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Laboratory 6

FIR Filtering and Image

Processing

6.1 Introduction

Digital filters are one of the most important tools that signal processors have to modify
and improve signals. Part of their importance comes from their simplicity. In the days
when analog signal processing was the norm, almost all filtering was accomplished with
RLC circuits. Now, a great deal of filtering is accomplished digitally with simple (and
extremely fast) routines that can run on special digital signal processing hardware or on
general purpose processors.

So why do we filter signals? There are many reasons. One of the biggest is noise reduction
(which we have called signal recovery). If our signal has undesirable frequency components,
e.g. it contains noise in a frequency range where there is little or no desired signal, then we
can use filters to reduce the relative amplitude of the signal at such frequencies. Such filters
are often called frequency blocking filters, because they block signal components at certain
frequencies. For example, lowpass filters block high frequency signal components, highpass
filters block low frequency signal components, and bandpass filters block all frequencies
except those in some particular range (or band) of frequencies.

There are a wide range of uses for filtering in image processing. For example, they can
be used to improve the appearance of an image. For instance, if the image has granular
noise, we might want to smooth or blur the image to remove such. Typically such noise
has components at all frequencies, whereas the desired image has components at low and
middle frequencies. The smoothing acts as a lowpass filter to reduce the high frequency
components, which come, predominantly, from the noise. Alternatively, we might want to
sharpen the image to make its edges stand out more. This requires a kind of highpass filter.

In this lab, we will experiment with a class of filters called FIR (finite impulse response)
filters. FIR filters are simple to implement and work with. In fact, an FIR filtering operation
is almost identical to the operation of running correlation which you have worked with in
Laboratory 2. In particular, we will examine the use of FIR filters for image processing,
including both smoothing and sharpening. We will also examine their use on simple one-
dimensional signals.
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6.1.1 “The Question”

• How do we implement FIR filters in Matlab?

• How can we improve the appearance of an image? Specifically, how can we remove
noise or “sharpen” an image?

6.2 Background

6.2.1 Implementing FIR Filters

FIR filters are systems that we apply to signals. An FIR filter takes an input signal x[n],
modifies it by the application of a mathematical rule, and produces an output signal y[n].
This rule is generally called a difference equation, and it tells us how to compute each sample
of the output signal y[n] as a weighted sum of samples of the input signal x[n]. A common
form of the difference equation is given as

y[n] =

M
∑

k=0

bkx[n− k] (6.1)

= b0x[n] + b1x[n− 1] + b2x[n− 2] + . . .+ bMx[n−M ] (6.2)

The bk’s are called the FIR filter coefficients, and M is the order of the FIR filter. The
set of FIR filter coefficients completely specifies an FIR filter. Different choices of the order
and the coefficients leads to different kinds of filters, e.g. to lowpass, highpass and bandpass
filters.

Equation (6.1) defines the class of causal FIR filters. A more general form is given by

y[n] =

M2
∑

k=−M1

bkx[n− k] (6.3)

= b−M1
x[n+M1] + . . .+ b−1x[n+ 1]

+ b0x[n] + b1x[n− 1] + . . .+ bM2
x[n−M2] , (6.4)

where M1 and M2 are nonnegative integers. Here, the order of the filter is M1+M2. When
M1 > 0, the FIR filter is non-causal. To calculate the “present” value of y[n0], a causal FIR
filter only requires “present” (n = n0) and “past” (n < n0) values of x[n]. Non-causal filters,
on the other hand, require “future” (n > n0) values of x[n]. Thus, a filter with difference
equation given by y[n] = x[n] +x[n− 1] is causal, but a filter with difference equation given
by y[n] = x[n]+x[n+1] is non-causal. The distinction between causal and non-causal filters
is necessary if we wish to implement one of these filters in real-time. Causal filters can be
implemented in real-time, but to implement non-causal filters we generally need all of the
data for a signal before we can filter it.

Compare equation (6.3) with the equation for performing running correlation between a
signal b[n] and x[n]:

y[n] = C(b[k], x[k − n]) =

∞
∑

k=−∞

b[k]x[k − n]. (6.5)
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y[n] = Σx[k]bk-n 
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6

Figure 6.1: A graphical illustration of filtering. The filter coefficients, bk and signal to be
filtered, x[n], are shown on the top axis. The middle axis shows x[n] and a time-reversed
and shifted version of bk. We multiply these two signals and sum the result to yield a single
sample of the output, y[n], which is shown on the bottom axis. For example, to compute
the y[6] sample, we multiply the samples of x[n] by b6−n and sum the result.

Recall that we thought of running correlation as a procedure where we “slid” one signal
across the other, calculating the in-place correlation at each step. If we consider that the
bk’s of an FIR filter form a signal, then the application of an FIR filter uses the same
procedure with two minor differences. First, when we apply an FIR filter, we are only
“correlating” over a finite range; however, we typically assume bk = 0 for k outside the
range [M1,M2]. Thus, we can change the limits of summation to range over (−∞,∞)
without changing the result. Second, when applying a filter, the signal x[n] is time-reversed
with respect to the bk coefficients

1. This is not the case for running correlation.

From the definition alone, it is not easy to see how a filter “works.” With the connection
to correlation, though, we can suggest an intuitive graphical understanding of this process
which is shown in Figure 6.1. To calculate a single sample of y[n], we time-reverse the signal
formed by the bk coefficients (by flipping it across the n = 0 axis). Then, we shift this
time-reversed signal by n samples and perform in-place correlation. The result is the nth

sample of y[n]. To build up the entire signal y[n], we do this repeatedly, “sliding” one signal
across the other and calculating in-place correlations at each point.

You may find it useful to go back to Lab 2 and review the algorithm for in-place cor-
relation. In that description of the algorithm, we used x[n] where here we wish to use the
signal formed by the bk’s. We can use this algorithm when implementing FIR filters, as well.
Note, however, that we want to time-reverse the bk coefficients when we multiply them by
the incoming signal samples. That is, we always want to multiply the b−M1

coefficient by
the newest sample in the buffer.

1That is, x[n− k] is a time-reversed version of x[k − n], just as s[−n] is a time-reversed version of s[n].
Note that we can “time-reverse” the bk coefficients rather than x[n] and achieve the same result.
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Figure 6.2: Input and output of a 5-point moving average filter.

6.2.2 Edge effects and delay

Suppose that we consider filtering a signal, x[n], with a causal filter whose difference equation
is given by

y[n] =
1

5
x[n] +

1

5
x[n− 1] +

1

5
x[n− 2] +

1

5
x[n− 3] +

1

5
x[n− 4]. (6.6)

That is, bk = (
1
5 , 1

5 , 1
5 , 1

5 , 1
5 ), M1 = 0, and M2 = 4. We can think of the operation of this

filter as replacing each sample of x[n] with the average of that sample and the past four
samples. As such, we often call filters like this moving-average filters. The result of this
filtering for a particular signal is shown in Figure 6.2.

In this particular case, x[n] has a support interval of [0, 28] and is zero outside of this
range. Consider what happens to the output signal, y[n], near the edges of this range. First,
the output sample at y[0] will be dominated by zeros from outside of the support interval,
because

y[0] =
1

5
x[n] +

1

5
0 +

1

5
0 +

1

5
0 +

1

5
0 . (6.7)

Similarly, y[1], y[2], y[3], and y[4] will also be affected by these zeros, but to a lesser extent.
This effect can be seen in Figure 6.2 as y[n] “ramps up” to the nominal values of x[n]. This
effect is known as a start-up transient. A similar effect occurs beyond y[28], where the signal
takes a few samples to “die off”. This effect is known as an ending transient. Both of these
transients are known as edge effects, and need to be considered when filtering.

What do the edge effects do to the support length of the output signal? Well, from
Figure 6.2 we can see that y[n] has a support length four samples longer than that of x[n].
In general, the length of the output signal which is non-zero will be equal to the length of
the input signal plus the order of the FIR filter.

There is one additional point that should be examined. Look at the location of the “dip”
in Figure 6.2. In x[n], the “dip” occurs at sample 18, but in y[n] it occurs at sample 20. In
fact, the entire support interval of y[n] has not only gotten larger, it has also been shifted
over to the right (or delayed) by two samples. Why is this? The delay introduced by this
filter results from the fact that each output sample is an average of samples to its left. If
we instead define this filter so that it considers two samples to both the right and left, we
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can eliminate this delay. That is, we define a different difference equation:

y[n] =
1

5
x[n+ 2] +

1

5
x[n+ 1] +

1

5
x[n] +

1

5
x[n− 1] +

1

5
x[n− 2]. (6.8)

This modification, though, has taken a causal filter and made it non-causal.
Delay is a common problem for causal filters. In fact, the only causal filter that does not

introduce delay is a zero-order amplifier system with a difference equation y[n] = b0x[n].
This system changes the amplitude of a signal, but does nothing else. Compare this to the
system with difference equation y[n] = x[n − N ]. This system’s only effect is to delay the
signal by N samples. In some circumstances, the delay introduced by a causal filter does
not affect the operation of the system. For our purposes in this laboratory, we will need to
be careful to account for the delay introduced by FIR filters when comparing two signals
with a mean-squared or RMS distortion measure.

6.2.3 Noise and distortion

One of the most common reasons to apply a filter is to attempt to remove noise. There is
no single definition of noise, but the most general usage describes noise as any unwanted
component of a signal. For instance, a common type of electrical noise has a sinusoidal char-
acteristic with a frequency of 60 Hz. This noise arises from the frequency of the alternating
current used to distribute electricity. This 60 Hz signal can “leak” into other systems and
corrupt sensor measurements. Another common type of noise is random noise. This sort of
noise typically has a jagged-looking characteristic. It typically manifests itself as static in
audio signals and “snow” in images.
Filtering gives us a means of reducing the noise in a signal through frequency blocking.

In general, filters operate by attenuating (i.e., blocking) certain frequencies in a signal
while passing others with relatively little attenuation. Note that removing noise in this
way requires the noise to have a different frequency-domain description than the signal of
interest.
For instance, consider the example of 60 Hz sinusoidal noise. If our signal of interest is

composed of frequencies above 60 Hz, we can treat this component as low frequency noise
and attempt to remove it with a filter that blocks low frequencies. This sort of filter is
generally called a highpass filter. If our signal has components above and below 60 Hz, we
might try to remove the corrupting signal by only eliminating frequencies near 60 Hz. This
would require a bandpass filter
Random noise typically has frequency components all over the spectrum. However, a

good portion of these components will usually have higher frequency than the frequencies
in our signal. Thus, we might consider the application of a lowpass filter that blocks high
frequencies to reduce the amplitude of noise components.
Consider the block diagram in Figure 6.3. This is a model where a signal of interest, x[n],

is corrupted by the addition of a noise signal, v[n]. We apply a recovery filter to try to remove
the noise component from s[n] = x[n]+v[n]. The resulting signal is ŝ[n] = x̂[n]+ v̂[n], where
x̂[n] is the filtered signal of interest (which we hope will be as similar to x[n] as possible)
and v̂[n] is the filtered noise signal (which we hope will be as small as possible). Often
we can tune the noise-removal filter to increase its “strength” (by, for instance, increasing
the length of a moving average filter). The “stronger” the filter, the more noise we can
eliminate. Unfortunately, the filter also distorts the signal of interest; a stronger filter will
distort the signal of interest more. Thus, the use of filters to remove noise can be thought
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x[n]

v[n]

+ Recovery
Filter

s[n]
s[n] = x[n] + v[n]^^^

Figure 6.3: A block diagram of additive noise and a recovery filter that attempts to remove
the noise.

of as finding a tradeoff between two types of distortion. The goal, then, is to find the point
where the total distortion (as measured by the mean-squared error or RMS error between
x[n] and ŝ[n]) is minimized as a function of filter strength.

Nonlinear filtering

While standard FIR filters can be useful for noise reduction, in some cases we may find
that they distort the desired signal too much. An alternative is to use nonlinear filters.
Nonlinear filters have the potential to remove more noise while introducing less distortion
to the desired signal; however, the effects of these filters are much more difficult to analyze.
Consider the case of an image, for instance. One of the most important features of

images of natural scenes are edges. Edges in images are usually just sharp transitions where
one object ends and another begins. If we are attempting to remove high-frequency noise
from an image, we will often apply a lowpass filter. Edges, though, have considerable high-
frequency content, so the edges in resulting image will be smoothed out. To get around this
problem, we can consider the application of a common nonlinear filter called a median filter.
Median filters replace each sample of a signal with the median (i.e., the most central value)
of a block of samples around the original sample. That is, we can describe the operation of
the median filter as

y[n] =Median(x[n+M1], . . . , x[n], . . . , x[n−M2]) (6.9)

where

Median(x1, . . . , xN ) =

{

x((N+1)/2) N odd
1
2 (x(N/2) + x(N/2+1)) N even

(6.10)

and where x(n) is the nth smallest of the values x1 through xN . The order of the median
filter is given by M1 +M2, and it determines how many samples will be included in the
median calculation. Note that the filter is noncausal because its output depends on future,
as well as past and present, inputs. Unlike lowpass filters, median filters tend to preserve
edges in signals very well. These filters are also very powerful for removing certain types of
noise while introducing relatively little distortion. In this laboratory, we will examine the
effect of applying nonlinear filters to two-dimensional signals.

6.2.4 Filtering two-dimensional signals

The above discussions of filtering are for one-dimensional signals. Suppose we would like to
filter two-dimensional signals like images instead of just one-dimensional signals. There are
three ways to approach this.
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The first approach simply applies one-dimensional filters to each of the rows (or each of
the columns) of an image. This approach tends to produce an “uneven” filtered signal that
is, for instance, smoothed in one dimension but not the other. This unevenness is generally
not desirable and motivates a second approach.
The second approach is somewhat “stronger” than the first. This approach applies one-

dimensional filters to both the rows and the columns. In this lab we will adopt the convention
that we first filter the columns, and then filter the rows of the resulting image. Most types
of filters that we use in one dimension can be extended to two dimensions in this fashion.
For example, if we apply the moving average filter with difference equation give in equation
(6.6), for instance, this will have the effect of smoothing the image. Note that the edge
effects and delay issues discussed earlier also apply to two-dimensional filtering done in this
fashion.
If we apply that moving average filter with order 4 to the columns and then the rows of

the image, what is the mathematical effect of the operation? It is not too difficult to see
that each sample of the image has been replaced by the average of a 5 × 5 block of pixels.
This suggests that we could describe this filtering operation in terms of two-dimensional set
of filtering coefficients. For instance, the difference equation for this two-dimensional filter
would be

y[m,n] =
4
∑

k=0

4
∑

l=0

1

25
x[m− k, n− l]. (6.11)

This operation is equivalent to filtering with a two-dimensional set of coefficients bk,l, where
bk,l =

1
25 for k = 0, . . . , 4 and l = 0, . . . , 4.

This result suggests the third, most general, approach to FIR filtering of two-dimensional
signals. The general difference equation for this approach is

y[m,n] =

M2
∑

k=−M1

N2
∑

l=−N1

bk,lx[m− k, n− l]. (6.12)

[−M1,M2] and [−N1, N2] define the range of nonzero coefficients. Note that a filter, such
as the one defined by equation 6.11, is causal if M1 and N1 are non-negative. However,
we should also note that in image processing, causality is rarely important. Thus, two-
dimensional FIR filters typically have coefficients centered around b0,0. A schematic of such
a set of filter coefficients is shown in Figure 6.4.

6.2.5 Image processing with FIR filters

If you’ve ever used photo editing software like Adobe Photoshop, you may have seen op-
erations called “smoothing” and “sharpening”. These and many similar operations are
typically implemented using simple two-dimensional FIR filters. We will consider three
such operations in this laboratory: smoothing (or blur), edge finding, and sharpening (or
edge enhancement)
We’ve already suggested that a moving average filter performs a smoothing operation.

However, there are more advanced ways of smoothing. Consider, for instance, a filter
that weights samples nearby more strongly than those that are far away. This performs
a “weaker” smoothing, but it also introduces less distortion. Because of this, these sorts
of filters are often more useful for random noise reduction than standard moving average
filters.
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Figure 6.4: The coefficients of a two-dimensional moving average filter. In this figure, pixels
exist at the intersection of the horizontal and vertical lines.

The “edge finding” filter highlights edges in an image by producing large positive or
negative values while setting constant regions of the image to zero. The most basic edge
finding filter is a simple one-dimensional first difference filter. A first difference filter has
the difference equation

y[n] = x[n]− x[n− 1]. (6.13)

This filter will tend to respond positively to increases in the signal and negatively to decreases
in the signal. Adjacent input samples that are identical (or nearly so), though, will tend to
cancel one another, causing the output to be zero (or close to zero). There are various two-
dimensional “equivalents” of the first-difference filter, many of which respond to edges of a
particular orientation. One general edge-finding filter has the following difference equation:

y[m,n] = 1
4x[m+ 1, n+ 1] − x[m+ 1, n] + 1

4x[m+ 1, n− 1]
− x[m,n+ 1] + 3x[m,n] − x[m,n− 1]
+ 1

4x[m− 1, n+ 1] − x[m− 1, n] + 1
4x[m− 1, n− 1]

(6.14)

This filter “finds” edges of almost any orientation by outputting a value with large magnitude
wherever an edge occurs. Both the first difference filter and this general edge-finding filter
are examples of highpass filters. Note the “oscillatory” pattern of bk values such that
adjacent coefficients are negatives of one another. This pattern is characteristic of highpass
filters. Note that both of these filters will typically produce both positive and negative
values, even if our input signal is strictly non-negative. Also note that for both of these
filters, the average of the bk coefficients is zero; this means that these filters tend to “reject”
constant regions of an input signal by setting them to zero.
The third operation, sharpening, makes use of an edge finding filter as well. Basically,

the sharpening filter produces a weighted sum of the output of an edge-finding filter and
the original image. Suppose that x[m,n] is the original image, and y[m,n] is the result of
filtering x[m,n] with the filter defined in equation (6.14). Then, the result of sharpening,
z[m,n] is given by

z[m,n] = x[m,n] + by[m,n], (6.15)

where b controls the amount of sharpening; higher values of b produce a “sharper” image.
Note that z[m,n] can also be viewed as the output of a single filter. For display purposes,
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we will threshold the resulting signal so that the output image has the same range of data
values as the input image. That is, assuming that our input image has values between 0
and 255, the final output of the sharpening operation, ẑ[m,n] will be

ẑ[m,n] =







0 z[m,n] < 0
z[m,n] 0 ≤ z[m,n] ≤ 255
255 255 < z[m,n]

(6.16)

Note that thresholding is a nonlinear operation, but it is not crucial to the sharpening
process. This final result can also be considered to be the output of a single nonlinear filter.
Sharpening is a useful operation when an image has undergone an undesired smoothing

operation. This happens frequently in optical systems when they are not entirely in focus.
Unlike smoothing filters, though, sharpening filters tend to enhance random noise; often they
may make “noise-like” components of a signal visible where they were not visible before.

6.3 Some Matlab commands for this lab

• 1-D Filtering in Matlab: The usual method for causal filtering in Matlab is to
use the filter command, like this:

>> yy = filter(bb,1,xx);

(We’ll use the second parameter later in the course when we study IIR filters.) xx is a
vector containing the discrete-time input signal to be filtered, bb is a vector of the bk

filter coefficients, and yy is the output signal. The first element of this vector, bb(1),
is assumed to be b0.

By default, filter returns a portion of the filtered signal equal in length to xx.
Specifically, the resulting signal includes the start-up transient but not the ending
transient. This means that the output will be delayed by an amount determined by
the coefficients of the filter.

A method for filtering which does not introduce delay is often desirable, i.e. a non-
causal filtering method, especially when calculating RMS error between filtered and
original versions of a signal. The command filter2 is meant as a two-dimensional
filtering routine, but it can be used for 1-D filtering as well. Further, it can be in-
structed to return a “delay-free” version of the output signal. When using filter2,
it is important that xx and bb are either both row vectors or both column vectors.
Then, we use the command

>> yy = filter2(bb,xx,'same');

where xx is the input signal vector, yy is the output signal vector, and bb is the vector
of filter coefficients. If the length of the vector bb is odd, the b0 coefficient is taken
to be the coefficient at center of the vector bb. If the length of bb is even, b0 is taken
to be just left of the center. The output of filter2 has support equal to that of the
input signal xx.

Though we will not use these additional options, we can also have filter2 return the
full length of the filtered signal (the length of the input signal plus the order of the
filter) like this:
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>> yy = filter2(bb,xx,'full');

or just the portion not affected by edge effects (the length of the input signal minus
twice the order of the filter), like this:

>> yy = filter2(bb,xx,'valid');

• 2-D Filtering in Matlab: Three approaches to filtering a two-dimensional signal
were mentioned in Section 6.2.4. The first approach, which simply applies a one-
dimensional filter to each row of the image (alternatively, to each column) can be
implementing with the Matlab commands described in the previous bullet.

The second approach applies a one-dimensional filter first to the columns and then to
the rows of the image produced by the first stage of filtering. If the one-dimensional
filter is causal with coefficients bk contained in the Matlab vector bb and the image
is contained in the 2-dimensional matrix xx, then this approach can be implemented
with the command

>> yy = filter(bb,1,filter(bb,1,xx)')';

Note that we do not need to vectorize the image xx, because when presented with an
matrix, filter applies one-dimensional filtering to each column. However, to perform
the second stage of filtering (on rows of the image produced by the first stage), we need
to transpose the image produced by the the first stage of filtering and then transpose
the final result again to restore the original orientation. This approach will introduce
edge effects at the top and on one side of the image; however the resulting image will
be the same size as x.

The third approach uses a two-dimensional set of coefficients bk,l. If these coefficients
are contained in the matrix bb and the image is contained in the matrix xx, then the
filter can be implemented with the command

>> yy = filter2(bb,xx,'same');

Note that the 'same' parameter indicates that the filter is non-causal and thus the
b0,0 coefficient is located as near to the center of the matrix bb as possible. The same
alternate third parameters for filter2 that are listed in the 1-D filtering section apply
here as well.

• Generating filter coefficients: We will be examining the effects of many types of
filters in this laboratory. Some have filter coefficients that can be generated easily in
Matlab. Others require a function (which we will provide to you) to generate. Note
that the the vectors representing the bk’s will be column vectors.

1. An L-point moving average filter has filter coefficients given by bb = ones(L,1)/L.

2. A first-difference filter has filter coefficients given by bb = [1; -1];

3. The function g_smooth produces coefficients for a particular type of smoothing
(lowpass) filters with easily tunable “strength”. g_smooth takes a single real-
valued parameter, which is the “width” of the filter, and returns a set of tapered
filter coefficients of the corresponding filter, bb. For example,
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Figure 6.5: The coefficients for g smooth filters with varying widths.

>> bb = g_smooth(1.2);

returns the coefficients for a filter with “width” 1.2. A g_smooth filter with width
0 will pass the input signal without modification, and higher widths will smooth
more strongly. Good nominal values for the width range from 0.5 to 2. The bk

coefficients for g_smooth filters with several widths are plotted in Figure 6.5.

4. The function g_smooth2 is the two-dimensional equivalent of g_smooth. It again
takes a single input parameter (the width of the filter) and returns the two-
dimensional set of filter coefficients of the corresponding filter. For example,

>> bb = g_smooth(0.8);

returns the coefficients of a filter with width 0.8.

5. In Section 6.2.5, we presented a general-purpose two-dimensional edge-finding
filter in equation (6.14). The coefficients for this filter are given by

>> bb = [.25, -1, .25; -1, 3, -1; .25, -1, .25];

6. In Section 6.2.5, we also discussed a method for implementing a sharpening filter.
Since we include a threshold operation, this operation is nonlinear and cannot be
accomplished using only an FIR filter. Thus, we provide the sharpen command,
which takes an image and a sharpening “strength” and returns a sharpened image:

>> yy = sharpen(xx,0.7);

The second parameter is the strength factor, b, as discussed in Section 6.2.5. A
sharpening strength of 0 passes the signal without modification.

7. As described in Section 6.2.3, median filters are a special type of nonlinear filter,
and they cannot be described using linear difference equations. To use a median
filter on a one-dimensional signal, we use the command2 medfilt1 like this:

>> yy = medfilt1(xx,N);

2
medfilt1 is a part of the signal processing toolbox.
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N is the order of the median filter, which simply describes how many samples we
consider when taking the median. In two dimensions3, we use medfilt1 twice:

>> yy = medfilt1(medfilt1(xx,N)',N)';

Again, N is the order of the median filter. Here, we are using a one-dimensional
filter on both the rows and columns of the image. Note that since medfilt1

operates down the columns, we need to transpose the image between the filtering
operations and again at the end.

6.4 Demonstrations in the Lab Section

• Filtering in Matlab.

• FIR filters for noise reduction

• Image processing with FIR filters

• Median filtering

6.5 Laboratory Assignment

1. (Noise reduction in 1-D) In this problem, you investigate noise-reduction on one-
dimensional signals. Download the file lab6_data.mat, which contains various signals
for this lab. In this problem, we will consider the signal simple, which is a noise-free
one-dimensional signal, and simple_noise, which is the same signal with corrupting
random noise.

(a) (Effects of delay) First, we’ll examine the delay introduced by the two filtering
implementations, filter and filter2, that we will be using. Filter simple with
a 7-point running average filter. Do this twice, first using filter and then using
filter2 with the 'same' parameter4.

• Use subplot and plot to plot the original signal and two filtered signals in
three subplots of the same figure.

• One of the filtering commands has introduced some delay. Which one? How
many samples of delay have been added?

• Compute the mean-squared error between the original signal and the two
filtered signals. Which is lower? Why?

(b) (Measuring distortion in 1-D) Now, use filter2 to apply the same 7-point run-
ning average filter to the signal simple_noise. Referring to Figure 6.3, we con-
sider simple to be the signal of interest x[n], simple_noise to be the noise
corrupted signal s[n], and their difference to be the noise, v[n] = s[n] − x[n].
Note that the lower of the two mean-squared errors that you computed in Prob-
lem 1a is MS(x̂[n] − x[n]), which is a measure of the distortion of the signal of
interest introduced by the filter.

3We can also use medfilt2, but this function is a part of the Image Processing Toolbox which we do not
require for this course. medfilt2 works by outputting the median of an N ×N block of the image.

4Henceforth, every time you use filter2 in this laboratory, you should use the ’same’ parameter.
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• Compute the mean-squared error between simple and simple_noise. Re-
ferring back to Figure 6.3, this is MS(v[n]), the mean-squared value of the
noise.

• Compute the mean-square error between your filtered signal and simple.
This value is MS(ŝ[n] − x[n]), which is a measure of how a good a job the
filter has done at recovering the signal of interest.

• Determine the distortion due to noise at the output of your reconstruction
filter (i.e., MS(v̂[n])) by subtracting MS(x̂[n]− x[n]) from MS(ŝ[n]− x[n]).

• CompareMS(v̂[n]) andMS(ŝ[n]−x[n]) toMS(v[n]). What is the dominant
source of distortion in this filtered signal?

(c) (Running average filters in 1-D) Use filter2 to apply a 3-point, a 5-point, and
an 9-point moving average filter to simple_noise.

• Use plot and subplot to plot the original signal, the three filtered signals,
and the three sets of filter coefficients, in seven panels of the the same figure.

• Compute the mean-squared error between each filtered signal and simple.

• Which of the four moving average filters that you have applied has the lowest
mean-squared error? Compare this value to MS(v[n]).

(d) (Tapered smoothing filter in 1-D) Download the file g_smooth.m, and use it to
generate filter coefficients with “widths” of 0.5, 0.75, and 1.0. (Note the lengths
of the returned coefficient vectors. You should plot the filter coefficients to get a
sense of how the “width” factor affects the them.) Use filter2 to apply these
filters to simple_noise.

• Use plot and subplot to plot the three filtered signals and the three sets of
coefficients in six panels of the same figure.

• Compute the mean-squared error between each filtered signal and simple.

• Which of these filtered signal has the lowest mean-squared error? Compare
this value to the lowest mean-squared error that you found for the moving
average filters and to MS(v[n]).

2. (Noise reduction on images) In this problem, you look at the effects applying smooth-
ing filters to an image for noise reduction. Download the files peppers.tif5 and
peppers_noise1.tif. The first is a “noise-free” image, while the second is an image
corrupted by random noise. Load these two images into Matlab.

(a) (Examining 2-D filter coefficients) We’ll be using the function g_smooth2 to pro-
duce filter coefficients for this problem. To get a sense of what these coefficients
look like, generate the coefficients for a g_smooth2 filter with width 5. In two
side-by-side subplots of the same figure:

• Display the coefficients as an image using imagesc.

• Generate a surface plot of the coefficients using the command surf(bb)

(assuming your coefficients matrix is called bb).

(b) (Examine the effects of noise) First, we’ll consider the noisy signal peppers_noise1.

5Like “cameraman”, “peppers” is a standard image used for testing image processing routines. Our
version, however, is smaller than the traditionally used image.
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• Use subplot to display peppers and peppers_noise1 side-by-side in a single
figure. Remember to set the color map, set the axis shape, and include a
colorbar as you did in lab 4.

• Compute the mean-squared error between these two images.

(c) (Minimizing the MSE) Our goal is to find a g_smooth2 reconstruction filter that
minimizes the mean-squared error between the filtered image and the original,
noise-free image. Use filter2 when filtering signals in this problem.

• Find a filter width that minimizes the mean-squared error. What is this filter
width and the corresponding mean-squared error? (Hint: you might want to
plot the mean-squared error as a function of filter width.)

• Display the filtered image with the smallest mean-squared error.

• Look at some filtered images with different widths. Can you find one that
looks better than the minimum mean-squared error image6? What filter
width produced that image?

3. (Salt and pepper noise in images) Next, we’ll look at methods of removing a different
type of random noise from this image. Download the file peppers_noise2.tif and
load it into Matlab. This signal is corrupted with salt and pepper noise, which may
result from a communication system that loses pixels.

(a) (Examining the noise) First, let’s see what we’re up against. Salt and pepper
noise randomly replaces pixels with a value of either 0 or 255. In this image,
one-fifth of the pixels have been lost in this manner.

• Display peppers_noise2.

• Compute the mean-squared error between this image and peppers.

(b) (Using lowpass filters) Now, let’s try using some g_smooth2 filters to eliminate
this noise. Start by using filter2 to filter peppers_noise2 with a g_smooth2

filter of width 1.3. Note that this is very close to the optimal width value.

• Display the resulting image.

• Compute the mean-squared error.

(c) (Using median filters) Finally, let’s use a median filter to try to remove this noise.
Apply median filters of order 3 and 5 to peppers_noise2.

• Use subplot to display the two filtered images side-by-side in the same figure.

• Compute the mean-squared errors between the median-filtered signals and
peppers.

• Look at the filtered images and describe the distortion that the median filters
introduce into the signal.

• Compare the median filter to the g_smooth2 filters. Discuss both measured
distortion and the appearance of the filtered signals.

4. (Edge-finding and enhancing) In this last problem, we’ll look at edge-finding and
sharpening filters.

6Though mean-squared error is widely used as a measure of signal distortion, it is well known that its
judgments of quality do not always correspond closely to the eye’s judgments of quality.
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(a) (Applying a first difference filter) In order to see how edge-finding filters work,
let’s start in one dimension. Use filter to apply a one-dimensional first differ-
ence filter to the signal simple (which can be found in lab6_data.mat).

• Plot the resulting signal.

• There are five non-zero “features” of this signal. (These features should be
clear from the plot.) Describe them and what they correspond to in simple.

(b) (“Finding” edges) Now we’d like to look at the effects of the general edge-finding
filter presented in Section 6.2.5. Use filter2 to apply this filter to peppers.

• Display the resulting image.

• Describe the resulting image.

• Zoom in on the filtered image and examine some of the more prominent edges.
What do you notice about these edges? (Hint: Are they just a “ridge” of a
single color?)

(c) (Sharpening an image) Download sharpen.m and use the function to display
several sharpened versions of the peppers image.

• Display the sharpened image with a “strength” of 1 alongside the original
peppers image using subplot.

• Zoom in on this sharpened image. What makes it look “sharper”? (Hint:
Again, look at the prominent edges of the images. What do you notice?)

• The sharpened images (especially for strengths greater than 1) generally
appear more “noisy” than the original image. Speculate as to why this
might be the case.

(d) (Using sharpening to remove smoothing) Finally, we want to try using the “sharpen”
function to undo a blurring operation. Download the file peppers_blur.tif and
load it into Matlab.

• Compute the RMS error between peppers and peppers_blur.

• Use sharpen to “de-blur” the blurred image. Find the sharpening strength
that minimizes the RMS error of the “de-blurred” image. Include this
strength and its corresponding RMS error in your report.

• Display the “de-blurred” image with the minimum RMS error and alongside
peppers_blur using subplot. Include the resulting figure in your report.

Note that sharpening is very much a perceptual operation. The minimum distor-
tion sharpened image may not look terribly much improved. Look at what hap-
pens as you increase the sharpening factor even more. With additional “sharp-
ening,” the (measured) distortion may increase, but the result looks better per-
ceptually.

5. On the front page of your report, please provide an estimate of the average amount of
time spent outside of lab by each member of the group.
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