Solutions to EECS 206 Exam 1, 2006-2-10

(There were multiple versions of the exam so the solutions below may not be in the same order as your exam.)

1. (a). $(1+\jmath \sqrt{3})+(-1-\jmath \sqrt{3})-1=-1$.
2. (d). $\operatorname{Re}\{(\sqrt{3}-\jmath)(1+\jmath \sqrt{3})\}=2 \sqrt{3}$
3. (a). $2=\operatorname{Im}\left\{(x+\jmath \sqrt{3}) \mathrm{e}^{-\jmath \pi / 2}\right\}=\operatorname{Im}\{(-\jmath x+\sqrt{3})\}=-x$
4. (a). $\left(2 \mathrm{e}^{-\jmath \pi / 6}\right)^{11}=2^{11} \mathrm{e}^{-\jmath 11 \pi / 6}=2^{11} \mathrm{e}^{\jmath \pi / 6}$.
5. (c). $3 \cos (5 t+\pi / 2)+\cos (5 t-\pi / 2)=2 \cos (5 t+\pi / 2)$.
6. (b). $\cos (\pi t-\pi / 2)+\cos (\pi t+\pi / 6) \Rightarrow-\jmath+\mathrm{e}^{\jmath \pi / 6}=\mathrm{e}^{-\jmath \pi / 6}$.
7. (a). $1+A \mathrm{e}^{\jmath \pi / 7}=M \mathrm{e}^{J \phi}$ for some $0 \leq \phi<\pi / 7$.
8. (e). $\mathrm{MS}(x+y)=6 \cdot(1 / 2)^{2}=3 / 2$.
9. (e). $\mathrm{M}(x)=\frac{1}{2} \int_{0}^{2} x_{9}(t) \mathrm{d} t=\frac{1}{2}[1+1+1 / 2]=5 / 4$.
10. (d). Time scaling $t / 2$ slows the signal down by a factor of two, so the period is $2 \cdot 2=4$.
11. (c). The signal is mostly near 1 and sometimes near 2 , so the mean squared value is between 1 and 4 .

Precisely: $\operatorname{MS}(x)=\frac{1}{2} \int_{0}^{2} x_{9}^{2}(t) \mathrm{d} t=\frac{1}{2}\left(1+\int_{1}^{2} t^{2} \mathrm{~d} t\right)=\frac{1}{2}\left(1+\frac{1}{3}\left(2^{3}-1^{3}\right)\right)=5 / 3$.
12. (a). $1 \leq 1+t / 2 \leq 3 \Rightarrow 0 \leq t / 2 \leq 2 \Rightarrow 0 \leq t \leq 4$
13. (e). $\mathrm{E}(y)=\mathrm{E}(x)=1+\frac{1}{2} 2^{2}=3$.
14. (b). $\mathrm{MS}\left(x_{12}\right)=\frac{1}{2}\left[1+\frac{1}{2} 2^{2}\right]=3 / 2$.
15. (d). $T_{0}=\operatorname{LCM}(1 / 4,1 / 6)=1 / 2 \Rightarrow f_{0}=2 \mathrm{kHz}$.
16. (b). $\operatorname{RMS}\left(x_{15}\right)=\sqrt{4^{2}+2 \cdot(2 \sqrt{2})^{2}+2 \cdot 1^{2}}=\sqrt{34} \approx 5.8$.
17. (e). The output signal is $4+4 \sqrt{2} \cos (2 \pi 4000 t-3 \pi / 4)$.
18. (b). The difference signal is $x_{15}(t)-y(t)=2 \cos (2 \pi 6000 t+\pi / 3)$ and its RMS value is $\sqrt{2}$.
19. (e). $x(t)=4+4 \sqrt{2} \cos (2 \pi 4000 t-3 \pi / 4)+2 \cos (2 \pi 6000 t+\pi / 3)$
20. (d). $8 \cos ^{3}(y)=\left(\mathrm{e}^{\jmath y}+\mathrm{e}^{-\jmath y}\right)^{3}=\sum_{k=0}^{3}\binom{3}{k} \mathrm{e}^{\jmath k y} \mathrm{e}^{-\jmath(3-k) y}=\sum_{k=0}^{3}\binom{3}{k} \mathrm{e}^{\jmath(2 k-3) y}$, by the binomial theorem, where $2 k-3=\{-3,-1,1,3\}$. (Or just expand it out without binomial theorem.)

Section 001: 69 students, mean=70.6, median=75, std=16.8, 1 student scored $100 \%, 8$ students scored below 50%. Section 002: 73 students, mean $=63.2$.
EECS 398 (AOSS): 18 students, mean=48.3.
Section 001 histogram:

For elaboration on these solutions, please come to office hours.

