	Last Name:
	First Name:
	ID Number:
	Lab day/time:
	Lecture time:
I have neither given nor received aid on this	s examination, nor have I concealed any violation of the Honor Code. Signature:
	~-S
EEC	S 206 Exam 3, 2006-4-20
DO NOT TURN THIS	S PAGE OVER UNTIL TOLD TO BEGIN!

- This is a 2 hour exam.
- It is closed book, closed notes, closed computer.
- You may use two 8.5"x11" pieces of paper, both sides, and a calculator.
- There are 28 problems for a total of 150 points. The questions are not necessarily in order of increasing difficulty.
- This exam has 6 pages. Make sure your copy is complete.
- Read difference equations carefully: y[n-1] etc. might be on either side of equality.
- Continuing to write *anything* after the ending time is announced will be considered an honor code violation. *Fill out your name etc. above now, and do not wait until the end to circle your answers!*
- Clearly circle your final answers on this copy of the exam, not elsewhere.

Determine the z-transform of the signal $(-1)^n u[n] + (-2)^n u[n]$. a) $\frac{1}{2+3z^{-1}}$ b) $\frac{1}{(1+z^{-1})(1+2z^{-1})}$ c) $\frac{2z^2+3z}{z^2+3z+2}$ d) $\frac{2z+3}{z^2+3z+2}$ e) $\frac{z^2+3z+2}{2z^2+3z}$ f) $\frac{2+2z^{-1}}{1+2z^{-1}}$

a)
$$\frac{1}{2+3z^{-1}}$$

b)
$$\frac{1}{(1+z^{-1})(1+2z^{-1})}$$

c)
$$\frac{2z^2 + 3z}{z^2 + 3z + 2}$$

d)
$$\frac{2z+3}{z^2+3z+2}$$

e)
$$\frac{z^2 + 3z + 2}{2z^2 + 3z}$$

f)
$$\frac{2+2z^{-1}}{1+2z^{-1}}$$

2. (5 points)

Determine the z-transform of the signal $\{\underline{1},2\} + u[n]$.

a)
$$1 + 2z + \frac{1}{1 + z^{-1}}$$

c)
$$1 + 2z + \frac{z}{1-z}$$

e)
$$\frac{2+z+2z^2}{1+z}$$

b)
$$1 + 2z^{-1} + \frac{1}{1+z}$$

c)
$$1 + 2z + \frac{z}{1-z}$$

d) $\frac{2 + z^{-1} - 2z^{-2}}{1 - z^{-1}}$

e)
$$\frac{2+z+2z^2}{1+z}$$
f)
$$\frac{2+z^{-1}+2z^{-2}}{1+z^{-1}}$$

3. (5 points)

Determine the z-transform of the signal $\{\underline{1},2,2,2,2,2,\ldots\}$. a) $\frac{3-z^{-1}}{1-z^{-1}}$ b) $\frac{1+z^{-1}}{1-2z^{-1}}$ c) $\frac{2+z^{-1}}{1-2z^{-1}}$ d) $\frac{1+z^{-1}}{1-z^{-1}}$ e) $\frac{2+z^{-1}}{1-z^{-1}}$ f) $\frac{2+z^{-1}}{1+z^{-1}}$

a)
$$\frac{3-z^{-1}}{1-z^{-1}}$$

b)
$$\frac{1+z^{-1}}{1-2z^{-1}}$$

c)
$$\frac{2+z^{-1}}{1-2z^{-1}}$$

d)
$$\frac{1+z^{-1}}{1-z^{-1}}$$

e)
$$\frac{2+z^{-1}}{1-z^{-1}}$$

f)
$$\frac{2+z^{-1}}{1+z^{-1}}$$

4. (5 points)

Determine the inverse z-transform of $\frac{2z-3}{z(z-1)}$.

a)
$$\{2, -3\}$$

c)
$$\{2, -3\} * u[n - 1]$$

d) $3 \delta[n] - u[n]$

e)
$$3 \delta[n-1] - u[n]$$

b)
$$\{\underline{2}, -3\} * u[n]$$

d)
$$3\delta[n] - u[n]$$

e)
$$3 \delta[n-1] - u[n]$$

f) $3 \delta[n-1] + u[n-1]$

Given $\{\underline{1}, -3\} \rightarrow \boxed{\text{LTI } h[n]} \rightarrow \{\underline{1}, -5, 6\}$, determine h[1]. a) -2 b) -1 c) 0 d) 1

$$\rightarrow LTI$$

b) -1

c)
$$0$$

f) insufficient information

6. (5 points)

Given $\{\underline{1}, 1, -6\} \rightarrow \boxed{\text{LTI}} \rightarrow \{\underline{1}, 1, 1\}$. Which of the following best describes the system? ("S" = BIBO stable)

- a) FIR and S b) FIR and not S c) IIR and S d) IIR and not S e) noncausal

- f) nonlinear

For the system y[n] = y[n-2] + x[n] + x[n-2], determine the response to the input signal $\cos(\frac{\pi}{4}n)$.

- a) $\cos(\frac{\pi}{4}n)$
- b) $\sin\left(\frac{\pi}{4}n\right)$ c) $-\cos\left(\frac{\pi}{4}n\right)$ d) $-\sin\left(\frac{\pi}{4}n\right)$
- e) 0
- f) $\cos\left(\frac{\pi}{4}n \pi/4\right)$

For the system y[n] = y[n-2] + x[n] + x[n-2], which of the following signals is eliminated?

- a) $\sin(\frac{\pi}{4}n)$
- b) $\sin\left(\frac{\pi}{2}n\right)$ c) $\sin\left(\frac{3\pi}{4}n\right)$
- d) $\sin(\pi n)$
- e) u[n]
- f) $(-1)^n u[n]$

For the system y[n] = y[n-2] + x[n] + x[n-2], the output signal $\cos\left(\frac{3\pi}{4}n\right)$ is produced by which input signal? a) $\cos\left(\frac{3\pi}{4}n - \frac{\pi}{2}\right)$ b) $\cos\left(\frac{3\pi}{4}n\right)$ c) $\cos\left(\frac{3\pi}{4}n + \frac{\pi}{2}\right)$ d) $\sqrt{2}\cos\left(\frac{3\pi}{4}n - \frac{\pi}{2}\right)$ e) $\sqrt{2}\cos\left(\frac{3\pi}{4}n\right)$ f) $\sqrt{2}\cos\left(\frac{3\pi}{4}n + \frac{\pi}{2}\right)$

10. (5 points)

The system y[n] = y[n-2] + x[n] + x[n-2] is (C = causal, S = BIBO stable):

- a) C and S
- b) C and not S
- c) not C and S
- d) not C and not S
- e) nonlinear
- f) FIR

11. (5 points)

For the system y[n]=y[n-2]+x[n]+x[n-2], determine the frequency response. a) $\frac{1+\mathrm{e}^{-\jmath\,2\omega}}{1-\mathrm{e}^{-\jmath\,2\omega}}$ b) $\frac{1-\mathrm{e}^{-\jmath\,2\omega}}{1+\mathrm{e}^{-\jmath\,2\omega}}$ c) $\frac{1+\mathrm{e}^{\jmath\,2\omega}}{1-\mathrm{e}^{\jmath\,2\omega}}$ d) $\frac{1-\mathrm{e}^{\jmath\,2\omega}}{1+\mathrm{e}^{\jmath\,2\omega}}$ e) to

a)
$$\frac{1 + e^{-j2\omega}}{1 - e^{-j2\omega}}$$

b)
$$\frac{1 - e^{-j2\omega}}{1 + e^{-j2\omega}}$$

c)
$$\frac{1 + e^{j2\omega}}{1 - e^{j2\omega}}$$

d)
$$\frac{1 - e^{j2\omega}}{1 + e^{j2\omega}}$$

e)
$$tan(\omega)$$

f) 1

12. (5 points)

The signal $\cos(\frac{\pi}{4}n)$ is the input to the system y[n] = y[n-2] + x[n] + x[n-2].

Determine the average power of the output signal.

- a) 0
- b) 1/4
- c) 1/2
- d) 1
- e) 2
- f) 4

For the system y[n]=y[n-2]+4x[n-1], determine its system function. a) $\frac{z^2-1}{z}$ b) $\frac{z}{z^2-1}$ c) $\frac{z^2+1}{z}$ d) $4\frac{z^2-1}{z}$ e) $4\frac{z}{z^2-1}$ f) $4\frac{z}{z^2+1}$

a)
$$\frac{z^2 - 1}{z}$$

b)
$$\frac{z}{z^2 - 1}$$

c)
$$\frac{z^2 + 1}{z}$$

d)
$$4\frac{z^2-1}{z}$$

e)
$$4\frac{z}{z^2 - 1}$$

f)
$$4\frac{z}{z^2+1}$$

14. (5 points)

For the system y[n] = y[n-2] + 4x[n-1], determine the impulse response.

a)
$$2^n u[n] - (-2)^n u[n]$$

a)
$$2^n u[n] - (-2)^n u[n]$$

b) $2^n u[n] + (-2)^n u[n]$
c) $2 u[n] - 2(-1)^n u[n-1]$
e) $-2 u[n] + 2(-1)^n u[n]$
b) $2^n u[n] + (-2)^n u[n]$
d) $2 u[n] + 2(-1)^n u[n-1]$
f) $2 u[n] - 2(-1)^n u[n]$

e)
$$-2u[n] + 2(-1)^n u[n]$$

b)
$$2^n u[n] + (-2)^n u[n]$$

d)
$$2u[n] + 2(-1)^n u[n-1]$$

f)
$$2u[n] - 2(-1)^n u[n]$$

15. (5 points)

An LTI system has the following pole-zero plot. Determine its system function.

16. (5 points)

An LTI system has the following pole-zero plot. Determine its difference equation.

a)
$$y[n] - y[n-1] = x[n-2]$$

c)
$$y[n] = -y[n-1] + x[n-2]$$

a)
$$y[n] - y[n-1] = x[n-2]$$
 c) $y[n] = -y[n-1] + x[n-2]$ e) $y[n] = y[n-1] - x[n-2]$ b) $y[n] - y[n-2] = x[n-1]$ d) $y[n] = -y[n-2] + x[n-1]$ f) $y[n] = y[n-2] - x[n-1]$

b)
$$y[n] - y[n-2] = x[n-1]$$

d)
$$y[n] = -y[n-2] + x[n-1]$$

f)
$$y[n] = y[n-2] - x[n-1]$$

17. (5 points)

 $u[n] \to \text{LTI} \to y[n]$ where the system has the following pole-zero plot. Determine y[2].

- a) -2
- b) -1
- c) 0
- d) 1
- e) 2
- f) 3

18. (5 points)

An LTI system with impulse response $h[n] = \delta[n-1] + u[n]$ is in series with a system that has the following pole-zero plot. Determine the number of poles of the cascaded system.

- a) 0
- b) 1
- c) 2
- d) 3

4

- e) 4
- f) 5

An LTI system has impulse response h[n] and the following pole-zero plot. Determine h[3]/h[0].

- a) -2
- b) -1
- c) 0
- d) 1
- e) 2
- f) 3

20. (5 points)

The LTI system with the following pole-zero plot will eliminate which of the input signals below?

- a) $\cos(n/4)$
- b) $\cos(n/2)$
- c) $\cos(n)$
- d) $\cos(n/2 + \pi/2)$ e) $\sin(n/2)$ f) $(-1)^n$

21. (5 points)

Which of these filters h[n] eliminates a 5 Hz component in a signal sampled at 30 Hz?

- a) {1, 1, 1}
- b) {1, 0, 1}
- c) $\{\underline{1}, \sqrt{2}, 1\}$ d) $\{\underline{1}, -\sqrt{2}, 1\}$ e) $\{\underline{1}, -2, 1\}$ f) $\{-1, 1, -1\}$

22. (5 points)

An LTI system has impulse response $h[n] = u[n] + 2^n u[n]$. Determine its difference equation.

- a) y[n] 3y[n-1] + 2y[n-2] = -2x[n] + 3x[n-1]
- d) y[n] + 3y[n-1] 2y[n-2] = -2x[n] + 3x[n-1]
- b) y[n] + 3y[n-1] 2y[n-2] = -2x[n] 3x[n-1]
- e) y[n] 2y[n-1] + 3y[n-2] = 3x[n] 2x[n-1]
- c) y[n] 3y[n-1] + 2y[n-2] = 2x[n] 3x[n-1]
- f) y[n] + 2y[n-1] 3y[n-2] = -3x[n] + 2x[n-1]

23. (5 points)

An LTI system has frequency response $\frac{3}{e^{j\omega}(-5+2\cos\omega)}$. Determine its difference equation.

- a) y[n] = 3y[n-2] + 5x[n-1] x[n]
- d) y[n] = 3y[n-2] 5x[n-1] + x[n-2]
- b) y[n] = 3y[n-2] 5x[n-1] + x[n]
- e) y[n] = 5y[n-1] y[n-2] + 3x[n-2]
- c) y[n] = 3y[n-2] 5x[n-1] + x[n]
- f) y[n] = 5y[n-1] + y[n-2] + 3x[n-2]

24. (5 points)

The output of a digital voice scrambler is related to the input by $y[n] = (-1)^n x[n]$. Using the definition of the z-transform, express Y(z) in terms of X(z).

- a) $X(z^{-1})$
- b) 1/X(z)
- c) -X(z)
- d) X(-z)
- (2). e) $\frac{1}{1+z^{-1}} X(z)$ f) $-X(-z^{-1})$

25. (10 points)

Carefully draw the pole-zero plot of the system $y[n]+\frac{1}{4}\,y[n-2]=x[n]-0.64\,x[n-2]$.

26. (5 points)

The filter $y[n] + \frac{1}{4}y[n-2] = x[n] - 0.64x[n-2]$ would be best described as:

- a) lowpass
- b) highpass
- c) bandpass
- d) notch
- e) FIR
- f) unstable

27. (5 points)

The following periodic signal is the input to an LTI system described by $y[n] = \frac{1}{2} \, y[n-1] + x[n]$.

Determine the output signal y[n].

- a) $3 + 3\cos(\pi n)$

e) $6 + 2\cos(\pi n)$

- b) $3 + 2\cos(\pi n)$
- d) $2 + 6\cos(\pi n)$

f) $6 + 3\cos(\pi n)$

28. (10 points)

Sketch the (relative) magnitude response of the filter that has the following pole-zero plot.

end

3