Homework \#4, EECS 206, W03. Due Fri. Jan. 31, by 11:30AM

Notes

- Review the HW policies on HW1!
- Reading: Ch. 2 of text and Appendix A of text (complex numbers).
- Exam1 on Feb. 6 will cover the material corresponding to HW1 through HW4, i.e., the Part 1 lecture notes and text Ch. 2 and Appendix A.
- For exam practice, try the 206 exams from previous semesters, all of which are on the web site.
- For exam review, go any lab section Feb. 4-6.
- This HW will graded and returned after Exam1. You may want to photocopy your answers before handing them in so you can compare them to the solutions.

Skill Problems

1. [15] Concept(s): correlation and the effect of signal operations

In class it was stated that $C_{N}(a x, b y)=C_{N}(x, y)$. This is correct if $a b>0$, but not quite if $a b<0$.
Let $x(t), y(t)$, and $z(t)$ denote signals, and let a and b denote nonzero real numbers.
Show the following relationships.
(a) [5] $C(a x, b y)=a b C(x, y)$
(b) [5] $C(x, y+z)=C(x, y)+C(x, z)$. (These first two properties are called bilinearity.)
(c) $[0] C(x, y)=C(y, x)$ (for real signals)
(d) [5] $C_{N}(a x, b y)= \begin{cases}C_{N}(x, y), & a b>0 \\ -C_{N}(x, y), & a b<0 .\end{cases}$
[0] What happens if $a b=0$?
(e) [0] $C_{N}(x, \alpha x)=\left\{\begin{array}{ll}1, & \alpha>0 \\ -1, & \alpha<0 .\end{array}\right.$ (In fact, $C_{N}(x, y)= \pm 1$ if and only if y is an amplitude-scaled version of x, so y and x have identical "shapes.")
(Think about how correlation is affected by other signal operations, e.g., amplitude shift.)
2. [25] Concept(s): representations of sinusoidal signals

When relevant below, use the principal value for the phase: $-\pi<\phi \leq \pi$.
(a) [5] A sinusoidal signal $x(t)$ has amplitude $=5$, frequency 40 Hz , and phase $=\pi / 3$ radians.

Sketch $x(t)$ carefully by hand, labeling your axes.
(b) [5] Express the following signal in the standard form, i.e., in the form $A \cos \left(2 \pi f_{0} t+\phi\right)$:

$$
y(t)=-7 \sin (8 \pi(t-3)+13 \pi / 4)
$$

(c) [5] Find an expression in standard form for the following sinusoidal signal.

(d) [5] Simplify the following sum of sinusoidal signals into standard form:

$$
s(t)=5 \sin (8 t)+5 \cos (8 t-\pi / 3)
$$

(e) [5] Find a complex-valued signal $\bar{x}(t)$ such that $x(t)=\operatorname{Re}(\bar{x}(t))$, for $x(t)$ as defined in part (a).
3. [30] Concept(s): complex arithmetic
(a) [15] Convert the following complex numbers from cartesian form to complex exponential form and plot in the complex plane: $z_{1}=\sqrt{3}+\jmath, z_{2}=-\sqrt{2}+\jmath \sqrt{2}, z_{3}=-2-\jmath$.
(b) [10] Determine the product of z_{1} and z_{2} by:

- performing multiplication entirely in cartesian coordinates,
- performing multiplication entirely with the exponential forms of these complex variables.
(c) [10] Determine the ratio z_{1} / z_{2} by:
- performing division by first converting z_{1} and z_{2} to exponential form,
- performing division by multiplying the numerator and denominator of z_{1} / z_{2} by z_{2}^{\star}.
(d) [0] Which form is easier for multiplication and division? What about for addition and subtraction?

4. [30] Concept(s): complex arithmetic

Simplify the following complex-valued expressions.
For (a)-(d), give answers in both Cartesian form and exponential (or polar) form.
(a) $[4] 2 \mathrm{e}^{\jmath \pi / 3}+4 \mathrm{e}^{-\jmath \pi / 6}$
(b) $[4](\sqrt{3}-\jmath 3)^{9}$
(c) $[4](\sqrt{3}-\jmath 3)^{-1}$
(d) $[4](\sqrt{3}-\jmath 3)^{1 / 3}$. Hint: there are three answers.
(e) $[4] \operatorname{Re}\left(\jmath \mathrm{e}^{-\jmath \pi / 3}\right)$
(f) [10] Determine all solutions θ (in radians) to the following equation: $\operatorname{Re}\left((1-j) \mathrm{e}^{\jmath \theta}\right)=-1$.
5. [15] Concept(s): sums of sinusoidal signals with same frequency and phasors, effect of time shift/scale Simplify the following sums of sinusoidal signals into standard form.
(a) $[0] x_{1}(t)=5 \cos (2 t+\pi / 4)+5 \cos (2 t+3 \pi / 4)-\cos (2 t+\pi / 2)$.

Hint. Using phasors, $x_{1}(t)=(5 \sqrt{2}-1) \cos (2 t+\pi / 2) \approx 6.071 \cos (2 t+\pi / 2)$.
(b) [10] $x_{2}(t)=5 \cos (\pi t+\pi / 2)+5 \sin (\pi t-\pi / 6)-\cos (\pi t-2 \pi / 3)$
(c) [5] $x_{3}(t)=x_{1}(-3(t-2))$, where $x_{1}(t)$ was defined in (a).

Mastery Problems

6. [20] Concept(s): sinusoids and linear systems

Sinusoidal signals are particularly important because when a sinusoid is the input to a linear time-invariance (LTI) system, the output is also a sinusoid, and this property is unique to sinusoids!
Consider a system with an "echo:" the output signal $y(t)$ is the sum of the input signal $x(t)$ and a delayed version of $x(t)$. (You may have experienced something like this in some cell phone calls.) Assume that the following input/output relationship describes the system: $y(t)=x(t)+x(t-1)$.
(a) [10] If $x(t)=A \cos \left(2 \pi f_{1} t\right)$, show that the output $y(t)$ can be written as $B \cos \left(2 \pi f_{2} t+\phi\right)$.

Relate B, ϕ and f_{2} to A and f_{1}. This is called the "sine in, sine out" property.
Hint. Use this "phase splitting" trick: $1+\mathrm{e}^{\jmath \gamma}=\mathrm{e}^{-\jmath \gamma / 2}\left[\mathrm{e}^{\jmath \gamma / 2}+\mathrm{e}^{-\jmath \gamma / 2}\right]=\mathrm{e}^{-\jmath \gamma / 2} 2 \cos (\gamma / 2)$.
(b) [10] Now instead of a sinusoidal input, suppose that the input signal $x(t)$ is periodic with period 4 and $x(t)=1$ for $0<t<2$ and $x(t)=0$ for $2<t<4$. Sketch the input $x(t)$ and the output signal $y(t)$. [0] Is there a "square wave in, square wave out" property?
7. [15] Concept(s): Euler's formula
(a) [10] Prove the following equality, called DeMoivre's formula, using Euler's formula.

$$
(\cos \theta+\jmath \sin \theta)^{n}=\cos (n \theta)+\jmath \sin (n \theta)
$$

(b) [5] Use this result to evaluate $(3+\jmath 4)^{99}$.

