Homework \#10, EECS 206, W03. Due Fri. Mar. 21, by 11:30AM

Notes

- Review the HW policies on HW1!
- Continuing to write anything on your homework after the 11:30AM due date, or attempting to put your solution into the box any time after 11:30AM is an honor code violation.
- Reading: Text sections 5.1-5.9
- Relevant practice problems on the DSP CDROM: 5.3, 5.12-17, 5.18-29

Skill Problems

1. [15] Concept(s): running average system, output from input

An L-point running average system has the following input-output relationship:

$$
y[n]=\frac{1}{L} \sum_{k=0}^{L-1} x[n-k]
$$

(a) [5] Sketch the output signal $y[n]$ (over the range $-5 \leq n \leq 10$) when the input signal is given by $x[n]=\delta[n-2]+\delta[n-5]$, for the case $L=4$.
(b) [5] Sketch the output signal $y[n]$ (over the range $-5 \leq n \leq 10$) when the input signal is the unit-step function $x[n]=u[n]$, for the case $L=4$.
(c) [5] Determine a general expression for $y[n]$ that will apply for any $L \in \mathbb{N}$ when $x[n]=u[n]$.
2. [10] Concept(s): FIR filter, LTI system, difference equation, output from input, impulse response

An FIR filter is described by the following difference equation:

$$
y[n]=2 x[n]+x[n-1]-x[n-3]
$$

(a) [0] Is this a linear, time-invariant (LTI) system?
(b) [0] The input signal is given by $x[n]=\left\{\begin{array}{ll}0, & n<0 \\ n+1, & 0 \leq n \leq 3 \\ 2, & n>3\end{array}\right.$ Sketch this signal.
(c) [5] Determine a formula for the output signal $y[n]$. Use braces just like the above formula for $x[n]$.
(d) [0] Sketch the output signal $y[n]$.
(e) [5] Find the impulse response $h[n]$ of this system. In other words, determine a output signal $y[n]$ when the input signal is when $x[n]=\delta[n]$. (When $x[n]=\delta[n]$, then $y[n]=h[n]$.)
Give both a formula for $h[n]$ and sketch it.
3. [15] Concept(s): discrete-time system properties
(a) [0] Show that the system described by the input-output relationship $y[n]=(n+1)^{3} x[n-2]$ is linear but time varying.
(b) [0] Show that the system described by the input-output relationship $y[n]=x[n] x[n-2]$ is nonlinear but time-invariant.
(c) [15] Consider the system with input-output relationship $y[n]=3 x[n-1]+\cos \left(\frac{\pi}{2}(n+1)\right)$. Explain why this system is or is not: linear, time-invariant, and/or causal.
4. [20] Concept(s): discrete time systems and their input-output relationships

A discrete-time system works as follows. Each output signal value is the average of the squares of the four previous input signal values.
(a) [5] Write down the input-output relationship for this system.
(b) [5] Is this system causal? Explain.
(c) [5] Is this system time-invariant? Explain.
(d) [5] Is this system linear? Explain.
5. [10] Text 5.6. Concept(s): FIR coefficients from $h[n]$
6. [20] Text 5.7. Concept(s): system properties from input-output relationship
7. [15] Text 5.11. Concept(s): cascade of LTI FIR systems

Mastery Problems

8. [10] Concept(s): running average system, geometric series input, step function
(a) $[0]$ Sketch the signal $s[n]=(0.5)^{n} u[n]$.

Notice the effect of the step function on the signal values for $n<0$.
(b) [10] The input signal for a certain L-point running average system is given by $x[n]=a^{n} u[n]$.

Determine a general formula for the output signal $y[n]$.
Hint. Your answer should have braces with 2 or 3 cases.
9. [10] Concept(s): linearity and time invariance

A discrete-time "mystery" system \mathcal{T} is known to be LTI, but its input-output relationship is unknown. It is tested with a couple of input signals, and the following input-output pairs are observed.

$$
\begin{array}{rll}
x_{1}[n]=\delta[n]-\delta[n-1] & \xrightarrow{\mathcal{T}} \quad y_{1}[n]=\delta[n]-\delta[n-1]+2 \delta[n-3] \\
x_{2}[n]=\cos \left(\frac{\pi}{3} n\right) & \xrightarrow{\mathcal{T}} \quad y_{2}[n]=7 \cos \left(\frac{\pi}{3} n-\frac{\pi}{7}\right)
\end{array}
$$

(a) [0] Sketch the signal $y_{1}[n]=\delta[n]-\delta[n-1]+2 \delta[n-3]$
(b) [10] Use linearity and time invariance to determine what that output signal would be if the input signal is given by $x[n]=7 \delta[n]-7 \delta[n-2]$.

