Homework \#5, EECS 206, W03. Due Fri. Feb. 7, by 11:30AM

Notes

- Review the HW policies on HW1!
- Reading: "Part 3a" lecture notes (p.1-8 for now).

Soon: Ch. 3 of text, 3.4 .5 supplement (on web), Prof. Wakefield's Fourier series "quick primer" (on web)

1. [25] Concept(s): spectra and effect of time shift/scale

A continuous-time signal $x(t)$ has the following spectrum.

(a) [5] Determine an equation for $x(t)$ as a sum of sinusoidal signals in standard form.
(b) [5] Is $x(t)$ a periodic signal? If so, find its period.
(c) [0] Explain why "negative" frequencies are needed in the spectrum.
(d) [5] Sketch the spectrum of the following signal: $y_{1}(t)=-2 x(t)$. Hint: $-22=22 \mathrm{e}^{j \pi}$.
(e) [5] Sketch the spectrum of the following signal: $y_{2}(t)=x(3 t)$. [0] Describe how this time scaling affected the spectrum.
(f) [5] Sketch the spectrum of the following signal: $y_{3}(t)=x(t-1 / 4)$. [0] Describe how this time shift affected the spectrum.
2. [25] Concept(s): spectra from formula

Consider the signal $x(t)=4+\cos (2 \pi 3 t)+\sin ^{2}(5 \pi t)$.
(a) [10] Express this $x(t)$ as a sum of complex exponential signals. (Use an inverse Euler identity.)
(b) [5] Sketch the magnitude spectrum of this signal.
(c) [5] Sketch the phase spectrum of this signal.
(d) [5] Sketch the spectrum of $y(t)=3 x(2 t-1 / 4)$.

