Solutions to EECS 206 Exam 2, 2006-3-17

1. (c). nonlinear and time-invariant
2. (b). linear and not time-invariant
3. (c). not stable and causal
4. (a). stable and causal
5. (e). $0.7 \pi=2 \pi(7 / 20)$
6. (d). $0.7 \pi=2 \pi(7 / 20)$ and $\frac{2}{15} \pi=2 \pi(1 / 15)$ and $\operatorname{LCM}(20,15)=60$.
7. (c). $270 \pi / 50=27 \pi / 5 \equiv-3 \pi / 5=-30 \pi / 50$
8. (c). $x[n]=x(n / 50) \cdot \sin (50 \pi n / 50)=0$ and $\cos (270 \pi n / 50)=\cos (30 \pi n / 50) \rightarrow$ ideal $\rightarrow \cos (30 \pi t)$.
9. (f). The highest frequency component is $100+50=150 \mathrm{~Hz}$, so we must sample at a rate higher than twice that, or $f_{\mathrm{s}}>300 \mathrm{~Hz}$.
10. (f). in the absence of aliasing: $4 \sqrt{2} \cos (2 \pi 10 t-3 \pi / 4)+2 \cos (30 \pi t+\pi / 3)$ or in the presence of aliasing, possibly: $4 \sqrt{2} \cos (2 \pi 50 t-3 \pi / 4)+2 \cos (30 \pi t+\pi / 3)$
11. (c). Only the components at $\pm 3 \pi / 4$ remain, and $1^{2}+1^{2}=2$.
12. (b). $2 \cos \left(\frac{4}{3} \pi n\right)=2 \cos \left(-\frac{2}{3} \pi n\right)=2 \cos \left(\frac{2}{3} \pi n\right)=\mathrm{e}^{\jmath \frac{2}{3} \pi n}+\mathrm{e}^{-\jmath \frac{2}{3} \pi n}$.
13. (d). $X[k]=\frac{1}{4}\left(4+8 \mathrm{e}^{-\jmath \frac{2 \pi}{4} k}+8 \mathrm{e}^{-\jmath \frac{2 \pi}{4} 2 k}+8 \mathrm{e}^{-\jmath \frac{2 \pi}{4} 3 k}\right)=1+2(-1)^{k}+4 \cos \left(\frac{\pi}{2} k\right)=\{\underline{7},-1,-1,-1\}$.
14. (e). The 3-point DFT of $x[n]$ is $X[k]=\frac{1}{3}\left(3+6 \mathrm{e}^{-\jmath \frac{2 \pi}{3} k}+6 \mathrm{e}^{-\jmath \frac{3 \pi}{3} 2 k}\right)=1+4 \cos \left(\frac{2 \pi}{3} k\right)=\{\underline{5},-1,-1\}$. So $x[n]=5-\mathrm{e}^{\jmath \frac{2 \pi}{3} n}-\mathrm{e}^{\frac{2 \pi}{3} 2 n}=5-2 \cos \left(\frac{2 \pi}{3} n\right)$.
Alternatively, plug $n=0$ into the various answers; only (e) gives the correct value $x[0]=3$.
15. (f). $D=X[3]=\frac{1}{4}\left[30+20 \mathrm{e}^{-\jmath \frac{\pi}{2} 3}+10 \mathrm{e}^{-\jmath \pi 3}+0\right]=\frac{1}{4}[30+20 \jmath-10]=5+5 \jmath$
16. (f). $\sum_{k}|X[k]|^{2}=9$
17. (a). $x[n]=\delta[n]+2 \delta[n-2] \Rightarrow y[n]=x[n]+x[n-2]=\delta[n]+2 \delta[n-2]+\delta[n-2]+\delta[n-4]$.
18. (b). Cascades of LTI systems are LTI; cascades of FIR systems are FIR, cascades of causal systems are causal, and all FIR systems are stable.
19. (a). $(\delta[n]+\delta[n-2]) *(\delta[n]+2 \delta[n-1])=\delta[n]+2 \delta[n-1]+\delta[n-2]+2 \delta[n-4]$.
20. (d). $y[n]=x[n]+x[n-2]=\cos (\pi n)+\cos (\pi(n-2))=\cos (\pi n)+\cos (\pi n)=2 \cos (\pi n)$.

Section 001: 69 students, mean $=78.2$, median $=80$, $s t d=17.1$
Section 002: 71 students, mean $=72.5$, median $=80$, $s t d=20.2$
EECS 398 (AOSS): 18 students, mean $=60.0$, median $=57.5$, std=18.6
Combined 206: 140 students, mean=75.3, median $=80$, std $=18.9$
Section 001 histogram:

Section 002 histogram:

Combined histogram:

For elaboration on these solutions, please come to office hours.

