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Ch. 7: Z-transform
e Definition
e Properties
o linearity / superposition
o time shift
o convolution:y[n| = hn] *x xn| <= Y (2) = H(z) X(2)
e Inverse z-transform by coefficient matching
e System functiorH (z)
o poles, zeros, pole-zero plots
o conjugate pairs
o relationship toH (w)
e Interconnection of systems
o Cascade / series connection
o Parallel connection
o Feedback connection
e Filter design

Reading
o TextCh.7
e (Section 7.9 optional)
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z-Transforms

Introduction
So far we have discussed the time domai)) &nd the frequency domaid). We now turn to the z domair).

Why?
e Other types of input signals:
step functions, geometric series, finite-duration sinusoids.
e Transient analysis.
Right now we only have a time-domain approach.
e Filter design: approaching a systematic method.
e Analysis and design of IIR filters.

Definition
The (one-sided} transform of a signalz[n] is defined by
X(2)=> k] zF =af0] + 21z + a2 272+,
k=0
wherez can be any complex number. This is a functior: of
We write X (z) = Z {z[n]}, whereZ {-} denotes the-transformoperation We callz[n] andX (z) z-transform pairs, denoted

Left side: function oime(n) Right side: function ot

Example For the signal

3, n=0
z[n] =30+ 70n—-6]=< 7, n==6
0, otherwise,

the z-transform is
X(Z) = 2(36[117] + 75[k - 6])z_k =3+ 26
k

This is a polynomial in: ~*; specifically: X (z) = 3 + 7(2~1)°.

n-Domain z-Domain
aln] = Y alk]oln — k] <= X(2) = ¥ alk] 27

For causal signals, thetransform is one-to-one, so usikgefficient matchingwe can determirfethe signalz[n] from its z-
transform. We call this “taking the inversetransform.”

Example Given
Y(2) =327 47275,

the corresponding signal is
y[n] = 3d[n — 1]+ 70[n — 5] .

For infinite duration signals there are some technicalities that we leave to EECS 306 and 451.
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Properties of the z-transform
These are all easy to show from the definition of thieansform.
Linearity
az[n] + By[n] <= aX(z) + BY (2)
Time-shift
z[n —mno) <= X(2)z™"™°

Convolution (later)
y[n] = z[n] x hin] <= Y (2) = H(z) X (z)

The system function of an LTI system

Summary of ways to characterize filters.
e Time domain:
o I/O relation / diffeqy[n] = - - -
o Filter coefficients{by }
o Impulse responskn]
o Block diagram
e “Frequency” domain:
o Frequency respongé(w)
o System functiorf{ (z)
o Pole-zero plot{ domain poles, zeros, gain)

Thez-transform is particularly useful when we consider LTI systems.
The z-transform of the impulse responkg:| of an LTI system is denoteH (z) and is called theystem function

We will focus on causal systems, so the system function, also calldcatigfer function, is given by

H(z) =Y hlk]z™* = h[0] + h[1] 2" + A[2] 272 + -
k=0
Example The two-point moving average filter has impulse respdrisé= 16[n] + 36[n — 1] . Its system function is

1
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Example A filter has the system functioH (z) = z~3. What does it do?

Taking the inverse-transform by coefficient matching we see
hin] = d[n — 3],
so this system delays the signal by 3 samples.
This is why a unit delay is often denoted by — in block diagrams.
Example Thez-transform is particularly useful for IR filters. Suppdse] = a"u[n], for some numbes with |a| < 1. Then

o0 oo 1

H(z)= Zh[k] 27k = Zakz_k = Z(az_l)k =10
k=0

k=0 k=0

Does this hold for all values of z? No! We need to havéaz"!| < 1i.e, |2| > |a|. The subset of the complex plane
{z € C: |z| > |al} is called theregion of convergencef the z-transform. More details in 306/451.

Example A filter has impulse responggn| = d[n] + (1/2)"u[n] . The system function is

1 -1

_1l,-1 1 _1,-1"
1 3% 1 3%

H(z)=1+

Notice that this is aatio of polynomialsn z~1. We call such system functiomational system functions, and they are the only
kind we will need for designing FIR and IIR filters.

The z domain versus thew domain

The z domain is a generalization of the frequency domain for causal signals such as suddenly-applied diniaids the
similarity:

e Frequency response of a causal LTI systéio) = Y ;2 h[k] e 7<*.

e System function for a causal LTI systedi(z) = >_r-, hlk] 2.

Comparing, we see that if we replagavith e’< (which is a complex value after all for any givés) in the system function, then
we obtain the frequency response:

H(@) = H(z) = H (7).

z=el®

This is why we use the notatioh (&) and H(z), because they are very closely related, by making the substitution

For such values of, we havejz| = /%] = 1 andZz = Ze’® = &, so these values of lie on theunit circle in the complex
plane. SoH(z) is more general because one can also consider valueshatt are not on the unit circle, and this flexibility is
helpful for filter design.

Furthermorez 1! is easier to write thag—7%1

Example What is the magnitude response of the filter with system fundtion) = 23?2
H(@) = H(e?¥) = e773%, s0|H(@)| = |e7?3%| = 1. So the 3-sample delay system is ahpassfilter. The magnitudes of
sinusoidal components are unaffected.

Where is DC? At w = 0,50z = 1.
Where are high frequencies? Nearw = +7, S0z = —1.

The frequency intervalm < @ < « corresponds to the entire unit circle.

2For eternal periodic signals, thetransform is undefined, so the frequency domain remains our primary tool for those signals.



© J. Fessler, June 9, 2003, 16:31 (student version) 7.5

Summary for FIR filters

Time domain:

M M
yln] => bexln— k],  h[n] = bpd[n — k]
k=0 k=0
Frequency response):
M
H(@) =) bre 7
k=0
System function):
M
H(z)= Z bz "
k=0

Avoiding convolution

Time domain (convolution):

z domain (multiplication!):

Example (Aperiodic input signal, s64(%) is not directly useful!)

z[n] = 38[n] +[n —2] = |H(@) =e 7% —e 7% | 5 y[n] =7

To avoid convolution, use domain.X (z) =3+ 272, H(z) = 271 + 272, s0
Y(2)=X2)H(z) =B+2 ) 4+22) =321 +322 4273 4274
Taking the inverse-transform yields
y[n] = 30[n — 1] 4+ 30[n — 2] + d[n — 3] + d[n — 4].

Fact. Time-domain convolution of finite-duration signals is equivalent toz domain polynomial multiplication!
Indeed, in MATLAB, one uses theonv command for multiplying polynomials!

Proof of convolution property

Y(z)

Z {yln]} = Z {x[n] « hin]} = Z {Z hlK] afn — k]}
k

> " hlk) Z {z[n — K]} by linearity of Z {-}
k

Z hlk] X (z) 2= * by time-shift property ok-transform
k

Three “laws” of LTI systems (cf. Ohm’s law)

Given any two of the thre€X (z) , H(z) , Y (z)} we can find the third as follows. All three are useful for different purposes.
e Y(z)=H(2)X(2)

o H(z) =Y (2) /X(2)

* X(2) =Y(2) /H(2)
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Finding H(z) from I/O relation We can use the relationshi(z) = Y (z) /X (z) to find H(z) easily.

Example (Analysis)
A 2-point moving average filter has the input-output relationship

yln] = %x[n] + %x[n —1]

so in thez domain, using the linearity and time-shift properties:

V() = %X(z) + %X(z)z_l _ (1 + %z_1> X(2).

Dividing both sides byX (z) yields
Y(z) _ 1 _|_l -1
T X(z) 227

This approach is often the easiest way to ffii¢k), particularly for IIR filters.

Pole-zero plots

Example Continuing the previous example, notice that

e The “1/2" is called thegain of the filter.
e The roots of the numerator polynomial are called the zeros of the system. In this example the only zete isat
e The roots of the denominator polynomial are called the zeros of the system. In this example the only pole & at

We displ?y Ehsa poles and zeros graphically usimpke-zero plot
m(z

Re(z)

gain=1/2

More generally, hereafter we will focus @ational system functionswhich areratios of polynomials

B(2) gHi(z_Zi) _ )l z) (2 2m)
A(z)  “Il(z=pi)  “(z=p1)(z=p2)--(z—pn)

B(z) is aMth-order polynomial withMf roots{z;,7 =1, ..., M} called thezerosof H(z), becausd(z;) = 0.
A(z) is aNth-order polynomial withV roots{p;,j = 1,..., N} called thepolesof H(z), because? (p,) “="oc.

=
—
N
~—
Il
Il

Hereafter, often we will describe filters using thele-zero plotas the graphical representation.
The pole-zero plot (and gain) uniquely describe any rational system function. (New, and final, representation!)

Example A filter has the following pole-zero plot. Determihgn].
Im(z)

Re()

gain=3

Thus, by coefficient matching,n] = 3d[n] + 3d[n — 2].
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System functions of causal FIR filters

Why were there poles only at the origin in the preceding two examples? Because FIR filters only have poles at the origin.
M M
hin] =Y bidln—k] <= H(z)=> bpz ¥ =bg+brz™ 4+ +byz .
k=0 k=0

Rewriting in two forms:

bozM 4+ b1zM-1 4 p by 12+ by (z—z1)(z—22) (2 — zm)

H(z) = g =bo Y, )

where thez,'s denote thel/ roots of the numerator polynomiale., the M zeros of the system. UseMILAB's roots  function.

Fact. A Mth-order causal FIR filter withy # 0 andb,; # 0, hasM zeros and ha3/ poles at: = 0. ‘

We consider only the usual case of real filters (so the filter coefficients, ¥eare real numbers).
Then by theFundamental theorem of algebra all of the roots of the numerator polynomial are either real, or come in complex
conjugate pairs.

Fact. The zeros (and poles) of a real system are either real or come in complex conjuga{te pairs.

Example The system function for a FIR filter with impulse respoige] = 26[n] — 26[n — 1] + d[n — 2] is:

P2—zt3 _ [z=30+)][z-5(01-7)]

_ -1, -2 _ _
H(z)=2-2z""42""=2 e =2 2 )
. —B++B% - 4AC
because the roots of the numerator polynomiat + Bz + C are atz4 = 5B = %(1 +7).
So the pole-zero diagram is:
Im(z)
(1o reey
‘ gain =2
The zeros are in complex-conjugate pairs.
What about noncausal FIR filters? (Number of poles at the origin varies.)
Examples.
H(z) =22 H(z) =23
Im(z) Im(z)
Re() Re()
2 poles ato 3 zeros ato

For FIR filters, causal or not, any poles are at 0.
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The pole-zero plot and frequency response

Why is the pole-zero plot useful? System design via frequency response!

Relation betweefrequency responseandsystem function | H(w) = H(z)

:H(ej‘b).

2=l @

So themagnitude response )
H (@) = [H (')

From the general expression fHr(z) above, the magnitude response of an FIR filter is

[H(@)| = [H ()] = |bo

(&9 — 21) (7% — 25) + - (¥ —ZM)' — |bo| |eJ@ —21‘ |ejaj _22‘ -~‘er —ZM‘.

@)

So the magnitude response is simply the product of the distances from the’gojan the unit circle) to all the zeros. In particular,
whenever’ ¥ is closeto a zero of the system function, the magnitude response will be reduced. &t z,, for one of the
M zeros, then the magnitude response will be exactly zero.

This makes it fairly easy to design filters that remove certain frequency components completely.
And, given a pole-zero plot, we can roughly sketch the magnitude response!
Im(z)

z = eJ@ﬁX— el /4
r‘sy
w R
N

The unit circle in the z-domain corresponds to the interval< © < « for the frequency domain.

Example A filter has the following pole-zero plot. Sketch its magnitude response.
Im(z)

Re()
gain=3
For& = 0, the distance to each zeroy&, so the magnitude responseig2v/2 = 6.

Likewise foro = 4.
As & increases from 0 towards/2, the distance to the upper zero decreases and the magnitude response drops towards zero.

|H ()| = 6 |cos&|

—T /2 T w

Analytically: H(z) = 3+ 3272 sS0OH(®) = 3 + 3e /%% = e 7“6 cosw, SO the magnitude responsg#(w)| = 6 [cos | .
For what sampling rate f; would this filter remove 60Hz hum? f; = 240Hz

The book also discusses how to analyze the phase response graphically.
This topic will be considered in more detail in EECS 451.
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First FIR filter design attempt: 60Hz notch filter.
Equipped with the concepts developed thus far, we can finally attempt odiltinstiesign!

In many applications, such as measuring brain signals, “60Hz hum” from AC power lines contaminates the(sjgaiother

example is home computer networks that operate over house AC wiring. To reduce the resulting interference, often we need to pas
the signal through a filter that removes the 60Hz component while leaving other frequency components relatively unaffected. Such
filtering can be done using RLC circuits, or by applying digital signal processing.

— | Filter #(w) | — [ DJA (interpolaton] — y(t) ~ x(t) .

z(t) — D —>‘SamplefS
T
60Hz hum

For simplicity of the algebra, we suppose that the sampling rate4s480Hz.
What is the corresponding digital frequency? & = 2rf/ fs = 2n60/480 = 7 /4.

What is the ideal frequency response H(w)?
(Picture) of idealH (&) with nulls at+m /4.
This is called ahotch filter.

Design 1

Where do we put zeros in the pole-zero diagram to eliminate the frequency component & = +x/4?
See pole-zero diagram below with two zeros-at /4.

Where do the poles go? Two at origin needed for causal FIR filter.

This system design looks promising, since it will certainly eliminate the 6@Hz -7 /4) frequency component completely.
Next we find theémpulse responsgneeded for implementation) and thiequency responsgto see if we met our design goal).

Choosing gain=1 for now, we see from the pole-zero plot:

[z —e?™/4] [z —e?™/4] 22— 22cos(n/4) + 1
22 - 22

H(z) = = 1—z_12cos(7r/4)+z_2: 1—2"'W2 4272

Thus the impulse response ign| = 6[n] — v/26[n — 1] + §[n — 2]. This is a very simple filter! It can be implemented using the
following simple diffeq:
y[n] = z[n] — V2z[n — 1]+ z[n — 2].
The frequency response of this FIR filter is
H(@)=1—v2e7% +e772° =e79(2cos & — V2).

Here is a plot of thenagnitude responseandphase responsef this system, computed usingAviLAB’s zplane andfreqz
functions.

zplane Magnitude Response
1 4
=
g o5 © 3
€-0.5 _1
E 7 o
_1 O
-1 0 1 T -T2 W T2 Tt
Real part Phase Response
IRA |
—_ 3
E opee e0000000 S O\I\I\
O
-1

0 5 10 _5—T[ -2 2 11
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Design 2

Our first design does remove tide = +7/4 frequency component completely, but unfortunately it also has the side effect of
amplifying the high frequencies relative to the low frequencies.

How can we attenuate the high frequencies somewhat?

From the general expression fHi(z) above, the magnitude response is

R o Y — 2)(eY — z) - (& — 2 o o &
@) = |1 (09)| = |2 HE ] o o s

So the magnitude response is simply the product of the distances from the’gojan the unit circle) to all the zeros. In particular,
whenever’“ is closeto a zero of the system function, the magnitude response will be reduced.

So to reduce (but not eliminate) high frequency components (-7), we can place a zero somewhere neafe’™ = —1.
ComparingH(0) = H(1) to H(w) = H(—1), one can show that a zeroat= —+/2 will equalize the gain ab = 0 andw = 7.

Here is the resulting frequency response.

zplane Magnitude Response
1 y 4
= "O
g 05 : 3
> =
g ofo 2 32
= _ I
E o !
-1 0 1 =TT -T2 W 7172 T
Real part Phase Response
5
1
- s
< oo/ e eccceee = 0
-1 l 5
0 5 10 =TT -T2 W W2 W

n

Well, we have equalized the gainat= 0 andw = , but we are still far from our ideal frequency response!

What is the output of this filter if the input signal is z[n] = 3 + cos(§n) + 7(—1)" ?
Recall that

z[n] = cos(dn + ¢) — — y[n] = [H(D) | cos(@n + ¢ + LH(D)).

For the system above,

i - B VI a o Va1 VB
H@) = H(Y) =[1- V2?4 e[+ V2e77%).

The frequencies of the input signalh] above arév = 0, @ = 7 /4, and® = .
Substituting intoH (&) we haveH (0) = (2 — v/2)(1 + v/2) = /2, H(n/4) = 0 (due to zeros at/4 on unit circle),H(n) =
2+ V2)(1 - v2) = —v/2 = 2eI7.
Thus the output signal is
y[n] = 3v2 + 0 + V2 cos(mn + 7).
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A magnitude response plot shows the response &temalsinusoid.
What about “suddenly turned on” signals cos(wn)u[n], (e.g., after system first started)?
After short initialtransient response the output signal approaches #teady stateresponse.

Design 3

How well can we do with a more sophisticated FIR filter?

Here is aM = 28 filter designed by MTLAB's remez function.

The frequency response plots were made usirgIMB’s freqz  function.
The impulse response plots were made usirg MB s filter function.

zplane Magnitude Response
. e 15
& O &5
o 00 ©
S 05 07 9 5 1
£ 0, o fo ool 2
205" %060 =05
= 1 0 5 O
-1 0 1 2 QTII -2 w 712 T
Real part Phase Response
5
0.8
0.6 3
'E‘ N—r
EOA T O
0.2 =
0 10 20 _ELT[ -2 w T2 T

n

This is better since it has reasonably uniform gain in the passbands, but the “notch” may be somewhat wide.

Design 4

How can we get even closer to the ideal frequency response?
One way is to use the filter with the following pole-zero plot and frequency response.

zplane Magnitude Response
1 - 15
3 0
8 05 ' 1
> ' =
o] . ~
£ ° N
£-05 . 05
-1 0 1 T -T2 W 172 T
Real part Phase Response
1 2
1
£0.5 3
= L0
-1
?%e
w.. ‘. .‘ ‘I i

0 5 10 T -T2 w172 T
n
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What is fundamentally different about this filter?
Itis anlIR filter , since there are poles notat= 0.

Even though we have not yet studied IIR filters in detail, we can use what we have learned so far to find
e thesystem functionH(z),

o thediffeq,

e and thefrequency response

However, we do not yet know how to find tiapulse responseof an IR filter. That comes in the next chapter.

Assuming that the gain=1, from the pole-zero we have thasylseem functionis:

H(z) = [zfejﬂ/ﬁl][z—efjﬂ/ﬁl] B Z2—22COS(7T/4)+1 B 1—2712COS(7T/4)+272 B Y(2)
= [z — re1™/4][z — re=17/4] T2 22 cos(m/4) + r2 1 — 212 cos(n/4) + 1222 = X)

wherer denotes the distance of the pole from the origin.

To find thediffeq, we firstcross multiply as follows:
Y(2) [1 =2 "2rcos(n/4) +r°27%] = X(2) [1 — 27" 2cos(n/4) + 27?] .
Now (using linearity and shift property of z-transform), we convert back to the time domain:
y[n] — 2r cos(m/4)y[n — 1] + r?y[n — 2] = z[n] — 2 cos(n/4)z[n — 1] + z[n — 2].
Rearranging yields the followingecursive expression:
y[n] = 2rcos(m/4)y[n — 1] — r’y[n — 2] + z[n] — 2 cos(n/4)z[n — 1] + z[n — 2].

The output at time: depends on the two past output valaesl on the current input and 2 past input values. This is very easy to
implement! Much easier than a 28-tap FIR filter.

To understand th&equency responsejualitatively, we return to the fir§actored form of the system function above:

[e]‘b —_ e]ﬂ/4][ejaj —_ efjﬂ-/4]

H(@) = H(eY) =

[e7% — re1m/4][e1® — re—a7/4]’
In particular, we find thenagnitude responseby taking the magnitude of both sides:

|79 — /4|29 — o7 I/

H(@)| =

% —rerm/4||er® — pe—am/4|

In words, this means that for any frequenigythe magnitude response is the product of all the distances from theepdioh the
unit circle to all the zeros, divided by the product of all the distances from the @dirib all the poles.
Being close to a zero decreases the magnitude response; being close to pole increases the magnitude response.

For any frequency that is far frome? 7/ in the notch filter example, the distance frefff to the zero and to its neighboring pole
is almost the same, so the ratio is nearly unity and thus the magnitude response is nearly unity. The zero is slightly further away, sc
the magnitude response is slightly more than unity.

How could we make the response closer to unity far from the zero?
Move the pole closer to the zero. (But, as we will see in the next chapter, this makes the transient responsei:éonter,”
impulse response decays to zero slower, which can be undesirable in some applications.
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The following figure shows the result of applying this filter to the example data considered much earligarihent response
of the IIR filter is clearly visible.

Input signal Input spectrum
10
= o
3
0
_5 3
0 50 100 0 50 100

Outpufisignal
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Interconnection of LTI systems
Engineers build complicated systems by connecting simpler components.

There are three principal ways of connecting two LTI systems: series, parallel, and in a feedback loop.

Series connection

Here are two LTI systems connectedsigriesor in cascade

2fn) = [H(2) |2 [Ha(2) |- yln)

In the time domain, we have seen that that overall system is LTI with impulse resplerise hq[n] * ha[n].

Since time-domain convolution corresponds to multiplication in the z-domain, the overall system function is
H(z) = Hi(2) - Hz(2),

the productof the two individual system functions.

Example Application: channel equalization for wireless communicatidids(z) represents the channel (attenuation, multipath)
and H»(z) represents the equalizer that is designed to “undo” (invert) the distortions induced by the channel. Ideally, we would
haveH, = 1/H;. We must estimate the channel respoHse We sent a “training sequence” with knowfr], observe the output

y1[n], and then uséf,(z) = Y1(z) /X (z). These ideas are used in digital communications.
Example Application: (greatly simplified) Dolby noise reduction...
— Im(z) Im(2)
gain=1 gain=1
Re() Re()

High-boost for record: High-reduce for playbackrfverse systemIIR!):
(Picture) of frequency responses.

Example Putting two unit-sample delays in series is equivalent to a two-sample delay:

zn] — o — y[n] is equivalent tar[n] — — yln].

Example Hy(z) = g1(1 +27) = g1 andHa(2) = g2(1 — 271) = g2 55+
In series:

H(z) = Hi(2) Ha(2) = 9192Z:12 mE R Ch Y Conld )

22
Pole-zero plots:
Im(z) Im(z) Im(z)

L]0 e (L e [l e
N NP NP

Hi(2): Hj(z): H:

Forrational system functions:

sy

_ Bi(z) By(2)

Ai(z) As(2)
So the zeros off(z) are all the zeros of the two systems connected in zeros, and likewise for the poles, except in cases where
Bi(z) andAz(z) share a common root, or wheB(z) and A;(z) share a common root, which is callpdle-zero cancellation

H(Z) = Hl(z) HQ(Z)
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Parallel connection

Hl(Z)

HQ(Z)

Y (z) = Hi(z) X (2) + H2(2) X (2) = (H1(2) + H2(2))X (2) , so the overall system function is

Bi(z) | Ba(z) _ Bi(z) A2(2) + Ba(2) A1(2)
H(z) = Hi(z) + H2(2) = + = .
()= HE G =536 T L) 41(2) Aa(2)
In this case we see that the parallel connected system has all the poles of the two component systems (unless there is pole-ze
cancellation.
But we can say very little if anything about the zeros in general.

Example Hy(z) = g1(1 +27) = g1 ¥+ andHa(2) = g2(1 - 271) = g2 55+
In parallel:

z+1 z—1 +92)z + —
H(:) = Hy(2) + Ho(z) = ot 47— = 01t eli g2 2]

Single pole at = 0 and zero at = (g1 — ¢2)/(g1 + g2).

Pole-zero plots:
Im(z) Im(z) Im(z)

/ \ Re() / \ Re() \ Re()
] N

Hy(z): Hy(z): H (forgy =1, g2 = 2):

R
N

Feedback connection

Example automobile cruise control.

(Picture of systemH, (z) with negative feedbackH ¢(z))
Derivation:Y = H(X — H;Y)so(1+ Hy)Y = H; X so

H1 (Z)

H(z)= ———2
B = TGy 11,

Location of poles and zeros &f (=) is complicated; indeed, part of the purpose of feedback is to stabilize and otherwise unstable

system é.g, Harriet airplane). Even iff; (z) has poles that are outside the unit circle, which means it is an unstable system, it can

still be the case thaif (z) has all its poles inside the unit circle, meaning that it is stable, if the feedback sitémis designed

properly.

Example H,(z) = —~= = —=-.If a > 1, then the system is unstable.

l1—az—1 z—a’

The simplest possible feedback controller wouldigz) = ¢ for some constary.

Hy(z) poarm z z

T I+ H(2)Hi(z) 1+ =g z-a+zg z2(+g) —a

so the system with feedback has a pole at a/(1 + g).
If ¢ > a — 1, then the pole will be “moved” to within the unit circle, thereby stabilizing the system.
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Example Noise cancellation. (Explained in lecture)

ol S SR
| me)
i o
i Hy(2) Hs(z) ||

For perfect noise cancellation, we nelg(z) = —H(z) /Ha(z2).
If H1(z)is FIR, thenH3(z) will be IIR, which again brings us to the next chapter...
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Summary and other topics

system functior (z): z-transform of impulse response.

pole-zero plot / filter design.

Response to suddenly applied complex exponential signals and sinusoids?
Design of FIRbandpass filter? (zeros around unit circle except in passband)
(Picture) of ideal H(w)

(Picture) pole-zero plot



