Homework #2, EECS 206, W03. Due Fri. Jan. 17, by 11:30AM

_Notes __

- Review the policies on HW1! (Except, now you turn in HW in 2420 EECS, which is open 24/7.)
- Reading: all of "Part 1" lecture notes.

Skill Problems

1. [50] Concept(s): signal characteristics: energy, mean, average power, RMS value

For each of the following signals, determine the energy [3], the mean value [3], the average power [4], and the RMS value [0]. Hints: sketching the signals will help, and look at the "useful formulas" page.

(a)
$$[0] x_1(t) = \begin{cases} \cos\left(2\pi \frac{1}{T_0}t\right), & t \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

Answer: $E(x_1) = \infty, M(x_1) = 0, MS(x_1) = 1/2, RMS(x_1) = 1/\sqrt{2}$
(b) $[10] x_2(t) = \begin{cases} 1, & 0 < t < 1\\ 1 - |t - 5|, & |t - 5| \le 1\\ 0, & \text{otherwise.} \end{cases}$
(c) $[10] x_3(t) = \begin{cases} \cos^2\left(2\pi \frac{1}{T_0}t\right), & 0 \le t \le T_0\\ 0, & \text{otherwise.} \end{cases}$
Hint: RMS(x_3) = $\sqrt{3/8}$. (But do not use this to solve for other values.)
(d) $[10] x_4(t) = 7 + 3e^{-2|t|}$
(e) $[10] y_1[n] = \cos\left(\frac{2\pi}{4}n\right)$
(f) $[10] y_2[n] = \begin{cases} 1 + (1/3)^n, & n \ge 0, \\ 0, & \text{otherwise} \end{cases}$

2. [20] Concept(s): signal value distributions / histograms

- (a) [10] Determine the signal value distribution of signal $x[n] = \sin(\frac{2\pi}{8}n)$. Hint: use one period and sketch the limit as the number of histogram bins increases.
- (b) [10] A discrete-time signal x[n] has the following histogram.

30 + 20 + 30	his	stogr	am				
10							_
0	0.	.8 1	.6 2	.4 3	.2 4	.0	x

Determine the mean value M(x) and standard deviation $\sigma(x)$ of this signal.

Hint: see if your values make sense in light of the center and "spread" of the histogram.

(c) [0] Determine the signal value distribution of signal $x(t) = \begin{cases} 3, & |t| \le 1 \\ -2, & 5 < |t| \le 7. \end{cases}$

(Think about what happens as the number of signal samples increases, and express your singular value distribution using proportions.)

3. [20] Concept(s): periodicity, fundamental period, least common multiple

Determine whether each of the following signals is periodic, and if so, determine its fundamental period.

- (a) [0] $x_1(t) = \cos(\sqrt{2\pi t})$. Answer: periodic with fundamental period $T_1 = \sqrt{2}$.
- (b) [5] $x_2(t) = \cos(2\pi 200t) + \cos(2\pi 500t) + \cos(2\pi 50t)$
- (c) [5] $x_3(t) = \cos(2\pi 200t) + \cos(500t)$
- (d) [0] $y_1[n] = \cos(\frac{\pi}{5}n)$. Answer: periodic with fundamental period $T_1 = 10$.
- (e) [0] $y_2[n] = \cos(7\pi n)$. Hint: sketch it! (The period is not 2/7.)

(f) [5]
$$y_3[n] = \cos(\sqrt{2\pi n})$$

(g) [5] $y_4[n] = y_1[n] + y_2[n]$, where $y_1[n]$ and $y_2[n]$ are as defined in preceding parts.

4. [10] Concept(s): signal operations: amplitude shift/scale and time shift/scale

Consider the following signal:
$$x(t) = \begin{cases} 1 - t/3, & |t| \le 3\\ 0, & \text{otherwise} \end{cases}$$

[5] Sketch
$$u(t) = 3 + 7x(t/2)$$
 carefully.

(a) [5] Sketch y(t) = 3 + 7x(t/2) care (b) [5] Sketch $z(t) = x(\frac{3-t}{2})$ carefully.

5. [45] Concept(s): effects of signal operations on signal characteristics

Make a table like the following and complete it. For each entry in the table, write Y if the operation could affect the characteristic or N if it cannot. (The first column is completed for you.) If you are unsure, write "U" instead. For this problem, only your table will be graded, not your work.

otherwise.

Scoring: 3 points for each correct answer, 0 points for wrong answer, except 1 point for each U.

	Characteristic				
Operation	min/max	duration	energy	mean	
Time shift	N				
Time scale	N				
Time reversal	N				
Amplitude shift	Y				
Amplitude scale	Y				

6. [20] Concept(s): Using MATLAB

Download the MATLAB file periodic.mat, using the link on the class website just below the link to this homework set. This file contains a vector called signal1 that is a segment of a nearly periodic signal.

- (a) [0] Start MATLAB, then load periodic.mat by typing load periodic at the MATLAB prompt. (You will need to understand MATLAB's "path" settings for this to work.)
- (b) [5] Determine the length of the vector signal1.
- (c) [5] Determine its maximum and minimum values.
- (d) [10] Determine, approximately, the period of this approximately periodic discrete-time signal. Explain briefly how you determined the value.

For each part, show the MATLAB command(s) that you used. (Handwritten is fine.)

_ Mastery Problems ___

- 7. [25] (a) [10] Determine the mean value and average power of the signal $x_1(t) = a + b \cos(2\pi f t)$.
 - (b) [5] Find a signal $x_2(t)$ that has M(x) = 5 and MS(x) = 50.
 - (c) [10] Find a signal x(t) that has duration = 5, E(x) = 45, and M(x) = 3.

8. [10] Concept(s): combining time-scaling and periodicity

Determine a period T of the signal y(t) = x(t) + x(2t/3 - 1) + x(7t). (Determining whether your answer is the fundamental period is optional.)

_ Optional Extra Credit Problems _

No help will be given in office hours prior to the due date for extra credit problems.

9. [10] An engineer working on a digital satellite communications system was asked by her boss to find a signal x(t)that has mean value = 5 and average power = 20. Should her boss take a refresher course in signal characteristics? Explain.