving average? It is a crude lowpass filter. Far from ideal!

Would it be a good filter for removing high frequency noise? Not very!

Example. The first difference filter:h[n] = δ[n]− δ[n− 1] , has frequency response

H(ω̂) = 1− e− ω̂ = 2 e− ω̂/2
(
e ω̂/2 − e− ω̂/2

2

)
= 2 sin(ω̂/2)e (π/2−ω̂/2) (Picture) .

Properties of frequency response

Periodicity

H(ω̂) is periodic with period2π:
H(ω̂ + 2π) = H(ω̂) .

This is natural because digital frequenciesω̂ andω̂ + 2π areequivalent frequencies.

Proof:

H(ω̂ + 2π) =
∞∑

k=−∞

h[k] e (ω̂+2π)k =

∞∑
k=−∞

h[k] e ω̂k = H(ω̂) .

Conjugate symmetry
h[n] real⇒ H(−ω̂) = H∗(ω̂)

Proof:

H∗(ω̂) =

(
∞∑

k=−∞

h[k] e ω̂k

)?
=

∞∑
k=−∞

h∗[k] e− ω̂k =
∞∑

k=−∞

h[k] e (−ω̂)k = H(−ω̂) .

In particular:
• The magnitude response is even

|H(−ω̂)| = |H(ω̂)| .

• The phase response is odd
\H(−ω̂) = −\H(ω̂) .

These facts make sense intuitively since there is “nothing new” in the negative frequencies.

We could restrict attention to[0, π] but I will continue to show[−π, π].
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Sinusoidal input signals

Now we turn to sinusoidal signals, which are more important in practice than complex exponential signals and show the following
sine in, sine outproperty:

x[n] = A cos(ω̂n+ φ)→ LTI h[n] → y[n] = |H(ω̂)|A cos(ω̂n+ φ+ \H(ω̂)).

Derivation.Do we resort to convolution again? No!

Using inverse Euler:

x[n] =
1

2
Ae φe ω̂n +

1

2
Ae− φe− ω̂n

so applying the earlier I/O relation for complex exponential along with the linearity of the system (superposition property) we have:

x[n]
T
→ y[n] =

1

2
A |H(ω̂)| e (φ+\H(ω̂))e ω̂n +

1

2
A |H(−ω̂)| e (−φ+\H(−ω̂))e− ω̂n

=
1

2
A |H(ω̂)| e (φ+\H(ω̂))e ω̂n +

1

2
A |H(ω̂)| e− (φ+\H(ω̂))e− ω̂n

= |H(ω̂)|A cos(ω̂n+ φ+ \H(ω̂)),

where we used the even symmetry of|H(ω̂)| and the odd symmetry of\H(ω̂).

Summary: sinusoid in⇒ sinusoid out (with different magnitude and phase)
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Sums of sinusoids

Applying linearity:

∑
k

Ak cos(ω̂kn+ φk)→ LTI H(ω̂) →
∑
k

|H(ω̂k)|Ak cos(ω̂kn+ φk + \H(ω̂k)).

Eachsinusoidal componentin the input signal will appear as a sinusoidal component in the output signal with thesame frequency
but with amplitudes and phases that are affected by the frequency response of the filter. Some frequency components might be
amplified, whereas others might be attenuated; some might even be eliminated completely by the filter.

Example.

Determiney[n] whenx[n]→ h[n] = 12 δ[n] +
1
2 δ[n− 1] → y[n] , wherex[n] = 7 + 6 cos(n+ 0.8) + 10 cos(πn).

Recall that thefrequency responseof this two-pointmoving averagesystem is given byH(ω̂) = cos(ω̂/2)e− ω̂/2.

Without any convolution we find the formula as follows:

y[n] = H(0) 7 + |H(1)| 6 cos(n+ 0.8 + \H(1)) + |H(π)| 10 cos(πn+ \H(π))

= 7 + cos(
1

2
)6 cos(n+ 0.8− 1/2) ≈ 7 + 5.3 cos(n+ 0.3).

Although manipulating such formulas is important for problem solving, understanding the conceptgraphicallyis also very impor-
tant.

-
ω̂π−π 1-1

6Magnitude spectrum ofx[n]
7

33
55

-
ω̂π−π 11

6Phase spectrum ofx[n]
0.8

-0.8

-
ω̂π−π

6Magnitude response|H(ω̂)|
1

-
ω̂π−π

6Phase response\H(ω̂)

−π/2

π/2

-
ω̂π−π 1-1

6Magnitude spectrum ofy[n]
7

2.652.65 -
ω̂π−π 1

6Phase spectrum ofy[n]

0.3

-0.3

We multiply the magnitude of each signal component by the corresponding magnitude response value|H(ω̂)|,
and weadd the phase of each signal component by the corresponding phase response value\H(ω̂).
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Filtering periodic signals

We have considered input signals that arecomplex exponentials, sinusoids, andsums-of-sinusoids.

We now considerperiodic input signals, which are an important special case of sums-of-sinusoids.

Suppose we have an LTI system with frequency responseH(ω̂) and the input signalx[n] isN -periodic. Since the system is time
invariant,

x[n]
T
→ y[n] ⇒ x[n−N ]

T
→ y[n−N ] .

But sincex[n] isN -periodic, we havex[n] = x[n−N ] so it must also be the case thaty[n] = y[n−N ]. So the output signal is
alsoN -periodic.

For an LTI system:N -periodic in⇒ N -periodic out.

• That was a time-domain discussion. If we wanted to determine the responsey[n] to a particular input signalx[n] using a time-
domain approach, we would have to perform convolution:y[n] = x[n] ∗ h[n] . For a periodic input signalx[n], this convolution
would often be quite cumbersome.
• Instead, we now consider a frequency-domain perspective, which will greatly simplify finding the output signaly[n] when the

input signalx[n] is periodic.

Whenx[n] andy[n] areN -periodic, we can use the DFT to expressx[n] andy[n] as sums-of-complex-exponentials:

x[n] =

N−1∑
k=0

X [k] e
2π
N kn

y[n] =

N−1∑
k=0

Y [k] e
2π
N kn.

In addition, using our earlier analysis of what happens when complex exponential signals are passed through LTI systems:

x[n] =

N−1∑
k=0

X [k] e
2π
N kn → LTI H(ω̂) → y[n] =

N−1∑
k=0

H

(
2π

N
k

)
X [k] e

2π
N kn.

Comparing the preceding two expressions fory[n], and recalling that any signal has a unique DFT, we see that we have shown the
following purely frequency domainrelationship:

Y [k] = H

(
2π

N
k

)
X [k] .

Each frequency component of the input signalx[n] appears in the output signal with the same frequency2π
N k but with its complex

amplitude scaled by the corresponding frequency responseH
(
2π
N
k
)
.

As a side comment, notice that ifh[n] is supported on0, . . . , N − 1, then

H

(
2π

N
k

)
=

∞∑
n=−∞

h[n] e−
2π
N kn = N

1

N

N−1∑
n=0

h[n] e−
2π
N kn = NH [k] ,

whereH [k] denotes theN -point DFT ofh[n]. So there is a relationship between what we are discussing here and the DFT filtering
approach described earlier.

If M is small, direct (time-domain) filtering approach is much fast than a DFT approach, even with FFT.
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Example.

Considering the following 6-periodic input signal.

-
n

6
x[n]

2 4 6

-12

12

What is the response of the two-point moving average to this input signal?

(In this case the time domain approach would not be so cumbersome, but we illustrate the frequency-domain approach anyway.)

First we find the spectrum ofx[n].

X [k] =
1

6

5∑
n=0

x[n] e−
2π
6 kn =

1

6
[12− 12e−

2π
6 k3] = 2− 2(−1)k.

-
k

6X [k]

1 3 5

4

So the input signal has the following expression in terms of sinusoids:

x[n] = 8 cos(
π

3
n) + 3 cos(πn).

One-sided magnitude spectrum|H(ω̂)| = |cos(ω/2)| . (Picture)

One-sided phase spectrum\H(ω̂) =

{
−ω̂/2, |ω̂| ≤ π
..., else.

(Picture)

UsingY [k] = H
(
2π
6 k
)
, the output signal spectrum is as follows.

-
k

6Y [k]

1 3 5

4 4 cos(π6 )e
− π/6 4 cos(π6 )e

−π/6

So the output signal is

y[n] = 4
√
3 cos(

2π

6
n−
π

6
).

(We could have found this by using “sine in / sine out” as well.) Here is what the output signal looks like.

-
n

6
y[n]

2 6-6

6

Here, the DFT is foranalysisof the signals, not for the filtering itself.

In this case, time-domain convolution would have been easy enough, but the frequency-domain approach is often more insightful.
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6.3
Suddenly applied sinusoidal signals / transient response

We have seen that when aneternalsinusoidal signal is the input to an LTI system, the output is also aneternalsinusoidal signal
with the same frequency:

x[n] = A cos(ω̂n+ φ)→ LTI H(ω̂) → y[n] = |H(ω̂)|A cos(ω̂n+ φ+ \H(ω̂)).

But in practical situations, a “sinusoidal signal” will not be eternal. A more realistic model would be to consider the input signal to
be zero until some timen0, and then it begins to oscillate:

x[n] =

{
0, n < n0
A cos(ω̂n+ φ), n ≥ n0

= A cos(ω̂n+ φ)u[n− n0] .

The step function is a convenient notation (compared to braces!) for a signal that “switches on” at timen0.

This type of signal is called asuddenly applied sinusoidal signal.

Example. x[n] = 10 cos(π3n)u[n− 3]

-
n

6
x[n]

... 1 2 6 ...
-10

10

What is the output of an LTI system if the input signal is a suddenly applied sinusoid?

The answer isnot simplyy[n] = |H(ω̂)|A cos(ω̂n+ φ+ \H(ω̂))u[n− n0] .
We cannot just multiply the input and the output byu[n− n0]. Linearity only allows us to multiply byconstants, not by signals!

Transient response of FIR filters

To answer this question, we focus on FIR filters. To determine the response of an FIR filter to a suddenly applied sinusoid, we
temporarily return to the time-domain input-output relationship for FIR filters:

y[n] =

M∑
k=0

bkx[n− k] .

For simplicity, we consider a sinusoid that is applied atn0 = 0, i.e.,

x[n] = A cos(ω̂n+ φ)u[n] .

For this input signal, the output is given by

y[n] =

M∑
k=0

bkA cos(ω̂(n− k) + φ)u[n− k] .

For n < 0, the output signal is zero, since the system is causal. Forn ≥ M , since0 ≤ k ≤ M , we haveu[n− k] = 1, so the
output signal is given by

y[n] =

M∑
k=0

bkA cos(ω̂(n− k) + φ) = h[n] ∗ x[n] = |H(ω̂)|A cos(ω̂n+ φ+ \H(ω̂)), n ≥M.

This is called thesteady-state responseof the system.
For0 ≤ n < M , u[n− k] is zero whenk > n, so the response is

y[n] =

n∑
k=0

bkA cos(ω̂(n− k) + φ), 0 ≤ n < M.
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This is called thetransient responseof the system.

In summary, for a sinusoidal signal applied suddenly at timen0 = 0, the response of anM th-order FIR filter with frequency
responseH(ω̂) is given by:

y[n] =



0, n < 0∑n
k=0 bkA cos(ω̂(n− k) + φ), 0 ≤ n < M

|H(ω̂)|A cos(ω̂n+ φ+ \H(ω̂)), n ≥M,

whereH(ω̂) =
∑M
k=0 bke

− ω̂k.

Practically speaking, we perform the following analyses.
• To find thetransient response, we use the time-domain formula.
• To find thesteady-state response, we use the frequency-domain formula.

Example. Suppose the input signalx[n] = 3u[n] + 8 cos(π4n)u[n] is the input to the 2nd-order FIR filter withbk =
{
1,−
√
2, 1
}
.

Determine the output signal.

This system is causal, so the output is zero forn < 0.

Next we find the steady-state response. The frequency response isH(ω̂) = 1−
√
2e− ω̂ + e− 2ω̂,

soH(0) = 1−
√
2 + 1 = 2−

√
2 ≈ 0.6 andH(π/4) = 1−

√
2e− π/4 + e π/2 = 0.

Thus, the steady-state response, forn ≥M = 2 is y[n] = 3(2−
√
2) ≈ 1.8.

For the transient response, we apply the time-domain formula to see:

y[0] = b0x[0] = 11

y[1] = b0x[1] + b1x[0] = 1 · (3 + 4
√
2) + (−

√
2) · (3 + 0) = 3 +

√
2 ≈ 4.4.

Rather than using braces, the most concise expression fory[n] is the following:

y[n] = 11δ[n] + (3 +
√
2)δ[n− 1]︸ ︷︷ ︸

transient response

+ 3(2−
√
2)u[n− 2]︸ ︷︷ ︸

steady-state response

.

Example. Suppose the input signalx[n] = 3u[n] + 8 cos(π2n)u[n] is the input to the 2nd-order FIR filter withbk = {1, 2, 1} .
Determine the output signal.

This system is causal, so the output is zero forn < 0.

Next we find the steady-state response. The frequency response isH(ω̂) = 1 + 2e− ω̂ + e− 2ω̂,
soH(0) = 1 + 2 + 1 = 4 andH(π/2) = 1 + 2e− π/2 + e π = 2e− π/2.
Thus, the steady-state response, forn ≥M = 2 is y[n] = 4 · 3 + 2 · 8 cos(π2n−

π
2 ) = 12 + 16 cos(

π
2n−

π
2 ).

For the transient response, we apply the time-domain formula to see:

y[0] = b0x[0] = 11

y[1] = b0x[1] + b1x[0] = 1 · (3 + 0) + 2 · 11 = 25.

Rather than using braces, the most concise expression fory[n] is the following:

y[n] = 11δ[n] + 25δ[n− 1]︸ ︷︷ ︸
transient response

+
(
12 + 16 cos(

π

2
n−
π

2
)
)
u[n− 2]︸ ︷︷ ︸

steady-state response

.

-
n

6
y[n]

... 1 2 6 ...
-4
11

25
12 12

28
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6.6
Interconnected LTI systems

We previously analyzed the interconnection of LTI systems in the time domain.
• Series connection of two LTI systems yields an overall impulse response ofh[n] = h1[n] ∗ h2[n].
• Parallel connection of two LTI systems yields an overall impulse response ofh[n] = h1[n] + h2[n].

We now analyze such interconnections in thefrequency domain.

For two LTI systems connected in series (akacascade):

x[n] = e ω̂n → H1(ω̂)
w[n]=H1(ω̂)e

 ω̂n

→ H2(ω̂) → y[n] = H2(ω̂)H1(ω̂) e
 ω̂n.

So the overall frequency response of the interconnected systems is theproductof the two frequency responses

x[n]→ H(ω̂) =H1(ω̂)H2(ω̂) → y[n] .

We see therefore a correspondence between convolution in the time domain and multiplication in the frequency domain.

Time Domain Frequency Domain
h1[n] ∗ h2[n] ⇐⇒ H1(ω̂)H2(ω̂)
Convolution Multiplication

For two LTI systems connected inparallel (Picture) , the overall frequency response is thesumof the two frequency responses:

H(ω̂) = H1(ω̂) +H2(ω̂) .

Time Domain Frequency Domain
h1[n] + h2[n] ⇐⇒ H1(ω̂) +H2(ω̂)

Addition Addition

Example. Find the overall frequency response of the following cascade:

x[n]→ Lowpass:h1[n] = 1
2δ[n] +

1
2δ[n− 1] → Highpass:h2[n] = δ[n]− δ[n− 1] → y[n] .

The overall frequency response is

H(ω̂) = H1(ω̂)H2(ω̂) =

(
1

2
+
1

2
e− ω̂

)(
1− e− ω̂

)
=
1

2
−
1

2
e− 2ω̂ = e− ω̂

e ω̂ − e− ω̂

2
= e (π/2−ω̂) sin ω̂.

In particular, the magnitude responses multiply:|H(ω̂)| = |H1(ω̂)| |H2(ω̂)| = |cos(ω̂/2)| |2 sin(ω̂/2)| = |sin ω̂| .

-
ω̂π−π

6|H1(ω̂)| = |cos(ω̂/2)|
1

-
ω̂π−π

6|H2(ω̂)| = 2 |sin(ω̂/2)|
2

-
ω̂π−π π/2−π/2

6|H(ω̂)| = |H1(ω̂)| |H2(ω̂)| = |sin ω̂|
1
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Example.

Find the impulse response of the following cascade:

x[n]→ H1(ω̂) = 1 + 2e
 ω̂ − 3e 2ω̂ → H2(ω̂) =

1

1− e ω̂
→ y[n] .

The overall frequency response is

H(ω̂) = H2(ω̂)H1(ω̂) =
(
1 + 2e ω̂ − 3e 2ω̂

) 1

1− e ω̂
=
(
1− e ω̂

) (
1− 3e 2ω̂

) 1

1− e ω̂
= 1− 3e 2ω̂ .

So bycoefficient matching, the impulse response of this (noncausal) system is

h[n] = −3δ[n+ 2] + δ[n] .

Example. Dolby noise reduction (simplified).

x→ high freq. boostH1 →
⊕
↑

noise

→ high freq. reduceH2 → y = x+ reduced high frequency noise.

-
ω̂π−π

6|H1(ω̂)|

1

2

-
ω̂π−π

6|H2(ω̂)|

0.5
1
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Filter design preliminaries

Example. (An allpass filter.)

What filter amplifies all frequency components equally with gain = 10?

Apparently we want|H(ω̂)| = 10 and\H(ω̂) = 0. (Picture)

So we wantH(ω̂) = 10.

What is the corresponding impulse response h[n]?

(Notice how now we arefirst specifyingH(ω̂) and then determiningh[n].)

H(ω̂) =
∞∑

k=−∞

h[k] e− ω̂k = · · ·+ h[−1] e ω̂ + h[0] + h[1] e− ω̂ + h[2] e− ω̂2 + · · · .

So bycoefficient matching:

h[n] =

{
10, n = 0
0, otherwise

= 10δ[n] .

Example. (A lowpass filter.)

Since the two-point moving average was a fairly poor lowpass filter, let us try to design a somewhat better one.

Acknowledging that the ideal lowpass is unachievable, let us try for the following magnitude response.

-
ω̂π−π

6Magnitude response|H(ω̂)|
1

where|H(ω̂)| = 1
2 +

1
2 cos ω̂.

What phase response should we choose? For simplicity, we start with\H(ω̂) = 0, so

H(ω̂) = |H(ω̂)| e\H(ω̂) =
1

2
+
1

2
cos ω̂ =

1

2︸︷︷︸
h[0]

+
1

4︸︷︷︸
h[−1]

e ω̂ +
1

4︸︷︷︸
h[1]

e− ω̂ .

By coefficient matching, we see that the corresponding impulse response would be

h[n] =
1

4
δ[n+ 1] +

1

2
δ[n] +

1

4
δ[n− 1] .

Is this a causal filter? No.
How could we make it causal? We could try just shifting it over by one sample:

hs[n] = h[n− 1] =
1

4
δ[n] +

1

2
δ[n− 1] +

1

4
δ[n− 2] .

Since this is just a “guess” we must compute the frequency response ofhs[n] and see if it has the desired properties.

Hs(ω̂) =
∞∑

k=−∞

hs[k] e
− ω̂k =

1

4
+
1

2
e− ω̂ +

1

4
e− 2ω̂ now a phase trick:

=

[
1

4
e ω̂ +

1

2
+
1

4
e ω̂
]
e− ω̂ =

[
1

2
+
1

2
cos ω̂

]
e− ω̂ = |H(ω̂)| e− ω̂.

So|Hs(ω̂)| = 1
2 +

1
2 cos ω̂ and\Hs(ω̂) = −ω̂. (Picture)

So the above magnitude response corresponds to the simple 2nd-order filter with impulse responsehs[n] and coefficientsbk =
{1/4, 1/2, 1/4} .
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Example. Filter design for removing 60Hz hum

Now we return to the example of trying to eliminate 60 Hz hum, when the sampling frequency isfs = 480Hz, so the corresponding
digital frequency isω0 = 2π

f
fs
= π/4.

We would like other frequencies to be relatively unaffected, but it is impossible to achieve that goal perfectly. As a minimal
constraint, let us require thatH(0) = 1.

Can we do this with a first-order filter? Whenh[n] = b0 + b1δ[n− 1] , the frequency response isH(ω̂) = b0 + b1e− ω̂.
Substituting in the two conditionsH(π/4) = 0 andH(0) = 1 yields the following two equations

0 = b0 + b1e
− π/4

1 = b0 + b1e
− 0 = b0 + b1.

The solution to these equations gives complex values for the coefficients. We want a real system, so we must consider a higher
order system.

A 2nd-order filter has impulse responseh[n] = b0 + b1δ[n− 1] + b2δ[n− 2] and frequency response

H(ω̂) = b0 + b1e
− ω̂ + b2e

− 2ω̂.

Substituting in the two conditionsH(π/4) = 0 andH(0) = 1 yields the following two equations

0 = b0 + b1e
− π/4 + b2e

− π/2

1 = b0 + b1 + b2.

One way to obtain a real solution is to requireb2 = b0 in which case the solution is

b0 = b2 =
1

2−
√
2
, b1 = −

√
2

2−
√
2
.

This is the design illustrated earlier in the Part 5 lecture notes.

To truly understand how well this filter works, we should examine its frequency response.

H(ω̂) = b0 + b1e
− ω̂ + b0e

− 2ω̂ = e− ω̂
(
b0e
−ω̂ + b1 + b0e

− ω̂
)

= e− ω̂ (b1 + 2b0 cos ω̂) .

So the magnitude response is

|H(ω̂)| =

∣∣∣∣∣ 2

2−
√
2
cos ω̂ −

√
2

2−
√
2

∣∣∣∣∣ .
The easiest way to plot this is to use MATLAB ’s freqz command as follows.

b = [1 -sqrt(2) 1]/(2-sqrt(2));
om = linspace(-pi,pi,201);
H = freqz(b, [1], om);
clf, subplot(211)
plot(om, abs(H))

0

2

4

6

|H
(ω

)|

π−π π/2−π/2 ω

Magnitude response of notch filter

This “trial and error” approach to filter design did accomplish the goal of havingH(π/4) = 0 andH(0) = 1, but the large
amplification of high frequencies is an undesirable side effect! The next chapter leads to more systematic approaches to filter
design using z-transforms.
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6.8
Filtering sampled continuous-time signals

One of the most interesting uses of digital signal processing is to apply digital filters to process sampled analog signals. Many
audio systems now include such digital processing as an integral component.

So far we have analyzed what happen when adiscrete-timesignal is passed through a discrete-time filter. Before we can apply such
filters to sampled analog signals, we must analyze what happens in the following scenario.

x(t)→ Ideal C-D withfs → x[n]→ LTI H(ω̂) → y[n]→ Ideal D-C withfs → y(t)

Every component in this system is linear, so as usual, we begin our analysis with sinusoidal signals, knowing that later we can
consider the more interesting case of sums of sinusoids.

We consider the case where there is no aliasing, so the frequencyf0 of the input signal0 ≤ f0 < fs/2.
If x(t) = cos(2πf0t+ φ) then
x[n] = x(nTs) = cos(2πf0nTs + φ) = cos(ω0n+ φ) where the digital frequency isω0 = 2π

f0
fs
∈ [0, π).

Thus, applying the frequency response of the LTI system:y[n] = |H(ω0)| cos(ω0n+ φ+ \H(ω0)).
For the ideal interpolator, the output signal will be

y(t) = |H(ω0)| cos(2πf0t+ φ+ \H(ω0)) =

∣∣∣∣H
(
2π
f0

fs

)∣∣∣∣ cos
(
2πf0t+ φ+ \H

(
2π
f0

fs

))
.

This is essentially another “sine in / sine out” relationship!

Thus, at least as far as sinusoidal input signals are concerned (and more generally for any suitably bandlimited signal), the overall
system acts like a filter with frequency response

H

(
2π
f0

fs

)
.

(In fact, end-to-end this is a LTI system forbandlimited continuous-time signals.)

Thanks to this analysis, we can now consider thedesignof digital filters even for (sampled) analog signals.

Example.
x(t) = 3 cos(2π60t) +A cos(2πf0t+ φ).

The first term is 60Hz hum, contaminating the second signal which is the signal of interest.

Supposef0 = 120Hz. If the sampling rate isfs = 480Hz and the sampled signal is passed through an LTI system with impulse
response

h[n] =
1

2−
√
2
δ[n]−

√
2

2−
√
2
δ[n− 1] +

1

2−
√
2
δ[n− 2] ,

for which

H(ω̂) = e− ω̂
(

2

2−
√
2
cos ω̂ −

√
2

2−
√
2

)
.

Note thatH
(
2π 60480

)
= H(π/4) = 0 andH

(
2π 120480

)
= H(π/2) = e π/2

√
2

2−
√
2
≈ 2.4e π/2.

Thus, the output signal will be

y(t) =

∣∣∣∣H
(
2π
60

480

)∣∣∣∣ 3 cos
(
2π60t+ \H

(
2π
60

480

))
+

∣∣∣∣H
(
2π
120

480

)∣∣∣∣A cos
(
2π120t+ φ+ \H

(
2π
120

480

))
= 2.4A cos(2π120t+ φ+ π/2).

The 60Hz component was removed completely, as desired, but the 120Hz component was amplified by 2.4, which is an undesirable
side effect. So now it is really truly time to move on to better filter design!


