

This final exam review is meant to be a comprehensive outline to all the topics covered in the course. Examples are not included. Sample problems that demonstrate some of these concepts are given in a separate paper.

- Signal Properties
 - Max, Min, Mean, Energy, Mean Square, RMS
 - Be able to use MSD (just mean square value of the difference) to compare difference (or error) in signals
- Translation and scaling of a signal
 - How signal properties are affected by scaling and shifting in amplitude
 - How signal properties are affected by scaling and shifting in time
 - Determine the results of shifting/scaling in amplitude and time (i.e., if given $x(t)$, be able to find $y(t) = a + bx(ct + d)$)
 - * Recall that shifting in amplitude affects time *outside* of the original support region (e.g. See HW2, problem 4, sketch of $y(t)$)
- Signal Value Distribution (SVD)
 - Essentially a histogram
 - Information on time sequence of the signal is lost (so shifting/scaling of *time* will have no effect on SVD)
 - The *vertical* axis of the signal becomes the *horizontal* axis of the SVD (see HW2, problem 2)
- Periodic signals—sinusoids (estimation of amplitude, frequency, phase)
 - Relate parameters amplitude, frequency, phase to a figure of the signal.
 - Convert to standard form (e.g., use $\sin(t) = \cos(t - \pi/2)$ and keep $-\pi < \Phi \leq \pi$)
- Periodic signals—complex exponentials
 - Distinguish between the periodic part versus the phasor
 - Be able to convert to cosine using just the real part
- Complex arithmetic
 - Euler and inverse
 - Have some specific angles memorized (like $e^{j\pi/2} = j$, $e^{j\pi} = -1$, $e^{-j\pi/2} = e^{j3\pi/2} = -j$)
 - Convert between polar (magnitude and phase) and Cartesian form of complex number
 - Know things like $|z|^2 = zz^*$ and similar for division
 - Note that *phasors* are just complex numbers and should be added as such (see section on adding sinusoids)
- Operations on two signals—adding sinusoids of same frequency
 - Convert sinusoids to real part of complex exponential
 - Separate the periodic part from the phasor
 - Deal with phasors as complex numbers
- Adding periodic signals - periodicity of the result
 - If ratio of periods of each periodic signal is rational number \Rightarrow periodic
 - If ratio of periods of each periodic signal is irrational number \Rightarrow not periodic
- Correlation and normalized correlation is analogous to vector dot product (it indicates how much a signal is in the “direction” of another signal)
- Spectral Representation of Continuous Time Signals (infinite duration)
 - Indicates that the signal is the sum of sinusoids

- Magnitude is symmetric about origin while phase is conjugate symmetric
- Periodicity of the sum depends upon same rules as adding periodic signals (above)
- Spectra and Time Scaling/Shifting
 - * If given spectrum of $x(t)$ and $y(t) = a + bx(ct + d)$, be able to calculate spectrum of $y(t)$ (page 3a.10) (Linearity properties).
 - * Be able to add/subtract spectra of two signals (addition of two spectral lines at same frequency is just phasor addition)
- Fourier Series
 - * A specific type of spectra with frequency components represented as a fundamental and multiples of it
 - * Have the synthesis and analysis formulas handy (pp. 3a.14, 3a.15)
 - * Should be able to calculate frequency from k-value ($f_k = f_0 \cdot k$ or $f_k = k/T_0$)
 - * Parseval's theorem
 - * Know (or have written) most of properties (linearity, time shifting, frequency shifting, etc.)
- Spectral Representation of Discrete Time Signals (infinite duration)
 - Discrete-time signal may not be periodic even though it has a single spectral line
 - * Frequency ($\hat{\omega}$ in radian/sample) must be rational number times π in order to be periodic
 - If each spectral line in discrete-time spectrum represents periodic signal, then the sum is periodic
 - Be able to convert easily between 1-sided and 2-sided spectrum
 - DFT - analogous to Fourier Series
 - * know the analysis and synthesis equations, Parseval's theorem
 - * Know (or have written) most of properties (linearity, time shifting, frequency shifting, etc.)
 - Be able to relate k to $\hat{\omega}$ using $\hat{\omega} = 2\pi k/N$
 - Recognize $-k$ is equivalent to $N - k$
 - Combine equivalent frequencies ($\hat{\omega}$ and $\hat{\omega} + 2\pi n$ are equivalent when $n \in \mathbb{Z}$)
 - * Important to note—it is NOT infinite
 - * Be able to use coefficient matching to quickly do synthesis/analysis
- Sampling
 - Understand $x[n] = x(nT_s)$
 - Convert to/from sampled frequency using $\hat{\omega} = \omega/f_s$
 - Be able to find aliased frequencies (frequencies in the discrete world live on a circle)
 - * Case 1 aliasing - aliased but not folded (phase matches that of continuous time signal)
 - * Case 2 aliasing - aliased and folded (phase has opposite sign as that of continuous time signal)
 - Given a quantization range and number of quantization levels, determine what the levels are (HW 13, problem 7 and Lab 5)
 - Quantization error and how it affects spectrum (HW 13, problem 7)
 - Sampling at the critical frequency ($\hat{\omega} = \pi$ exactly) \Leftrightarrow aliasing occurs (since we can cannot determine both phase and magnitude)
 - Anti-aliasing filter (a continuous-time filter that acts before sampling occurs) will remove all signals at or above sampled frequency of π (note: cannot realize a perfect anti-aliasing filter!)
- Reconstruction of Sampled Signals
 - Zero-order hold (a pulse drawn at the sample)
 - First-order (linear) interpolator (connect the dots)
 - Ideal (sinc) interpolator (uses all past and present data and can theoretically reconstruct original if not aliased)

- If ideal interpolator assumed, be able to convert between sampled signal and corresponding continuous time signal by inspection
- Linear, time-invariant systems (LTI)
 - Linear defined by possessing properties of superposition and homogeneity
 - * Superposition - adding two input signals is equivalent to inputting each separately then adding the outputs
 - * Homogeneity - scaling an input signal is equivalent to inputting the signal, then scaling the output
 - Time-invariance requires that shifting an input signal be equivalent to shifting the output
 - LTI properties can be used to calculate output in response to an input by characterizing response to scaled, shifted, or superposed versions of it (see HW 10, problem 9b)
- Causal systems
 - Require that output be a function of input at only current and past time
 - Not affected by signals unrelated to input (e.g., constant output or sinusoid output that is not due to input)
- Filtering using Finite Impulse Response (FIR)
 - LTI system
 - Can summarize all we need to know in terms of $h[n]$, impulse response
 - Can represent as difference equation of the form

$$y[n] = b_0x[n] + b_1x[n - 1] + b_2x[n - 2] + b_3x[n - 3] + \dots$$
 - Impulse response is (almost trivially) obtained by substituting $\delta[n]$ for $x[n]$
 - Convolution used to calculate time domain response to finite-length input signals
 - Simple algorithm (like 3rd grade multiplication) works for this case (p. 132 of textbook) using coefficients of $h[n]$ and of $x[n]$
- Filtering using Infinite Impulse Response (IIR)
 - LTI system (like FIR)
 - Can summarize all we need to know in terms of $h[n]$, impulse response (like FIR)
 - Can represent as difference equation of the form

$$y[n] = b_0x[n] + b_1x[n - 1] + b_2x[n - 2] + b_3x[n - 3] + \dots + a_1y[n - 1] + a_2y[n - 2] + a_3y[n - 3] + \dots$$
 - Impulse response is infinite so contains terms like $a^n u[n]$
 - Convolution still applies, but is impossible to work out to completion
- z-transform
 - Simplifies calculations by allowing FIR/IIR filters to be expressed as ratio of polynomials
 - Frequency response is intimately related to location of roots of polynomials
 - * Roots of numerator (FIR part) are zeros of system
 - * Roots of denominator (IIR part) are poles of system
 - * Roots of polynomials are found by factoring, just as in high school algebra class
 - Allows us to express convolution as multiplication of polynomials (which is all it is anyway ... compare page 132 to page 216 of textbook)
 - Calculation of z-transform from difference equation (almost trivial)
 - * $y[n] = b_0x[n] + b_1x[n - 1] + b_2x[n - 2] + \dots + a_1y[n - 1] + a_2y[n - 2] + \dots$
 - * $Y(z) = b_0X(z) + b_1X(z)z^{-1} + b_2X(z)z^{-2} + \dots + a_1Y(z)z^{-1} + a_2Y(z)z^{-2} + \dots$
 - Cascade of systems is product of z-transforms (product of ratios of polynomials)
 - Be able to use partial fraction expansion (see HW 13)

- NOTE: WE DO NOT YET KNOW HOW TO TAKE z-TRANSFORM OF INFINITE SUPPORT SIGNALS, only of systems and finite support signals
 - * The text computes transfer function in z-domain by ASSUMING the z-transforms of the input and output signals exist
 - * Take EECS 306 to learn more about z-transforms of infinite support signals

- Frequency Response

- Just a complex number with the magnitude and phase functions of $\hat{\omega}$
- Can simplify only for “simple filters”
 - * When symmetric, can pull out the middle term (Example 6.1 of textbook)
 - * In this case, phase is linear with frequency (times half the order of the filter)
- Magnitude is equivalent to the “height” of $H(z)$ (system function) evaluated on the unit circle (good visualization is Figure 8.23 of textbook)
- Equivalently, $\mathcal{H}(\hat{\omega}) = H(z)|_{z=e^{j\hat{\omega}}}$
- Magnitude is always a nonnegative number
- Phase changes in jumps when
 - * Phase must change by π to keep magnitude positive
 - * Phase must remain between $-\pi$ and π (reducing θ modulo 2π)
- Might be easier to calculate at a few frequencies if all that is needed (rather than try to simplify to a general magnitude and phase form)
- Can visualize frequency response magnitude at a point on the unit circle as product of distances from the point to zeros, divided by product of distances from same point to poles (Figure 8.24 of textbook)

- Special Filters

- N-point moving average
 - * Frequency Response - magnitude is Dirichlet function phase is linear (pp. 180,181 of textbook)
 - * z-transform has N-1 zeros on unit circle (p. 228 ff of textbook)
- Nulling filters (designed to place a null or zero at a particular frequency)
 - * Filters with real coefficients will null complex conjugate frequencies
 - * The set of frequencies nulled by a cascade of nulling filters is the union of the frequencies nulled by each filter
- Bandpass filters
 - * Analogous to a pair of N-point moving average filters “rotated” in the z-plane from $\hat{\omega} = 0$ to another pair of complex conjugate frequencies
 - * z-transform has N-2 zeros on the unit circle and another zero inside the unit circle

- Miscellany

- Signal “suddenly applied” is just product of infinite support signal with unit step function
 - * For FIR, results in transient response up to order of filter in length, steady state thereafter
 - * For IIR, transient response decreases exponentially but never goes away (in theory)
- Should be able to sketch frequency response magnitude from pole/zero plot
- Should be able to sketch impulse response from pole/zero plot
- If given input to filter and asked to find output
 - * Use $h[n]$ and convolution (or equivalently, $H(z)$) to find output due to those components of input that are of the form $c_0\delta[n] + c_1\delta[n-1] + c_2\delta[n-2] \dots c_N\delta[n-N]$
 - * Use frequency response $\mathcal{H}(\hat{\omega})$ to find output (steady state) due to those components of input that are of the form $a \cos(\hat{\omega}n + \phi)$
 - * DC signals treated as signals at $\hat{\omega} = 0$
 - * If input “suddenly applied,” then use steady state after transient is gone, but calculate transient using $h[n]$ and convolution.
 - * LTI allows summing outputs calculated by all methods