
EECS 206 Filters in the Frequency-Domain III July 10, 2002

1 Review and Topics

The frequency response of an LTI filter with the impulse response h[n] is

H(ω̂) =
∞∑

k=−∞
h[k]e−jω̂k.

• The response to a complex exponential is complex exponential

x[n] = Aejφejω̂n 7→ y[n] = H(ω̂)x[n] = H(ω̂)Aejφejω̂n

Sum of complex exponentials:

x[n] =
∑

l

Ale
jφlejω̂ln 7→ y[n] =

∑

l

H(ω̂l)Ale
jφlejω̂ln

• The response to a sinusoid

x[n] = A cos(ω̂n + φ) 7→ y[n] = A
∣∣H(ω̂)

∣∣ cos
(
ω̂n + φ + ∠H(ω̂)

)
.

Sum of sinusoids:

x[n] =
∑

l

Al cos(ω̂ln + φl) 7→ y[n] =
∑

l

Al

∣∣H(ω̂l)
∣∣ cos

(
ω̂ln + φl + ∠H(ω̂l)

)

• The response to a periodic signal

• The response to a suddenly-applied signal

2 Periodic Signals and LTI Systems

2.1 The Response of an LTI Filter to a Periodic Signal

h[n] or H(ω̂)- -Periodic x[n] y[n]

(a) A periodic signal with period N0 can be decomposed into a sum of complex exponential

x[n] =
N0−1∑

k=0

X[k]ej 2πk
N0

n,

where

X[k] =
1

N0

N0−1∑
n=0

x[n]e−j 2πk
N0

n, k = 0, . . . , N0 − 1.
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(b) Then for each component signal

X[k]ej 2πk
N0

n 7→ X[k]H
(2πk

N0

)
ej 2πk

N0
n

(c) Therefore, the linearity of the filter yields

y[n] =
N0−1∑

k=0

X[k]H
(2πk

N0

)
ej 2πk

N0
n

=
N0−1∑

k=0

X[k]
∣∣H

(2πk

N0

)∣∣ej

(
2πk
N0

n+∠H
(

2πk
N0

))
.

(d) Comments

(i) This is not the sort that is usually processed by hand.
(ii) But it is a powerful tool.
(iii) An aperiodic signal can be dealt with using this technique by dividing it into blocks.

(e) DFT Fact:

(i) When x[n] is periodic with N0, so is y[n].
(ii) So

y[n] =
N0−1∑

k=0

Y [k]ej 2πk
N0

n,

where Y [k] (k = 0, . . . , N0 − 1) are the N0-point DFT coefficients of y[n].
(iii) But we know that

y[n] =
N0−1∑

k=0

X[k]H
(2πk

N0

)

︸ ︷︷ ︸
=Y [k]

ej 2πk
N0

n,

because DFT is one-to-one (i.e., there is only one set of DFT coefficients for a signal).
(iv) Therefore, the N0-point DFT coefficients of y[n] are given by

Y [k] = X[k]H
(2πk

N0

)
.

2.2 Example of a Periodic Response

Let

h[n] =





2, n = 0,
−2, n = 1,
0, else.

Find the response of the filter to the following x[n]:

0 1 8 9

1

2 3
-

n

x[n]

4 5 6 7
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Solution:

(a) The LTI filter has the following frequency response

H(ω̂) =
∞∑

k=−∞
h[k]e−jω̂k

= 2− 2e−jω̂.
∣∣H(ω̂)

∣∣ =
√

8− 8 cos(ω̂).

∠H(ω̂) = tan−1
( sin(ω̂)

1− cos(ω̂)

)
.

(b) Note that the input is periodic with period N0 = 8.

x[n] =
7∑

k=0

X[k]ej 2πk
8 n,

where

X[k] =
1
8

7∑
n=0

x[n]e−j 2πk
N0

n, k = 0, . . . , N0 − 1.

And the response y[n] is

y[n] =
7∑

k=0

X[k]H
(2πk

8

)
ej 2πk

8 n

=
7∑

k=0

X[k]
∣∣H

(2πk

8

)∣∣ej

(
2πk
8 n+∠H

(
2πk
8

))
.

(c) Find the 8-point DFT coefficients X[k] for k = 0, . . . , N0 − 1.

X[k] =
1
8

4∑
n=0

e−j 2πk
8 n =

1
8

4∑
n=0

(
e−j 2πk

8

)n

︸ ︷︷ ︸
αn

=
{

1
8

1−α4

1−α , α 6= 1,
1
2 , α = 0,

=





1
2 , k = 0,
0, k = 2, 4, 6,
1
4

1
1−e−jπk/4 , k = 1, 3, 5, 7.

(d) Then Y [k] from H
(

2πk
8

)
= 2− 2e−j2πk/8

Y [k] = X[k]H
(2πk

8

)
=





1
2H

(
2πk
8

)
, k = 0,

0 · H
(

2πk
8

)
, k = 2, 4, 6,

1
4

1
1−e−jπk/4H

(
2πk
8

)
, k = 1, 3, 5, 7.

=
{

0, k = 0, 2, 4, 6,
1
2 , k = 1, 3, 5, 7.
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(e) Then the response y[n]

y[n] =
7∑

k=0

Y [k]ej 2πk
8 n

=
1
2
ej2πn/8

︸ ︷︷ ︸
a

+
1
2
ej2π3n/8

︸ ︷︷ ︸
b

+
1
2
ej2π5n/8

︸ ︷︷ ︸
c

+
1
2
ej2π7n/8

︸ ︷︷ ︸
d

= (a + d) + (b + c)

=
1
2

(
ej2πn/8 + e−j2πn/8

)
+

1
2

(
ej2π3n/8 + e−j2π3n/8

)

= cos
(
2πn/8

)
+ cos

(
2π3n/8

)
.

0 1 8 9

y[n]

2 3
-

n4 5 6 7

2

2.3 Implementation of Filtering via DFT

Sometime filtering is implemented via DFT.

H(ω̂)- -arbitrary x[n] y[n]

x[n]

X[k] Y [k]

6

- × y[n]N -point DFT - N -point IDFT

H(
2πk
N

)

--

-
0 8

︸ ︷︷ ︸ ︸ ︷︷ ︸
16

︸ ︷︷ ︸
block of N block of N block of N

x[n]
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• Choose N , e.g., N = 256.

• Divide the signal into blocks of N samples.

• Take the N -point DFT of the block.

• Multiply by H
(

2πk
N

)

• Obtain the DFT coefficients of the output block.

• Take the N -point IDFT.

• Repeat for the next block.

3 Suddenly-Applied Signals

(a) When a signal is suddenly applied, it takes time for the output to reach its normal operating condition.

(i) Steady-state region: normal operation is established.

(ii) Transient region: the output builds up to the steady state.

0
-

-

6
0

x[n]

M

h[n]

-
0

1 2

h[−k]

Causal FIR of order M = 2

-1-2

−M

6

0
-

x[k]
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(b) Example

x[n] =
{

Aejφejω̂n, n ≥ 0,
0, n < 0,

= Aejφejω̂nu[n],

where u[n] is the unit-step signal

u[n] =
{

1, n ≥ 0,
0, n < 0,

(c) How to find the response of an LTI filter to a suddenly-applied signal.

Approaches:

(i) the time-domain: y[n] = x[n] ∗ h[n].

(ii) the frequency-domain? Does not entirely work, because x[n] is not complex exponential, sinusoidal,
a sum of such, or periodic.

(iii) Special case of a causal LTI filter of order M :

y[n] =
M∑

k=0

h[k]Aejφejω̂(n−k)u[n− k]

=





0, n < 0,∑n
k=0 h[k]Aejφejω̂(n−k), 0 ≤ n ≤ M − 1,

H(ω̂)Aejφejω̂n, n ≥ M.

Three regions:

(1) n < 0: zero output due to causality
(2) 0 ≤ n ≤ M − 1: transient region—use the time-domain approach
(3) n ≥ M : steady-state region—use the frequency-domain approach

(d) Extensions are possible to other kinds of input, such as sums of complex exponentials, sinusoids, periodic
signals.

See Example 6.5 on page 165 of the text for a suddenly-applied sinusoid.

4 Cascaded Filters in the Frequency Domain

4.1 Review: Cascaded Filters in the Time Domain

• Two filters cascaded:

h1[n] h2[n]- - -

...

...

...

...

...

.........................................................................................................................................

x[n] y[n]v[n]

• The Overall Impulse Response of Cascaded Filters: h[n]

h[n] = h1[n] ∗ h2[n].
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• The overall impulse response does not depend on the order of appearance:

h[n] = h2[n] ∗ h1[n] = h1[n] ∗ h2[n].

h2[n] h1[n]- - -

...

...

...

...

...

.........................................................................................................................................

x[n] y[n]

4.2 Frequency-Domain Description

• The frequency response of two cascaded LTI filters is the product of individual frequency responses.

h1[n] h2[n]- - -

...

...

...

...

...

.........................................................................................................................................

x[n] y[n]v[n]

H1(ω̂) H2(ω̂)

h[n] = h1[n] ∗ h2[n],
H(ω̂) = H1(ω̂)H2(ω̂).

• Derivation

x[n] = Aejφ︸ ︷︷ ︸
X

ejω̂n 7→ v[n] = H1(ω̂)Xejω̂n = H1(ω̂)Aejφejω̂n,

v[n] = H1(ω̂)Aejφ

︸ ︷︷ ︸
V

ejω̂n 7→ y[n] = H2(ω̂) · V ejω̂n = H2(ω̂)H1(ω̂)Aejφejω̂n

= H2(ω̂)H1(ω̂)︸ ︷︷ ︸
H(ω̂)

x[n].

• Order of filters does not matter.

• In general, convolution in the time domain corresponds to multiplication in the frequency domain.

h[n] = h1[n] ∗ h2[n] ⇐⇒ H(ω̂) = H1(ω̂)H2(ω̂).

H(ω̂) =
∞∑

k=−∞
h[k]e−jkω̂

=
∞∑

k=−∞

( ∞∑

l=−∞
h1[l]h2[k − l]

)
e−jkω̂

=
∞∑

l=−∞
h1[l]

∞∑

k=−∞
h2[k − l]e−jkω̂

=
∞∑

l=−∞
h1[l]

( ∞∑
m=−∞

h2[m]e−jmω̂
)
e−jlω̂ ∵ m = k − l

= H1(ω̂)H2(ω̂).

7



5 Filtering of Continuous-Time Signals Using Sampling and Discrete-
Time Filters

(a) Structure

p(t) =
sin(πt/Ts)

πt/Ts

Sampler Filter Ideal
Interpolator

- - - -
x(t)

fs = 1
Ts

x[n]

h[n] H(ω̂)

y[n] y[t]

(b) Defining Characteristics: fs or Ts; h[n] or H1(ω̂).

x[n] = x(nTs),
y[n] = x[n] ∗ h[n],

y(t) =
∑

n

y[n]p(t− nTs), p(t) =
sin(πt/Ts)

πt/Ts
.

We note that the system is linear but not time-invariant. But we just need linearity here.

(c) Example x(t) = Xejω0t.

(i) Choose fs > 2fmax = 2ω0
2π or ω0Ts < π for perfect reconstruction.

(ii) Then x[n] = Xejω0nTs = Xejω̂0n, ω̂0 = ω0Ts.

(iii) Then CICO implies that
y[n] = H(ω̂0)Xejω̂0n.

(iv) Find y(t).
Answer:

y(t) = XH(ω̂0)ejω0t

= XH(ω0Ts)ejω0t,

because y[n] has frequencies ω̂ < π.
In conclusion

x(t) = Xejω0t 7→ y(t) = H(ω0Ts)Xejω0t = H(ω0Ts)x(t).

(v) This result is applicable to sums of complex exponentials, sinusoids, sums of sinusoids and periodic
signals.
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