Regrade requests must be submitted to Prof. Fessler in writing, by May 2. All problems will be re-examined, and scores may increase or decrease.
Discussing the exam with a professor or GSI nullifies the opportunity to submit a regrade request.
(There were multiple versions of the exam so the solutions below may not be in the same order as your exam.)

1. (10)

Since $f_{\mathrm{s}}=1 / T_{\mathrm{s}}=30$, frequencies at and above $f_{\mathrm{s}} / 2=15 \mathrm{~Hz}$ are removed. Everything else is reconstructed perfectly by the sinc interpolator.
(HW 9-4)

grading: -8 for 20 or 30 Hz components. -5 for discrete-time freq.
e3/nyquist1
2. (10)

Yes. The maximum frequency f_{0} of $x(t)$ satisfies $\frac{\pi}{4}=2 \pi \frac{f_{0}}{f_{\mathrm{s}}}$ so $f_{0}=\frac{1}{8} f_{\mathrm{s}}=125 \mathrm{~Hz}$, so to prevent aliasing we could sample at any rate $f_{\mathrm{s}}>250 \mathrm{~Hz}$.
(HW 8-7)
grading: -3 for $\geq 250 \mathrm{~Hz}$
e3/fir,dft,2
3. (10)

The input signal is $x[n]=2+3 \cos (\pi n)$. The frequency response is $\mathcal{H}(\hat{\omega})=1+2 \mathrm{e}^{-\jmath 4 \hat{\omega}}$, so $\mathcal{H}(0)=3$, and $\mathcal{H}(\pi)=3$. Thus $y[n]=6+9 \cos (\pi n)$.
(HW 11-10)
\qquad e3/sin,pz1
4. (10)
$H(z)=2 \frac{(z-0.5-0.5 j)(z-0.5+0.53)}{z(z+1)}=2 \frac{z^{2}-z+0.5}{z^{2}+z}$
$\Rightarrow \mathcal{H}(\pi / 4)=H\left(\mathrm{e}^{\jmath \pi / 4}\right) \approx 0.207+\jmath 0.328 \approx 0.388 \mathrm{e}^{\jmath 1.008}$
$\Rightarrow y[n]=3|\mathcal{H}(\pi / 4)| \cos \left(\frac{\pi}{4} n+\angle \mathcal{H}(\pi / 4)\right) \approx 1.16 \cos \left(\frac{\pi}{4} n+1.008\right)$.
(HW 13-5,12-5)
grading: -2 for no gain=2. -4 for wrong phase.
5. (10)
$y[n]=(7 \delta[n+1]+9 \delta[n-3]) * h[n]-6 \mathcal{H}(0)=(7 \delta[n+1]+9 \delta[n-3]) *(2 \delta[n-1]+3 \delta[n-5])-6 \cdot 5=$ $14 \delta[n]+39 \delta[n-4]+27 \delta[n-8]-30$.
grading: 5pt for $-30,5$ pt for δ 's. -3 for $Z^{-1}\{14\}$ " $=" 14$ rather than $Z^{-1}\{14\}=14 \delta[n]$.
\qquad
6. (10)
$H(z)=\frac{z^{-2}-5 z^{-3}}{1+z^{-1}}=z^{-2} \frac{1}{1+z^{-1}}+5 z^{-3} \frac{1}{1+z^{-1}} \Rightarrow h[n]=(-1)^{n-2} u[n-2]-5(-1)^{n-3} u[n-3]$.
_ e3/hn,pass
7. (10)
(d). The system function is $H(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+z^{-1} \frac{1}{1-\frac{1}{2} z^{-1}}=\frac{z+1}{z-\frac{1}{2}}$ and the polezero plot is shown to the right. This is a lowpass filter since the magnitude response at low frequencies is much greater than the response at high frequencies.
13-5)

e3/hn,diffeq
8. (10)

The system function is $H(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+z^{-1} \frac{1}{1-\frac{1}{2} z^{-1}}=\frac{1+z^{-1}}{1-\frac{1}{2} z^{-1}}=Y(z) / X(z)$ so the difference equation is $y[n]=\frac{1}{2} y[n-1]+x[n]+x[n-1]$.
(HW 13-6)
grading: 5pts for $H(z)$, 5 pts for diffeq
e3/sample,null1
9. (10)

After sampling, the sinusoid has frequency $\omega_{0}=2 \pi f_{0} / f_{\mathrm{s}}=2 \pi 125 / 500=\pi / 2$. So we need $\mathcal{H}(\hat{\omega})$, the overall frequency response of the discrete-time filter, to be zero at $\omega_{0}=\pi / 2$. The overall system function is $H(z)=$ $H_{1}(z)+H_{2}(z)=1+\frac{1}{2} z^{-3}+b z^{-1}+z^{-2}$, so the frequency response is $\mathcal{H}(\pi / 2)=H\left(\mathrm{e}^{\jmath \pi / 2}\right)=1+\frac{1}{2} \mathrm{e}^{-\jmath 3 \pi / 2}+$ $b \mathrm{e}^{-\jmath \pi / 2}+\mathrm{e}^{-\jmath \pi}=1+\frac{1}{2} \jmath-b \jmath-1=\left(\frac{1}{2}-b\right) \jmath$ so we need $b=1 / 2$.
grading: 0 for $H(z) .2$ for $\mathcal{H}(\hat{\omega})$. 2 for $\hat{\omega}$. 6 for b .
e3/filt2,mult
10. (10)
$\mathcal{H}_{1}(\hat{\omega})=1-\mathrm{e}^{-\jmath \hat{\omega}}$ so $\mathcal{H}_{1}(\pi)=2, \mathcal{H}_{1}(\pi / 2)=1+\jmath=\sqrt{2} \mathrm{e}^{\jmath \pi / 4}$.
Thus $y_{1}[n]=2 \cos (\pi n)+\sqrt{2} \cos \left(\frac{\pi}{2} n+\pi / 4\right)$.
$\mathcal{H}_{2}(\hat{\omega})=1+\mathrm{e}^{-\jmath 2 \hat{\omega}}$, so $\mathcal{H}_{2}(\pi)=2, \mathcal{H}_{2}(\pi / 2)=0$.
Thus $y_{2}[n]=2 \cos (\pi n)$.
Multiplying: $y[n]=y_{1}[n] y_{2}[n]=\left[2 \cos (\pi n)+\sqrt{2} \cos \left(\frac{\pi}{2} n+\pi / 4\right)\right] 2 \cos (\pi n)=4+2 \sqrt{2} \cos \left(\frac{\pi}{2} n-\pi / 4\right)$

$-\pi$			

grading: -3 for \oplus instead of $\otimes .-3$ if $3 \pi / 2$ and $\pi / 2$ not combined. 5pts for $y_{1}[n]$ and $y_{2}[n]$. 5pts for spectrum.

158 students, mean=61.3, std=29.7, 4 students scored $100 \%, 8$ students scored 0%

Rough grades (out of 100):
85+ A
$75+B / B+$
$60+$ C+/B-
$55+$ C
$50+$ C-
49- D's and below
For elaboration on these solutions, please come to office hours.

