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Ch. 5-8: Filtering

Ch. 5: FIR filters
e Time domain analysis
e System properties:
o linearity, time-invariance, causality, stability
e Impulse response
e Convolution

Ch. 6: Frequency domain analysis of filterdmostly FIR)
e Frequency response of filters
e Response to sinusoids and complex exponentials
e Response to periodic signals

Ch. 7: Z-transform
e Powerful “frequency domain” analysis technique
o filter design

Ch. 8: lIR filters
e Time and frequency domain analysis
e Design usingz-domain

Reading
e Text Ch. 5-8
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Ch. 5. FIR Filters

Introduction
Thus far we have focused primarily eignals We now turn tesystemsfor the remainder of the course.

Very often we have at hand a (digital) signdh| whose properties are somehow less than ideal, so we would liReotiess
(digitally) that signal:[n| to create a new signgln| that is somehow an improved versionadh|.

What we need tdesignis asystemthat accepts a signal as itgput, usually denoted[n], and produces a modified signal as its
output, or response usually denoteg[n]. We illustrate this situation generally with the following diagram.

Input signal Output signal
z[n]  —|Discrete-time Systen—  y[n]

This is asingle-input, single-outputsystem, which is the principal variety that we discuss in this course.

Example Many audio playback systems have some kind of “bass boost” feature that, when engaged, takes the signal and produce
a new version in which the low frequencies are amplified.

Example Signals contaminated by 60Hz hum (a 60Hz sinusoid).

How could we remove such “hum” using principles covered thus far in the course?

Could use DFT techniques but what if 60Hz does not correspond to an itedeecall thatf, = %fs for0 <k < fs/2.

For example, ifN = 100 and f; = 480, then60 = 1’50 480 means we neekll = 60/480 - 100 = 12.5, which is not an integer.
The following plot shows result of setting tlie= 12 andk = 13 DFT values to zerd,e,,

Y _{ 0, k=12,13,87,88

X|[k] otherwise

and then applying the inverse DFT (the synthesis equation) for §émn But the hum is incompletely removed.

Input signal Input spectrum
10
= ° =
< X
0
!H‘ ”\H
= \I|\|||\||\IIm||ml\||um.|n..n|.um.|um|||ulhmlmlll\ll\lmll
0 50 100 0 50 100
Outpufsignal Output $pectrum
10 Zeroed coefficients
= O |
=
0
-5
0 50 100 0 50 7100

n k

Evenifk were an integer, a DFT approach is poorly suitektd-time use where the input signal samples are arriving continuously
and the output signal values are needed immediately, such as in a public address system. A DFT approach can b# fine"for “
purposes and for signals like images that are functions of an argument like spatial location rather than time.
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Systems and their input-output relationships

We represent the operation of takingiaput signal and modifying to produce amutput signal by the following block diagram.

n] = [T]— yln]

whereT denotes the mathematical operator that definedidazete-time system

Mathematically we write
y="T{z}
or sometimes
2[n] % yln].
The book writes §[n] = T {z[n]}" but this is dangerous since it suggests that the output atimepends only on the input at
timen, which is not true in general.

Thegoalif the rest of the course is to learn howdesigna systeni/” to achieve desired effects on signals, such as amplifying or
attenuating certain frequency components. But first we must spend a long time singhygzingsuch systems.

We use the symbdl” when we refer to systems in general.
When we refer to a specific system, we definénpat-output relationship .

Example The (noncausal) 3-point moving averdieer has the followingnput-output relationship :
1
3 (z[n — 1] + z[n] + z[n + 1]).

In words, the output signal value at any timeconsidered to be the “current” time, is taeerageof the current signal value, the
previous signal value, and the next signal value.

yln] =

Does this filter do a good job of attenuating 60 Hz hum? Let us determine the output signal when the input is a 60 Hz sinusoid
sampled affs = 480 Hz, so

z[n] = cos(27r%n)

(z[n — 1] + z[n] + z[n + 1])

e

= = (cos(ﬂ-(n 1)+ COS(Z n) + cos(4 (n+ 1)))

oot

_ W

= —(cos( n—7r/4)+cos(4 n) + cos(

B (1+\/_) T T
= 3 S(Zn) ~ 0.8 cos(Zn)

So a 60 Hz hum signal (fof; = 480Hz) is attenuated only by about 20%, which still leaves a lot of hum power.

w

We must also be able to understand the input-output relationship graphically.

Example z[n] = 6u[n — 3] where we define the followingnit step function:

(Picture)

uln] A 1, n>0
1 0, otherwise.

Find the outpuy/[n].

Example z[n] = 3d[n — 4] where we define the following thenit impulse function, akaKronecker impulse function:

Al 1l n=0 .
o[n] { 0, otherwise. (Picture)

Find the outpuy[n].
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System properties
e Time-behavior properties
o causal vs noncausal
o time-invariant vs time-varying
e Other properties
o linear vs nonlinear
o stable vs unstable
o invertible vs non-invertible
e LTI systems
o impulse responsk|n|
o length of impulse response: FIR vs IIR

Causality

Definition

A system iscausalif the outputy[n] at timen depends only on the current input valug:] and past input values:
zn—1], zln—2],....

Mathematically;y[n] = F(x[n],z[n — 1] ,z[n — 2], ...) whereF'(-) is some function.

Otherwise the system is calledncausal

Causality is necessary for real-time implementation, but many DSP problems involved stored data (post-proegssimgye
processing (OCR) or restoration of analog audio recordings, so non-causal systems are also relevant.

Is the previous moving average filter causal? No.
Example Modified moving averageor running averagefilter:

(z[n] + z[n — 1] + x[n — 2]).

yln] = %

Causal? Yes. Can process signals in “real time.”

Static vs dynamic

e For astatic systemor memorylesssystem, the outpuj[n] depends only on the current inptitz], not on previous or future
inputs. Exampley[n] = x2[n).

e Otherwise it is adlynamic systemand must have memory.

Dynamic systems are the interesting ones and will be our focus. (This time we take the more complicated choice!)

Is a memoryless system necessarily causal? Yes. But dynamic systems can be causal or noncausal.
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Time invariance

Systems whose input-output behavior does not change with time are thadéethvariant and will be our focus.
Why?

e “Easier” to analyze.

e Time-invariance is a desired property of many systems.

A (relaxed) systen7 is calledtime invariant or shift invariant iff
T P T
z[n] = y[n] implies that z[n — ng] = y[n — ng]

for everyinput signalkz[n] andintegertime shiftng.
Otherwise the system is calléiche variant or shift variant .

Graphically:

oin] — [system | ™% [defay="° | = yafn] = yln — o]
ein] — [delay=—re | "% [syster | - ya

wherezs[n| = z[n — no]

Recipe for showing time-invariance.

e Determine the output signaln] due to a generic input[n]. Delay that output to forng; [n] = y[n — no| for a generic shift.
e Determine output signak[n] due to delayed input signak[n] = z[n — ng].

e If ya[n] = y1[n], then the system is time-invariant.

(If you cannot show thagz[n] = y1[n], try to find a counter-example to demonstrate that the system is time varying.

Example 3-pointmoving averagey[n] = % (z[n — 1] + z[n] + z[n + 1]) . Time invariant? yes.

e Clearly, delaying the output yields [n] = y[n — no] = % (z[n — no — 1] + z[n — ng] + z[n — ng + 1))
e Output due to shifted inputy[n] = z[n — ng| is

1 1
ya[n] = 3 (z2[n — 1] 4+ z2[n] + xz2[n+ 1)) = 3 (z[n —no — 1] + z[n — ng] + z[n — ng + 1]) .
Note that we did this in two steps to avoid errors!
e Sincey; [n] = yo[n], the system is time-invariant.

Example down-sampleg[n] = z[2n]. Time invariant? no. How do we show lack of a property? Find counter-example. If

z[n] = d[n| theny[n] = d[n]. If z2[n] = §[n — 1] thenyz[n] = 0 # yi1[n] = y[n — 1] = d[n — 1]. Simple counterexample all that
is needed.

We will focus mostly on time-invariant systems hereafter.
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“Amplitude” properties (linearity, stability, invertibility)

Linearity

We will also focus orinear systems

Why linearity?
e The class ofinear systemsis easier to analyze.
e Often linearity is desirable - avoids distortions.
e Many nonlinear systems are approximately linear, so first-order analysis is linear case.

A systemT7 is linear iff

wifn) Boyn], win] Bl = aziln] + aszeln] B agyiln] + asyeln]

for any signalsc [n], z2[n], and constants; andas.
Otherwise the system is callednlinear.

Here is a block-diagram representation of this property.
z1n] = @ \

1
(5] @_)%y[n]

z2[n] - Q
)

z1ln] = [T ] = nln] - (% \

ai @—)y[n]
zan] = [T] = yaln] — ? Va

a2

Two important special cases of linearity property.
e scaling property: ‘ Tlazn]] = aT'[z[n]] ‘
Note that froma = 0 we see that zero input signal implies zero output signal for a linear system.
« additivity property : | Tz1[n] + a[n]] = Tla1 [n]] + Tlwa[n]] |
Using proof-by-induction, one can easily extend this property to the gesigpalposition property:

In words: the response of a linear system to the sum of several signals is the sum of the response to each of the signals.
In general superposition need not hold for infinite sums; additional continuity assumptions are required.
We assume the superposition summation holds evenfioite sums without further comment in this course.
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Example Show that the accumulator is a linear system, whéng= "7 _
Method:

e Find output signal;; [n] for a general input signal; [n].

e “Repeat” for inputzs[n] andysz[n].

e Find output signa/[n] when input signal is:[n] = aiz1[n] + asxz[n].
o If y[n] = a1y1[n] + a2y2(n| Vn, then the system is linear.

—00

For the accumulatow [n] = Y>7_ __ z1[k] andys[n] = Y7_ __ xa[k]. If the inputisz(n] = aizi[n] + asza[n], then the
output is

n n n n

ynl = > 2kl = Y (am[k] + agaalk]) =1 Y ma[k]l+az Y walk] = onyi[n] + azyaln].

k=—o0 k=—o0 k=—o0 k=—o0

Since this holds for alh, for all input signalse; [n] andzz[r], and for any constants; andas, the accumulator is linear.

Example To show thaty[n] = z®[n] is nonlinear, all that is needed is a counter-example to the above properties. The scaling
property will usuallysufficé’. Letz;[n] = 2, a constant signal. Then[n] = 23 = 8. Now suppose instead that the input is
xa[n] = 10z1[n] = 20, then the output igs[n] = 20% = 8000 # 10y;[n] = 80, so the system is nonlinear.

Stability

A system isbounded-input bounded-output (BIBO) stableiff every bounded input produces a bounded output.
If M, s.t.|z[n] | < M, < oo Vn, then there must exist alf,, s.t.|y[n] | < M, < oo Vn.

Usually M, will depend onlM.

Example An accumulator system:y[n] = y[n — 1] 4+ z[n].
Consider input signat[n] = u[n], which is bounded by, = 1. Assumingy[—1] = 0, the output signal ig[n] = (n + 1)u[n],
which increases without bound. So the accumulator isrestable system.

We will derive a simple test for BIBO stability shortly.
Invertibility skip

A systemT is calledinvertible if there exists a systefi ~‘that can process the output of systgnand yield the input td, i.e.,

an] = [T] = [T 2] = oln),
for any possible input signal.
Example The systenx|n] 1 y[n] = 3x[n — 1] is invertible. The inverse system is given fiy] [ z[n] = ty[n +1].
Example The squaring systemin] = x?[n] is not invertible since givep|[n], we cannot determine the sign.off).

Example Dolby noise reduction.

1in fact, it is challenging to find a system that satisfies the scaling property but is nonlinear. They do exist though. Try to find one as a challenge...



© J. Fessler, June 9, 2003, 16:30 (student version) 5.8

Linear filters

Having introduced important system properties, we now turn to the family of discrete-time systems that will be our focus for the
rest of this chapter, callefilters. Usually when we speak of “filters,” we mean a specific type of lihdiane-invariant (LTI)
system.

For an FIR filter, the gener@put-output relationship, also called aifference equationhere, is as follows:
M,
y[n] = Z brx[n — k| .
k=M

e My — Mj is called theorder of the filter.
e Theb,'s are called thdilter coefficients.
¢ In this equation, the index “k” is in thiéime domain

Properties of FIR filters

e An FIR filter is, by constructiorljnear andtime invariant, which we abbreviate byTI .

e For the system to beausalwe must havel/; > 0. Usually we choosd/; = 0 and write:
M
yln] = Zbkm[n — k] = bozx[n] + brzn — 1]+ - - - + byz[n — K],
k=0

wherelM is called theorder of the filter.

e For an LTI system, thempulse responsés the output of the system when input signal is a unit impulse sigimél= §[n].
We usually usé[n] to denote an impulse response function. In other words,
zln] Lyln] = ]S k).

If we are given the input-output relationship for a system, then it is trivial to find the impulse response: just z&pldge
d[n], andy[n] by h[n]. (Later we will see more complicated cases.)

For the above general FIR filter, the impulse response is

0, n < M bar, 41 b
My bar,, n=M; bas, ¢ b bar,—1 bags
hinj= Y bedln—k = . I T [ T
k=M, brr,, n= My ; My M, +1 .. 6 1 i Mz‘—1M2 7;
0, n > M. by

e FIR (M7 and M, both finite) chapter 5-6
e IR (M, or M, infinite) chapter 7-8
Example y[n] = jy[n — 1] + z[n] = h[n] = 327 (3)"6[n — k]

o If an FIR filter is causal, what can we say about its impulse response h[n]? Itis zero forn < 0 since

0, n <0 h[n]
bo, n=>0 b b
M bl, n=1 bo by M1 T
B = " bedln — k=3 | | e ! .
k=0 : 0 1 L . M-1 M n
bM, n=M b2
0, n > M.

2There are some exceptions to this terminology. For example, in the lab you will mselian filter which is a nonlinear, but time-invariant, discrete-time
system. Buuisuallywhen people say “filter” then mean an LTI system.



© J. Fessler, June 9, 2003, 16:30 (student version) 5.9

Example Consider the following FIR filter.

1 V2 1
n=——zxn — ———zxn-—1/+ zn —2| = 1.7zxn| — 2.4z|n — 1] + 1.7x[n — 2].
yln] = 5——eln] = S~ —saln = 1]+ 7——seln = 2] & L7aln) - 242{n = 1]+ 172[0 — 2
i ic fi AT __1 _ V2 _ 1
What are the coefficients of this filter? We see:M = 2, by = 5=, b1 = 3255, andb; = 5——.

Is this filter a causal system? Yes.

What is the impulse response of this filter?

2(5[n — 2]~ 1.76[n] — 2.40[n — 1] 4+ 1.76[n — 2]

3
<

(Picture)
How well does this particular system work for removing 60 Hz hum (when f; = 480 Hz)?

For the particular signal under consideration earlier, we can find out by filtering the signal using the follominggvicommand.
y = filter([1.7 -2.4 1.7], [1], X)

The first argument is the filter coefficients, thés as a vector{by b1 ... bu].

Input signal Input spectrum
10
= 5
=3
0
-5
0 50
Outpufisignal
10} FIR filter

b=[1.7-2.41.7]

0 50 100
n

So this FIR filter appears to remove 60Hz hum pretty well.
Where did the coefficients, the b;’s, come from? This is the subject of filter design, which we will tackle in Chapter 7.
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Convolution

In our discussion of Fourier series and the DFT, we said it was useful to take “complicated” signals (like sawtooth waves) and
express them as the sum of “simpler” signals such as sinusoids. Sinusoids are not the only possible choice. For discrete-time
signals, it is also useful to express signals as a sum of impulse functions.

Example Consider the following signal.

z[n]
30

20
10

83 -2 -1 O 1 2 3 4 5 . n

The above description is graphical. We also need mathematical descriptions of such signals. One not-so-convenient mathematic:
formula would be

20, n=-2
30, n=3
znl =9 10 4

0, otherwise.

A more convenient formula is to express:| as the sum of four impulse functions
z[n] = 208[n + 2] + 30d[n — 3] + 10d[n — 4].

Why is this more convenient?
Suppose we are using an LTI system with impulse respafige= 5nuln — 4], and we want to determine the response (the
output) of that system when the above signal is the input.

Notice that we haveotbeen given an input-output relationship! So how can we §ind? We have been given the following two
key facts:
e The systen¥ is LTI.

e The impulse response of the systgnis h[n] = 5nuln — 4], i.e., d[n] 1, hin] = bnu[n — 4]

So usingtime-invariance, we know that

Therefore, usinginearity , we know that
z[n] = 208[n + 2] 4+ 306[n — 3] + 10d[n — 4] N y[n] = 20h[n+ 2]+ 30h[n — 3] + 10h[n — 4]
= 100(n + 2)un — 2] + 150(n — 3)u[n — 7] + 50(n — 4)u[n — §].

So we have determined the output sigggl] for this given input signak[n] without knowing the input-output relationshigve
could have done this fanypossible input signal.

Theconvolution sum derived next, generalizes the idea illustrated in this example.
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Representingz|n| using impulse functions

We can express any discrete-time sigrfal] using impulse functions as follows:

z[n] = Z z[k]d[n — k] = - - - x[-2] §[n + 2] + z[-1] §[n + 1] + z[0] §[n] + z[1] §[n — 1] + z[2] 6[n — 2] + - - - .

Example

z[-2] (1]

T x[;l] z(0] I x
Lo

-2 -1 0
Given an LTI system with impulse responge], usingtime invariance we know that

w o

Sl L hln] = -k L hln— k.
Using the scaling property associated witrearity , we know that
(k] 6[n — k] L z[k] hin — k]
Using the additivity property we see that

oo [e )

S zlklhln -k 5 S zlk]hln— k).

k=—00 k=—o0

In other words, we have just derived tinput-output relationship for any LTI system in terms of itsnpulse responses follows:

x[n] — ‘ LTI system with impulse responggn| ‘ — y[n] = Z x[k] hln — k]

k=—oc0

This sum is so important that it is given its own symbol and name. It is callecoieolution sumand we write:

(zx W)n) = aln] xhln] = 3 alk] hfn - K].

k=—o0

Expressed compactly:

LTI
z[n] = | h[n] | = y[n] = z[n] x h[n].

The fact that all LTI systems have an input-output relationship described by convolution is a tremendous simplification! When
designing LTI systemg,e, filters, we can focus our efforts on designing the impulse respbpgeso that the system behaves
according to whatever properties are desired.

Example Consider a system with given impulse response
hin] = 100d[n — 7).

What does this system do to a generic input signal z[n]? According to the convolution sum:

y[n] = z[n] * h[n] = i z[k] hln — k] = i x[k] 1006[n —7T—k]=---+0+2n—"7]100-14+0+--- = 100z[n — 7],

k=—o00 k=—o0
becaus@[n — 7 — k] is zero except when its argument is zeére, whenn — 7 — k =0sok =n — 7.
So what does this system do? It amplifies the signal by 100, and delays it by 7 samples.
What order system is this? Oth order

What about a system with impulse responses h[n] = d[n] + 6[n — 7]? This is 7th order, just like + z7 is a 7th order
polynomial.
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Sanity check for FIR filters

We had previously stated that for FIR filters the impulse response is

hin] = i brd[n — k| .
k=M,

What is the corresponding input-output relationship?

y[n] z[n] * h[n] = Z z[k'|hln — k'] = Z z[k'] ( i bpd[n — k' — k’])

k'=—oc0 k'=—o00 k=M
Mo e’} Mo

= > bk< > x[k’]é[n—k’—k]) = > bzln—k,
k=M, k'=—o00 k=M,

becaus@[n — k' — k] is zero except when its argument is zére, whenn — k' — k = 0 sok’ = n — k. This is the input-output
relationship presented previously for a generic FIR filter, confirming that convolution of the input s{ghalith the impulse
responsé[n] is consistent with our previous formula.

Convolution example

Example Determine the output signg[n] when the input signat[n] is given as follows:

z[n] = uln] + uln — 3] = | LTI with hln] = d[n] — é[n — 1]| - yln] =7

In lecture, three solution approaches were discussed tgfitfjd= z[n] x h[n].

1. Graphical convolution, using the following three-step recipe
o flip: draw h[—k]
e drawz[k] vs k rather tham
e slide: shifth[—k] by n samples for some
(shift to the right ifn is positive, sincéi[n — k] = h[—(k — n)])
e Multiply the shiftedh[—k]| by x[k] sample-by-sample, then sum. This yields] for a particulam.
¢ Repeat for all integer values of

2. Finding the input-output relationship, whichyig| = z[n] — z[n — 1] and examining how this relationship affects the particular
input signalz[n] given above graphically.

This system computes thest difference of the input signal, which is a discrete-time analog of the operation of taking the
derivative of a continuous-time signal. It is useful &afge detectiorin image processing.

3. Substituting in this particular[n] into the above input-output relationship and simplifying to find that
y[nl = é[n] + d[n — 3],

using the handy property:
d[n] = u[n] —u[n — 1],
which was demonstrated graphically.

All three solution methods are useful.
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Properties of convolution and the interconnection of LTI systems
Skill: Use properties to simplify LTI systemgwareness of these properties necessary for efficient designs.

Support If z[n] has support = Ny, ..., N1 + L1 — 1 (lengthL,)
andh[n] has support = Na,..., No + Ly — 1 (lengthLs)
theny[n] = z[n] * h[n] has support = Ny + Na,..., N1+ L1 — 1+ Ny + Lo — 1 (lengthLy)
What is the duration of y[n|? L = L1 + Ly — 1
Time-shift
x[n — ng) x h[n] = y[n — ng)
z[n — ny] * hln — na] = y[n — n1 — na)

z[n] * hin] = y[n] =

Commutative law

Proof:

z[n] * h[n] = Z z[k] hn — k] = Z x[n — k'] h[K'] = h[n] x z[n],

wherek’ =n — k.

Associative law

| (@[] * b [n]) * ha[n] = a[n] * (b [n] * ha[n]) |

Proof: lety; [n] = (z[n] * hi[n]) * ho[n] andys[n] = z[n| * (h1[n] * ha[n]).
We must showy; [n] = ya[n].

oo

Z(x*hl)[k]hg[n—k]—z(Zx[l]hl[k l>h2n— = afl] (Zhl[k—l]hz[n—k]>
k l l k

k=—0o0

=> z[l] (Zhl haln —1 — ])Zx[l] (hy % ha)[n— 1] = (z * [hy * ha])[n] = ya[n],

l l

y1[n]

wherem =k —[.
The above laws hold in general for any number of systems connecsedi@s So the following notation is acceptable:

h[n] = hi[n] * ha[n] % - - x hg[n].

In particular:

(z * h1) * hs x * (hy * ha)
x % (ha % hy)

= (x*xhe)xhy

so order of serial connection of LTI systems with impulse respaasmndh. does not affect output signal. See picture.

Distributive law

| zln] * (ha[n] + ho[n]) = (z[n] % ha[n]) + (2[n] * han)) |

Proof:
z[n] * (hi[n] + ha[n]) = Z z[n 1[k] + ha[E])
= Y azln—khkl+ Y xn—k halk]
k=—o00 k=—o0

= z[n] x hi[n] + z[n] * haln].

All of the above follow from simple properties of addition and multiplication due to LTI assumption.
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Here are the above properties illustrated with block diagrams.

2ln] = [ h[n] | = yln]

Commutative yields same output!

hln) = [aln] | = yln)

The order of interconnection of systemsseriesor cascadedoes not affect the output

o[n) = | haln] | = [ haln] | = yln)

Associative

ofn] = [Balr] * halr]| - i
Commutative

ofn] = haln]  hafr] | i
Associative

z[n] = | haln] | = [ B [n] | = yln]

Parallel connection:

hl [n]

hg [n]

Distributive: z[n] — | h[n] = ha[n] + ha[n] | = yln]

Example

z[n) == | ha[n] = o[n] = [n — 1]| = | ha[n] = u[n] | > y[n]

Overall impulse response:

>

[n] = hi[n] % ha[n] = (0[n] — 0[n — 1]) x u[n] = u[n] —u[n — 1] = d[n].

Block diagram of FIR filters
An Mth order filter has\ — 1 unit delays (why: ! explained later)M + 1 multiplies, andM adds.

This could be implemented in
e digital hardware (adders, multipliers)
How are delays implemented? With buffers / registers / latches / flip-flops.
e software on general purpose computeg( ANSI C, MATLAB, etc.)

3This claim only holds for ideal LTI systems based on real numbers. In digital systems where the signal values and filter coefficients are quardizedf the o
interconnection can matter in some cases.
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Convolution with impulses
Time shift / delay:

z[n] * d[n — no| = z[n — ny)

Identity:
z[n] * d[n] = z[n]

Cascade of time shifts:
d[n —n1] * 6[n —n2] = d[n — ny — ng)

Properties of LTI systems in terms of the impulse response

Since an LTI system is completely characterized by its impulse response, we should be able to express the properties of causalit
and stability in terms ok[n)].

Causal LTI systems
Recall system is causal iff outpyir] depends only on present and past values of input.

For an LTI system with impulse responisie]:

y[n] = Z hlk]z[n — k] = Z hlk] z[n — k] + i hlk]z[n — k].

k=—o0 k=0 k=—o0

The first sum depends on present and past input sampiész[n — 1], ..., whereas the second sum depends on future input
samplescin + 1], z[n + 1], .. ..

Thus the system is causal iff the impulse response terms corresponding to the second sum is zero.

These terms ark[—1], h[-2],.. ..

‘ An LTI system iscausaliff its impulse responsé[n| = 0 for alln < 0.

In the causal case the convolution summation simplifies slightly since we can drop the right sum above:

n

yln] => hlklzn— k] = Y a[k]hln—k].

k=0 k=—o0

Example Is the LTI system with h[n] = u(n — ng — 5) causal? Only if no + 5 > 0.

A causal sequencés a sequence[n] which is zero for alln < 0.

If the input to acausalLTI system is ecausal sequencehen the output is simply

[n] o { 07 n<0
Y= S hlk)xln — K] = Yo alk]hln — K], n>0.

The above sum is precisely what is computed bytMaB’s conv function, for finite-lengthc[n] andhn].
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Stability of LTI systems
Recally[n] = >"p2 __ hlk] z[n — k] so by the triangle inequality

> hlk]aln— > |h[k]zn — Z \h[k] ||z[n — k]| < M, Z |h[K]

k=—o0 k=—o0 k=—o0 k=—o0

if |z[n]| < M, Vn.
Thus, for an LTI system to be BIBO stable, it is sufficient that its impulse resporasledndutely summablei.e.

Z |h[n]] < oo.

n—=—oo

It is alsonecessaryor the above summation to be finite. To show necessity of that condition, construct counter-example showing
absence of the condition means we can construct some bounded input signal for which the output is unbounded. A suitable choic

is
_ [ h*[=n]/[h[-n]], h[-n]#0
zlnl = { 0, h[—n] =0
which is bounded by, = 1. But

Y hlke[=K= Y |n[K]|=

k=—o0 k=—oc0
if the impulse response is not absolutely summable, so the output would not be bounded for the specified bounded input signal.

Thus we have shown

A LTI system is BIBO stable iff its impulse response is absolutely summablge} > |h[n]| < .

n—=—oo

Example Accumulator:y[n] = y[n — 1] + x[n].

What is impulse response? Let z[n] = d[n], theny[n] = u[n]. SOh[n] = u[n].

Alternatively, recall thab[n] = u[n] — u[n — 1], sou[n] = u[n — 1] + §[n].

By correspondence with the input-output relationship above, it must be the caé@ithatu[n].
Stable? No: >~ ° _ h[n] = oo, so unstable.

One can also show the following for a BIBO stable system (see text).
e The impulse respongégn| goes to zero ag — oc.
e If the inputz[n] has finite duration, then the outpyfz] will decay to zero as — co.

Duration of impulse response

Two classes
o finite impulse responseor FIR
only a finite number of[n] are nonzero
e infinite impulse responseor IIR
an infinite number oh[n] are nonzero



