Notes

- Review the HW policies on HW1!
- Final exam information is on HW11. We will check UM ID's at the final exam.
- Reading: Text Ch. 7.
- Relevant practice problems on the DSP CDROM: 7.3, 7.4, 7.18, 7.21, 7.25, 7.32, 7.35, 7.46, 7.49

Skill Problems

1. [0] Text 7.1. Concept(s): (z-transform of finite sequences)

$$
\text { Hint: } X_{4}(z)=2-3 z^{-1}+4 z^{-3}
$$

2. [0] Text 7.3. Concept(s): (diffeq and response from system function)

Hint: $h[n]=\delta[n]+5 \delta[n-1]-3 \delta[n-2]+2.5 \delta[n-3]+4 \delta[n-8]$
3. [30] Text 7.8. Concept(s): (diffeq to $h[n], H(z)$, zplane, $\mathcal{H}(\hat{\omega})$)
4. [15] Text 7.9ace. Concept(s): (Cascade of two $H(z)$'s)
5. [15] Concept(s): system function and frequency response

A filter has input-output relation

$$
y[n]=x[n-1]+\sqrt{2} x[n-3]+x[n-5]
$$

(a) [5] By taking the Z-transform of both sides of this equation to obtain $Y(z)=H(z) X(z)$, identify the system function $H(z)$.
(b) [5] From the system function of part (a), show that there is a frequency ω_{0} for which the output signal is zero when $x[n]=A \cos \left(\omega_{0} n+\phi\right)$ for any A, ϕ. What is this frequency?
(c) [5] Determine the output signal $y[n]$ when the input is the above sinusoid with $A=10, \omega_{0}=\pi / 5$ and $\phi=0$.
\qquad
6. [25] Concept(s): suddenly applied signals

The input to an LTI system is the following discrete-time signal, which is periodic for $n \geq 0$.

The frequency response of the system is given by

$$
\mathcal{H}(\hat{\omega})=\frac{1}{4}\left(1+\mathrm{e}^{-\jmath \hat{\omega}}+\mathrm{e}^{-\jmath 2 \hat{\omega}}+\mathrm{e}^{-\jmath 3 \hat{\omega}}\right) .
$$

(a) [20] Determine a formula for the output signal $y[n]$ without using braces.
(b) [5] Sketch the output signal $y[n]$, and identify which part is the transient response.
7. [30] Concept(s): filtering of sampled continuous-time signals

The above sawtooth signal $x(t)$ is the input to the following connected systems:

$$
x(t) \rightarrow \begin{array}{|c}
\begin{array}{c}
\text { Ideal } \\
\text { anti-alias } \\
\text { filter }
\end{array} \\
x_{a}(t) \\
\begin{array}{c}
\text { Ideal } \\
\mathrm{C}-\mathrm{D} \\
f_{\mathrm{s}}=1500 \mathrm{~Hz}
\end{array} \\
\xrightarrow{x[n]} \begin{array}{c}
\text { LTI } \\
h[n]
\end{array} \xrightarrow{y[n]} \begin{array}{|c}
\text { Ideal } \\
\mathrm{D}-\mathrm{C}
\end{array} \\
\hline
\end{array} \rightarrow y(t)
$$

(a) [0] Sketch the spectrum of $x(t)$. (See HW6.)
(b) [5] Sketch the spectrum of $x_{a}(t)$.
(c) [10] Sketch the spectrum of $x[n]$.
(d) $[10]$ Sketch the spectrum of $y[n]$, assuming that $h[n]=\frac{1}{2}(\delta[n]+\delta[n-1])$.
(e) [5] Determine $y(t)$.

Optional challenge. Design a filter (specify $h[n]$) that would remove all of the harmonics except the fundamental frequency for the above sampled sawtooth signal.
8. [10] Concept(s): response to mixed periodic /aperiodic input given $H(z)$

Consider the following cascade of LTI systems

$$
x[n] \rightarrow H_{1}(z)=1+z^{-2} \rightarrow H_{2}(z)=1-z^{-2} \rightarrow y[n] .
$$

The input to this cascade system is the signal

$$
x[n]=20-7 \delta[n-5]+20 \cos \left(\frac{\pi}{4} n\right) .
$$

Determine the output signal $y[n]$. Given an equation (no braces!) valid for all n. Hint. Do not use convolution. Use more than one method and linearity.
9. [0] Will you need your UM ID at the final exam?

