
EECS 206 The z-Transform II July 17, 2002

1 The System Function of a Causal Filters

1.1 Definition

• Definition: The system function of a (causal) LTI filter is the z-transform of its impulse response h[n].

H(z) =
∞∑

n=0

h[n]z−n.

• It is a kind of generalized frequency response in that

H(ω̂) = H(z)
∣∣
z=ejω̂= H(ejω̂).

• Example: a causal FIR filter of order M = 3

h[n] = δ[n] + δ[n− 1] + δ[n− 2] + δ[n− 3],

H(z) = 1 + z−1 + z−2 + z−3.

The plot of |H(z)|
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• Example: If a filter has system function H(z) = z−3, what does it do?

Its impulse response is δ[n− 3]. So it simply delays the input by 3 time units.
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• Example: If a filter has system function H(z) = 2 + 2z−1 + z−3, what does it do?

h[n] = 2δ[n] + 2δ[n− 1] + δ[n− 3].

1.2 Notes

(1) The system function is often called the transfer function.

(2) We often write H(z) = Z{h[n]} and sometimes write

h[n] ⇐⇒ H(z).

(3) H(z) assigns a complex number to every complex number. That is, H(z) is a function with domain C
and range C.

(4) It’s hard to visualize a complex-valued function on the complex plane. So usually we visualize or plot
its magnitude: |H(z)|. (We could also separately plot its phase.)

(5) For an FIR filter H(z) is a polynomial in z−1, i.e. the sum of a finite number of powers of z−1

multiplied by coefficients.

Since the sum is finite, it converges for all z (its well defined for all z), except possibly at z = 0 where
terms like z−1 would be undefined.

(It converges at z = 0 iff h[n] = 0 all n ≥ 1.)

(6) For an IIR filter H(z) is a power series and can also generally be written as the ratio of two
polynomials—a rational function of z.

(Actually, for IIR filters as we define them, H(z) is always the ratio of two polynomials.)

H(z) might be undefined for some values of z other than 0, i.e. the sum might not converge for some
values of z other than zero).

(7) Distinct causal impulse responses have distinct z-transforms. Therefore, H(z) is a new characterization
of filters.

As a reminder, previous characteristics include:

(i) FIR filter coefficients of a difference equation: bk

(ii) The impulse response sequence: h[n]

(iii) The frequency response function: H(ω̂)

(iv) block diagram

We will need to become nearly as familiar with the system function as we are with the others. That is,
when we think about a filter, we need to think about its system function.

(8) z-transforms can be applied to signals as well as to impulse responses, which we’ll do later when we show

Y (z) = H(z)X(z) ⇐⇒ y[n] = h[n] ∗ x[n].
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1.3 Important Facts

Fact 1:
H(ω̂) = H(ejω̂)

(a) This follows directly from definitions of H(ω̂) and H(ejω̂).

H(ω̂) =
∞∑

n=−∞
h[n]e−jω̂n

=
∞∑

n=0

h[n]e−jω̂n ∵ causality =⇒ h[n] = 0 for n < 0

=
∞∑

n=0

h[n]z−n
∣∣
z=ejω̂= H(z)

∣∣
z=ejω̂ .

(b) Thus the frequency response at frequency ω̂ equals the value of the system function at z = ejω̂,
which is the point in the z-plane on the unit circle at angle ω̂.

(c) Thus, the system function H(z) is a kind of extended frequency response function.

(d) Its values on the unit circle are the values of the frequency response function. But it assumes
values outside the unit circle as well.

(e) This relationship is really important.

(f) It is emphasized that angle in the z-domain corresponds to frequency ω̂, because

z = ejω̂ ⇐⇒ |z| = 1, ∠z = ω̂.

(g) The fact that frequency response can be found from the system function will be essential when
dealing with IIR filters, because it will be the only way to find the frequency response function.

Fact 2: It is often useful to write the system function using only positive powers of z.

(The benefit of doing so comes in the next couple of facts.)

Example: H(z) = 1 + z−1 + z−2 + z−3

By multiplying and dividing by z3

H(z) =
z3 + z2 + z + 1

z3
.

Fact 3: Using the fundamental theorem of algebra, for an FIR filter of order M , H(z) can be written in the
following form

H(z) = K
(z − z1) · · · (z − zM )

zM
,

where z1, . . . , zM are the M -values (possibly complex) such that H(z) = 0 and K is real number.

They are called the zeros of H(z) or of the filter and K is called the gain of H(z) or of the filter.
That is, we factor the numerator into a product of terms of the form (z − zi). Let’s postpone
discussion of the fundamental theorem of algebra and the general validity of Fact 3. Instead let’s
do an example and see how Fact 3 is used.

Example: for the filter in the previous example H(z) = 1 + z−1 + z−2 + z−3.

H(z) =
z3 + z2 + z + 1

z3
.

3



Find the roots of the numerator and factor the numerator:

z1 = ejπ/2 = j, z2 = ejπ = −1, z3 = ej3π/2 = −j.

Then

H(z) =
(z − j)(z + 1)(z + j)

z3
,

K = 1.

Plot the zeros

6

-×

z-plane

3

Note: Matlab can find the roots of any polynomial, using the command roots.

Example: roots([1 3 2]) for roots of x2 + 3x + 2 = 0.

Impact of Zeros of the System Function

Now we wish to see how the zeros impact the frequency response, which, we recall, relates to the
system function on the unit circle.

Fact 4: (Really important) For an FIR filter of order M ,

|H(ω̂)| = |H(ejω̂)| = K|ejω̂ − z1| · · · |ejω̂ − zM |.
Fact 4 follows directly from Fact 3.

As will be illustrated soon, this demonstrates the relationship between the magnitude frequency
response and the zeros.

Fact 5: (We won’t use this much) For an FIR filter or order M ,

∠H(ω̂) = ∠(ejω̂ − z1) + · · ·∠(ejω̂ − zM )−Mω̂.

Fact 5 also follows directly from Fact 3.

Example: This shows what happens when zeros lie on the unit circle.

For the previous example,

H(z) =
(z − j)(z + 1)(z + j)

z3
.

Therefore,

H(ω̂) = H(ejω̂) =
(ejω̂ − j)(ejω̂ + 1)(ejω̂ + j)

ej3ω̂

=
(ejω̂ − ejπ/2)(ejω̂ − ejπ)(ejω̂ − ej3π/2)

ej3ω̂
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Thus,

|H(ω̂)| = |H(ejω̂)| = |ejω̂ − ejπ/2| · |ejω̂ − ejπ| · |ejω̂ − ej3π/2|.
∠H(ω̂)| = ∠H(ejω̂).

(i) Plot of |H(ω̂)|.
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(ii) Observe that |H(ω̂)| is zero at frequencies equal to the angles of the zeros.

(iii) Observe that |H(ω̂)| is nearly zero at frequencies nearly equal to the angles of the zeros.

(iv) Observe that |H(ω̂)| is large at frequencies away from these angles.

(v) Why is this? Look at the formula for |H(ω̂)|. When ω̂ = π/2, the first factor is zero.
Similarly when ω̂ = π or 3π/2.

(vi) More generally look at Fact 4.

|H(ω̂)| = K|ejω̂ − z1| · · · |ejω̂ − zM |
= K|ejω̂ − r1e

jω̂1 | · · · |ejω̂ − rMejω̂M |.

Observe that if r1 = 1, as in our example, then when ω̂ = ω̂1, then H(ω̂) = 0. And when
ω̂ ≈ ω̂1, then H(ω̂) ≈ 0.
The absence of a zero near z = ej0 = 1 implies that filter passes low frequencies.

In summary, Fact 4 leads to the following.

Fact 6: If a zero of the system function of a filter, say zi, lies on the unit circle, i.e. |zi| = 1, i.e. zi = ejω̂i ,
then the magnitude frequency response function has a null at frequency ω̂ = ω̂i. That is,

H(∠zi) = H(ω̂i) = 0.

Moreover the magnitude frequency response is small at nearby frequencies. That is,

H(ω̂i) ≈ 0 for ω̂ ≈ ω̂i.

Moreover, if a zero, say zi, lies near the unit circle, i.e. |zi| ≈ 1, i.e. zi = rie
jω̂i , where ri ≈ 1, then

the magnitude frequency response function is small at frequencies near ω̂ = ω̂i. That is,

H(ω̂) ≈ 0 for ω̂ ≈ ∠zi = ω̂i.

5



Example Impact of zeros

(i) some zeros near the unit circle

(ii) some are on the unit circle

(iii) some are far from the unit circle

Discussion: • Frequencies at which the frequency response function is zero are called null frequencies or
simply nulls.

• Fact 6 shows that zeros of the system function on the unit circle cause nulls in the frequency
response function at frequencies equal to the angles of the zeros.
Moreover, zeros of the system function near the unit circle indicate the frequencies at which
the system function will be small.
Conversely, zeros that are not near the unit circle have little or no effect on the frequency
response.

• The complete story, i.e. the complete magnitude frequency response of an FIR filter at fre-
quency ω̂ is told by the products of terms

|H(ω̂)| = K|ejω̂ − z1| · · · |ejω̂ − zM |.

• From this we see that |H(ω̂)| is largest at frequencies ω̂ such that ejω̂ is far from all zeros. This
tells us where the peaks are.
Estimation of |H(ω̂)| graphically is possible by measuring distances to zeros from ejω̂.

• This demonstrates two of the principal benefits of z-transforms for FIR filters.

(i) Computing the z-transform of the impulse response of an FIR filter and then finding its
zeros shows us precisely where its frequency response function is small.

(ii) We can design an FIR filter by choosing zeros z1, z2, . . . on or near the unit circle at
angles corresponding to frequencies at which we want the frequency response function to
be small, then multiplying (z − zi) terms to find H(z), then finding h[n] from H(z), then
picking off the filter coefficients {bk}. (Actually, one can find {bk} directly from H(z).)

• At this point we see a real payoff to z-transforms!

1.4 Examples with System Functions of FIR Filters

1.4.1 Analysis of the running average filter of order M

• Find its system function H(z) and its zeros.

• Predict the resulting null frequencies.

• Plot |H(z)| and/or |H(ω̂)|.
• Compare the actual nulls the predicted ones.

1.4.2 Design of a notch FIR filter

Place one or more zero’s at a desired frequency.

1.4.3 Design of a bandpass FIR filter

Place zeros on the unit circle in such a way as to leave a gap at some frequency.
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1.5 Discussion of Fact 3

Now we go back and have some further discussion of the fundamental theorem of algebra and Fact 3.
Specifically, Fact 3 comes from:

Fundamental Theorem of Algebra

Suppose we have a polynomial
P (z) = P0 + P1z + · · ·+ PMzM

of degree M , with Pi’s real, but z allowed to be complex. Then

(a) P (z) = PM (z − z1)(z − z2) · · · (z − zM ), where z1, z2, . . ., zM are the M values of z such that P (z) = 0.
The zi’s are called the roots of P (z).

(b) Some of the roots may be complex.

(c) P (z) has exactly M roots, z1,. . ., zM , i.e, values such that P (z) = 0.

(d) Some of the roots may be the identical. If a certain root appears q times, then we say there are q roots
with that value, or that it is a root of multiplicity q.

(e) If zi is complex root, then there is some zk such that zk = z∗i .

This theorem shows that a polynomial is completely characterized by

(i) PM and

(ii) the places where it is zero, and the multiplicities of the zeros.

That is, if you fix the zero points and PM , there is one and only one function that passes through them. It’s
kind of like a reconstruction from samples.

Poles: Notice that for an FIR filter, the denominator of the system function H(z) also has zeros, namely,
at z = 0. These are called the poles of the system function or filter. Poles will be important for IIR filters.
But for FIR filters they are not important. Specifically, they have no effect on the filter magnitude or phase,
because they are at the origin and are equidistant from all points on the unit circle.

Example: Notice that in our earlier example, the complex zeros came in conjugate pairs: z1 = j, z2 = −1,
z3 = −j.

Example: Redesign a notch filter so that h[n] is real. Note that the previous design was not a “real” filter.

Example: Redesign a bandpass FIR filter pick our zeros and gain.

2 Summary of z-domain analysis of FIR filters

2.1 Analysis based on H(z)

Given an FIR filter, find the system function H(z) and then find its zeros. This shows us exactly where the
magnitude frequency response has nulls, and approximately, where it is small.
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2.2 Design

We know that we can describe an FIR filter simply by specifying its gain and its zeros.
Thus if we want the magnitude frequency response to be zero or small at certain frequencies, we can

design a filter that does this simply by placing zeros in appropriate places.
Specifically if we want nulls at frequencies ω̂1, . . ., ω̂M ,

(i) We make zeros zi = ejω̂i , i = 1, . . . , M .

(ii) We make system function

H(z) = K
(z − z1) · · · (z − zM )

zM
,

where we choose K any way we like.

(iii) To find impulse response or difference equation, we multiply terms to write H(z) as polynomial in
powers of z−1.

(iv) We find impulse response h[n] by picking off coefficients of H(z).

(v) We find difference equation directly from h[n].

This will make the frequency response small in the neighborhood of these frequencies as well.
If we don’t want a null, but only want a dip in the frequency response at some specified frequency ω̂i,

we don’t put zero right on the unit circle. Instead we choose

zi = rie
jω̂i ,

where ri 6= 1, but ri ≈ 1.

2.3 Notes

(a) Characterizing FIR filters

(i) difference equation coefficients

(ii) the impulse response

(iii) block diagram

(iv) the frequency response

(v) the system function

(vi) gain, poles, and zeros

(b) Same number of poles as zeros

(c) Poles at the origin are not significant because they effect all frequencies equally.

(d) Complex zeros come in conjugate pairs
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