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Part. 3a: Spectra of Continuous-Time Signals

Outline
A. Definition of spectrum
B. Spectra of signals that aresums of sinusoids
◦ AM radio

C. Spectra ofperiodic signals
◦ Fourier series analysis and synthesis

D. Spectra ofsegments of signalsandaperiodic signals
E. Bandwidth

Reading
• “Part 3a” lecture notes
• Ch. 3 of text
• 3.4.5 supplement
• Wakefield Fourier series “quick primer”

Principal questions to be addressed
• What, in a general sense, is thespectrumof a signal?
• Why are we interested in spectra? (“spectra” = plural of “spectrum”)
• How does one assess the spectrum of a given signal?

Here we consider continuous-time signals. The next part of the course discusses spectra of discrete-time signals.

Notes

The spectra has two important roles:
• Analysis and design. The spectra is a theoretical tool that enables one to understand, analyze and design signals and systems.
• System component: The computation and manipulation of spectra is a component of many important systems.
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Spectra of Continuous-Time Signals

• Our coverage of spectra goes significantly beyond the coverage in Chapter 3.
• See the list of errata for Chapter 3.

A. Rough definition of spectrum and motivation for studying spectra

A.1. Introduction to the concept of “spectrum”

Definition

Roughly speaking, a “spectrum of a signal” is a description of the signal as asumof sinusoids.

This definition involves (at least) two keychoices:
• We choosesinusoidsas our elementary components, because of the reasons described in the previous part.
• We choose tosum the sinusoids because that is simpler than other ways of combining.

A spectrum describes the frequencies, amplitudes and phases of the sinusoids that “sum” to yield the signal.

The individual sinusoids that sum to give the signal are calledsinusoidal components.

Alternatively, the spectrum describes the distributions of amplitude and phase versus frequency of the sinusoidal components.

Since each sinusoid can be decomposed into the sum of two complex exponentials, the spectrum equivalently indicates how the
signal may be thought of as being composed ofcomplex exponentials.

It describes the frequencies, amplitudes and phases of the complex exponentials that “sum” to yield the signal.

The individual complex exponentials that sum to give the signal are calledcomplex exponential components.

Sinusoidal and complex exponential components are also calledspectral componentsor frequency components.

The “descriptions”

A signal that is a sum of sinusoids can bedescribedin at least 4 distinct ways.
• Descriptions in thetime domain:
• Mathematical formulas

x(t) = A0 +

N∑
k=1

Ak cos(2πfkt+ φk)

• A plot of x(t) versus time
• Descriptions in thefrequency domain:
• A list of the amplitudes, phases, and frequencies (and how many there are) such as

{(A0), (A1, φ1, f1), . . . , (AN , φN , fN)}

• As a plot of those amplitudes and phases as a function of frequency!

The “frequency domain” descriptions are examples of what is meant by spectra.
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Plotting the spectra

To understand signals, we like to plot and visualize their spectra. We plot “spectral” lines at the frequencies of the exponential
components (at both positive and negative frequencies). The height of the line is the magnitude of the component. We label the
line with the complex amplitude of the component,e.g., with 2e π/3.

Alternatively, we might make two line plots, one showing the magnitudes of the components and the other showing the phases.
These are called themagnitude spectrumandphase spectrum, respectively.

Important note: Why a “rough” definition?

“Spectrum” is a broad collective noun, like “economy” or “health,” for which there is no universal mathematically precise definition.
Rather as with economy and health, there are a variety of specific ways to assess the spectrum of a signal.

For example, to assess the economy, one can measure GNP, average income, unemployment rate, poverty rate, DJIA, NASDAQ,
money supply, ...

For example, to assess health one can measure body temperature, heart rate, blood pressure, blood chemistry, weight, etc.

Similarly, there are a variety of ways to assess the spectrum of a signal. A limited set will be discussed in this course: principally,
Fourier series (FS) for periodic continuous-time signals, and discrete Fourier transform (DFT) for periodic discrete-time signals.
But there will also be some discussion and use (mainly in the labs) of FS and DFT to assess the spectra of finite segments of signals.
The (continuous-time) Fourier transform, which is another important method of assessing the spectrum of continuous-time signals,
will be discussed in EECS 306.

Reasons for decomposing into sinusoids.

It’s mainly that sinusoids into linear, time-invariant systems lead to sinusoidal output signals.
(No other class of signals has this property.)

This causes the input-output relationship for linear systems to be particularly simple for sinusoidal signals.

So representing signals with sinusoids simplifies analysis greatly.

Because analysis is simplified, efficient design methods can be developed.
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A.2. Why are we interested in spectra?

Here are some reasons:

• Preventing signal interference, e.g., AM radio

Signals with non-overlapping spectrum do not interfere with one another. Thus many information carrying signals can be
transmitted over a single communication medium (wire, fiber, cable, atmosphere, water, etc.).

To design such systems, we need to be able to quantitatively determine the spectrum of signals to be able to assess whether
or not they overlap, and if they do, by how much. Also, we need to able to develop systems (e.g., filters) that select one
signal over another, based on its spectrum.

• Signal recognition

Some signals can be recognized based on their spectra,e.g., vowels (Labs 8,9), touchtone telephone key presses, musical
notes and chords, bird songs, whale sounds, mechanical vibration analysis, atomic/molecular makeup of sun and other stars,
etc. To build systems that automatically recognize such signals, we need to able to quantitatively determine the spectrum of
a signal.

• Signal propagation

Communication media,e.g., the atmosphere, the ocean, a wire, an optical fiber, often limit propagation to signals with
components only in a certain frequency range (atmosphere is high frequency, ocean is low frequency, wire is low frequency,
optical fiber is high frequency, but what is considered “high” or “low” depends on the media. We need to be able to assess
the spectrum of a signal to see if it will propagate. We need to be able to design signals to have appropriate spectra for
appropriate media.

• System design

In many situations, the behavior of many natural and man-made linear systems is best analyzed in the “frequency domain”,
i.e., one determines the behavior in response to sinusoids (or complex exponentials) at various frequencies, and from this
one can deduce the response to other signals. The previous bullet is a special case of this.

• Noise removal

In many situations, an undesired signal interferes with a desired signal,e.g., the desired signal might correspond to someone
speaking and the undesired signal might be background noise. We wish to reduce or eliminate the background signal. In
order to be able to reduce or eliminate the background signal it must have some characteristic that is distinctly different than
the desired signal. Often it happens that the desired and undesired signals have distinctly different spectra (e.g., the noise has
mostly high frequency components). In such cases, one can design systems, called “filters”, that selectively reduce certain
frequency components. These can be used to reduce the noise while having little effect on the desired signal.

• Information hiding

Watermarking, etc.

• Many other signals and systems methods are based on spectra:e.g., control engineering, data compression, voice recognition,
music processing.

Example. The bass and treble controls on an audio amplifier have been designed to affect thefrequency componentsof a
signal. “Turning up the bass” means amplifying the low frequency components. To describe this quantitatively, and to design
such systems, one must understand spectra thoroughly.

• And....
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A.3. How does one assess the spectrum of a given signal?

The remainder of these notes are intended to make progress on this question, with occasional references to questions 1 and 2.

There is no single answer.

The answer/answers do not fit into one course.

We address this question in spiral fashion in EECS 206. The answer continues in EECS 306 and beyond. (Just like you don’t learn
all there is to know about the economics in Econ. 101.)

We will develop several methods for continuous-time signals, several methods for discrete-time signals.

There is no single universal spectral concept in wide use.

We use different measures of the spectrum for different types of signals.

We will discuss mainly:
B. spectra of a sum of sinusoids (with support(−∞,∞))
C. spectra of periodic signals (with support(−∞,∞)) via Fourier series

and briefly discuss
• spectra of a segment of a signal via Fourier series, which leads to:
• the spectra of signal with finite support
• the spectra of signal with infinite support via Fourier series applied to successive segments

We won’t discuss:
• spectra of a signal with infinite support and finite energy via Fourier transform.

This will be discussed in EECS 306.

We will have a similar discussion of spectra for discrete-time signals in the next part of the course.

We won’t get too rigorous in our treatment of Fourier series. We’ll leave that to future courses such as EECS 306.
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B. The spectrum of a finite sum of sinusoids

As in the text Section 3.1, we begin the discussion of how to assess a spectrum by considering signals that are finite sums of
sinusoids.

To illustrate the main ideas, we start with an example.

Example. Consider the following sum-of-sinusoids signal (in standard form):

x(t) = 6 + 9 cos(2π7t+ π/3) + 4 cos(2π11t− 0.1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10

20

t

x(
t)

A Sum−of−Sinusoids Signal

From this graph, would you expect this signal to sound pleasing to the ear? (“Harmonic”) Who knows!
Can you tell from the graph how many sinusoids there are, or even for sure if they are sinusoids? Doubtful!

First, we emphasize that this is sum of sinusoidsof different frequenciesso the “simplifications” developed in the previous part are
inapplicable.

Second, it is going to be more convenient later to express spectra in terms of complex exponential signal components instead of
sinusoidal signal components. So our next step is to rewritex(t) using the following inverse Euler identity:

A cos(2πf0t+ φ) = A
e (2πf0t+φ) + e− (2πf0t+φ)

2
=

(
A

2
e φ
)
e 2πf0t +

(
A

2
e− φ

)
e− 2πf0t.

Applying that identity to each term in our signal yields the followingformula :

x(t) = 6 +

(
9

2
e π/3

)
e 2π7t +

(
9

2
e− π/3

)
e− 2π7t +

(
2e− 0.1

)
e 2π11t +

(
2e 0.1

)
e− 2π11t.

Recall that the terms in parentheses are calledphasors.

One way todescribethis signal would be to use alist of the (phasor, frequency) pairs, as follows:{
(2e 0.1,−11), (

9

2
e− π/3,−7), (6, 0), (

9

2
e π/3, 7), (2e− 0.1, 11)

}
.

This is acompletedescription of the signal in the sense that if I give you this list then you know what the signalx(t) is, and could
write down its formula, or plot it, or compute the value ofx(t) at some time of interest, etc.

However, our visual system is much better at understanding patterns shown graphically than it is at understanding a list of numbers.
So we visualize the spectrum using the followingplot:

-
f [Hz]0-11 11-7 7

6
Spectrum ofx(t)

6

2e 0.1 2e− 0.1

9
2e
− π/3 9

2e
 π/3

Compare the plot of the spectrum to the plot of the signal. The spectrum plot is “simpler, more compact and more intuitively
informative” than the plot ofx(t). This illustrates what we mean by “the spectrum is a compact representation of the signal.”

Would this sound harmonic? Probably not. The ratio 11/7 is not a ratio of powers of 3 and 2 (thePythagorean intervals).
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General case for sum-of-sinusoids

Consider asum-of-sinusoidssignal of the form

x(t) = A0 +

N∑
k=1

Ak cos(2πfkt+ φk)

= A0 +A1 cos(2πf1t+ φ1) +A2 cos(2πf2t+ φ2) + · · ·+AN cos(2πfN t+ φN ),

whereN,A0, A1, φ1, f1, . . . , AN , φN , fN , are parameters that specify the signalx(t). We derive its spectrum.

Using Euler’s formula, we can rewritex(t) as

x(t) = X0 +

N∑
k=1

Re
{
Xke

 2πfkt
}

where
X0 = A0, and Xk = Ake

 φk , k = 1, . . . , N

is the phasor corresponding toAk cos(2πfkt+ φk). (The phasor is a complex number.)

Using the fact thatRe{z} = z+z?

2 , we further rewrite this as

x(t) = X0 +

N∑
k=1

[
Xk

2
e 2πfkt +

X?k
2
e− 2πfkt

]

=

(
X?N
2
e− 2πfN t + · · ·+

X?1
2
e− 2πf1t

)
+X0 +

(
X1

2
e 2πf1t + · · ·+

XN

2
e 2πfN t

)
.

To make this expression more compact, we rewrite it as the following singlesum-of-complex-exponentials:

x(t) =

N∑
k=−N

αke
 2πfkt

=
(
α−Ne

 2πf−N t + · · ·+ α−1e
 2πf−1t

)
+ α0 +

(
α1e

 2πf1t + · · ·+ αNe
 2πfN t

)
.

Two make these two forms match, theDC term (corresponding to zero frequency, a constant signal) is given by

α0 = X0 = A0 = M(x) ,

and the coefficients for positive frequencies are given by

αk =
1

2
Xk =

1

2
Ake

 φk , k = 1, . . . , N,

and the coefficients for negative frequencies are given by the followingconjugate symmetryrelationship:

α−k = α
?
k, k = 1, . . . , N,

and where we define the negative frequencies by

f−k = −fk, k = 1, . . . , N.

(And f0 = 0.)

Using the above sum-of-complex-exponentials form forx(t), we make the following definition.
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Definition: The (two-sided) spectrum of this signal is the list of pairs

{(α−N , f−N ), . . . , (α−1, f−1), (α0, 0), (α1, f1), . . . , (αN , fN )}

or equivalently, {
(α?N ,−fN), . . . , (α

?
−1,−f1), (α0, 0), (α1, f1), . . . , (αN , fN )

}
.

A picture of a generic spectrum for a sum-of-sinusoids signal is the following.

-
f0−fN . . . −f1 f1 . . . fN

6

Generic spectrum of sum-of-sinusoids

α0

α?N αN

α?1 α1

Notes
• The spectrum,i.e., this list, is considered to be a “compact” representation of the signalx(t), i.e., just a few numbers.

Example. This compactness is the essence of how MP3 audio compression can shrink an entire hour of music from an audio
recoding into a modest number of bits!
• The “spectrum” is also called thefrequency-domain representationof the signal.

In contrastx(t) is thetime-domain representationof the signal.
• The termAk cos(2πfkt+ φk) is called thesinusoidal componentof x(t) at frequencyfk.
• The termαk is called thecomplex exponential componentor spectral componentof x(t) at frequencyfk.
• It is equally valid to express the spectrum with frequencies in rad/sec or Hz. However, Hz, kHz, and MHz, etc., are more typical

in engineering practice, as opposed to in engineering textbooks...
• To obtain a useful visualization, we often plot the spectrum by drawing, for eachk, aspectral lineat frequencyfk with height

equal to|αk| and labelling the line with the (usually complex) value ofαk.
• Alternatively, we sometimes separate the spectrum into magnitude and phase parts:
• Themagnitude spectrum

{(|α−N |, f−N), . . . , (|α−1|, f−1), (α0, 0), (|α1|, f1), . . . , (|αN |, fN )}

= {(|αN |,−fN), . . . , (|αk|,−f1), (α0, 0), (|α1|, f1), . . . , (|αN |, fN )} .

• Thephase spectrum

{(\α−N , f−N), . . . , (\α−1, f−1), (α0, 0), (\α1, f1), . . . , (\αN , fN)}

= {(−\αN ,−fN), . . . (−\αk,−f1), (α0, 0), (\α1, f1), . . . , (\αN , fN)} .

In particular, we often make separate plots of magnitude and phase. That is, for eachk, the magnitude plot has a line of height
|αk| at frequencyfk, and the phase plot has a line of height\αk at frequencyfk.
• Often, but certainly not always, we are more interested in the “magnitude spectrum”,i.e., the magnitude of theαk ’s, than the

“phase spectrum”.
• Alternatively, people sometimes focus on theone-sided spectrum(rather than our “two-sided” spectrum), which in the case of

a finite sum of sinusoids is
{(α0, 0), (α1, f1), . . . , (αN , fN)}
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Example. Problem: Assess the spectrum of the following sum-of-sinusoids signal:

x(t) = 2 + 3 cos(2π4t+ .1) + 10 sin(2π8t).

Sincesin(2π8t) = cos(2π8t− π/2), the spectrum is:{
(5e π/2,−8), (

3

2
e− 0.1,−4), (2, 0), (

3

2
e 0.1, 4), (5e− π/2, 8)

}

-
f [Hz]0-8 8-4 4

6
Spectrum ofx(t)

2

5e π/2 5e− π/2

3
2e
− 0.1 3

2e
 0.1

Example: Given the spectrum of the signalx(t) shown below, findy(t) = 2x(3t− 1/4).

-
f [Hz]0-7 7-3 3

6
Spectrum ofx(t)

2

4e π/4 4e− π/4

5
2

5
2

First we findx(t) by “reading off” the components:

x(t) = 2 +
5

2
e 2π3t +

5

2
e− 2π3t + 4e− π/4e 2π7t + 4e π/4e− 2π7t

= 2 + 5 cos(2π3t) + 8 cos(2π7t− π/4).

Alternatively, we could jump right to that second expression as long as one remembers thatAk = 2|αk| for k 6= 0.

Thus we findy(t) by substituting and simplifying (watch the phases!):

y(t) = 2x(3t− 1/4)

= 2 [2 + 5 cos(2π3(3t− 1/4)) + 8 cos(2π7(3t− 1/4)− π/4)]

= 4 + 10 cos(2π9t− 3π/2) + 16 cos(2π21t− 7π/2− π/4)

= 4 + 10 cos(2π9t+ π/2) + 16 cos(2π21t+ π/4).
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Effects of time shift/scale and amplitude shift/scale on spectra

At this point we have considering the spectra only of sums-of-sinusoids signals:i.e.,

x(t) = A0 +

N∑
k=1

Ak cos(2πfkt+ φk).

If we apply some of our simple signal operations,e.g.,

y(t) = a+ bx(ct+ d) ,

then how does the spectrum ofy(t) relate to that ofx(t)?

First note that
cos(2πfk(ct+ d) + φk) = cos(2π(cfk)t+ φk + 2πfkd).

Simply substituting in then we see

y(t) = (a+A0) +

N∑
k=1

(bAk) cos(2π(cfk)t+ [φk + 2πfkd])

i.e.,

y(t) = (a+A0)︸ ︷︷ ︸
new DC

+
N∑
k=1

(bAk)︸ ︷︷ ︸
new amp.

cos(2π (cfk)︸ ︷︷ ︸
new freq.

t+ φk + 2πfkd︸ ︷︷ ︸
new phase

).

From this expression we could read off the coefficients to plot the spectrum.

The most interesting is perhaps the time shift and time scale effects. Visualizing these is left as an exercise.

It is also useful to examine these effects in the compact sum-of-complex-exponentials form:

x(t) =

N∑
k=−N

αke
 2πfkt.

Then

y(t) = a+ bx(ct+ d)

= a+ b

N∑
k=−N

αke
 2πfk(ct+d)

= a+

N∑
k=−N

bαke
 2πfkde 2πfkct

=

N∑
k=−N

βke
 2π(cfk)t,

where the coefficients ofy(t) are related to the coefficients ofx(t) as follows:

βk =

{
a+ bα0, k = 0
be 2πfkdαk, k 6= 0.

So the DC term is scaled and amplitude shifted, whereas the other terms are scaled and phase shifted by thee 2πfkd term.
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Amplitude Modulation (AM)

As an example to illustrate the utility of the concept of spectra, consider the form of a signal transmitted by an AM radio station

x(t) = (v(t) + d) cos(2πfct),

wherev(t) is the audio signal, andcos(2πfct) is thecarrier signal.

We assume thatv(t) is scaled so thatv(t) ≥ −d for all t, so that the audio information is encoded in theenvelopeof x(t) as
discussed previously.

Thecarrier frequency fc is usually a high frequency,e.g., 660 kHz. This is the frequency that you to tune your radio to.

A block diagram of the transmission process is:

v(t)→
⊕
↑

d

→
⊗
↑

cos(2πfct)

→ amplifier → antenna

Motivation:

Our audio signal is low frequency typically 0 to 5 kHz.
Low frequencies do not propagate through the atmosphere.

Need to generate a high frequency signal that “carries” the audio signal.

The carrier signalcos(2πfct) has high frequency, so it can propagate.

x(t) is obtained by “modulating” the carrier signal by the audio signal.

v(t) becomes the envelope ofx(t). (adding the constantd insures this)

Example. Suppose a single “audio test tone” is to be transmitted. Specifically, we assume:

v(t) = A cos(2πfvt),

for 0 < A ≤ d.

Problem: find and plot the spectrum ofx(t).

(A real radio station is not usually interested in transmitting a sinusoidal audio signal. The sinusoidalv(t) is just a stand-in for a
genuine audio signal. We’re assuming this choice ofv(t), because so far it is about all that we can analyze.)

Solution:

x(t) = [d+A cos(2πfvt)] cos(2πfct) = d cos(2πfct) +
A

2
cos(2π(fc + fv)t) +

A

2
cos(2π(fc − fv)t).

The spectrum has components at frequencies{±(fc − fv),±fc,±(fc + fv)}. Specifically, the spectrum is:

{(A/4,−(fc + fv)), (d/2,−fc), (A/4,−(fc − fv)), (A/4, fc − fv), (d/2, fc), (A/4, fc + fv)} .

(Picture) of spectrum.

Discuss how it depends onfc, fv, andd. Mention thebandwidth.

What values of d would be preferable?

Note: This example is intended as a simple example of using the concept of “spectrum” to do an “analysis”. Usually we must
analyzebefore we can attempt todesign.
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Design problem: AM radio station carrier frequency spacing

How closely can one space the carrier frequencies of AM radio broadcasters?

Example. Frequency multiplexing of AM signals
(This example uses spectra to design a frequency multiplexing parameter.)

Suppose:
Radio station 1 wants to transmit audio signalv1(t) at carrier frequencyc1
Radio station 2 wants to transmit audio signalv2(t) at carrier frequencyc2 > c1.

Question. How far apart mustc1 andc2 be to prevent interference of the two transmitted signals?

For concreteness assume:v1(t) = cos(2πa1t), v2(t) = cos(2πa2t).

Then:
Radio station 1 transmits:x1(t) = (1 + v1(t)) cos(2πc1t)
Radio station 2 transmits:x2(t) = (1 + v2(t)) cos(2πc2t)

Solution:
The spectrum ofx1(t) has components at frequenciesc1 − a1, c1, c1 + a1 (Picture)

The spectrum ofx2(t) has components at frequenciesc2 − a2, c2, c2 + a2 (Picture)

To prevent overlap of the spectra, we need to choosec2 andc1 so that

c1 + a1 < c2 − a2

i.e., so that
c2 > c1 + a1 + a2.

In a practical AM system, the audio signal has spectrum ranging from 0 kHz to +5 kHz. In fact they limit the audio signals to this
range. So the AM radio signal hasbandwidth about 10kHz, fromfc− 5kHz tofc+5kHz. Because of this, AM radio stations are
assigned frequencies in increments of 10 kHz. And the FCC avoids having two stations in the same area being separated only by
10 kHz. This is because the spectra of real audio signals do not quite fit exactly between 0 and +5 kHz. (See EECS 306 for more
details.) And because even if they did, a radio receiver cannot pick out the signal components in the rangefc− 5kHz tofc+5kHz
without also accepting at least some signal components outside this band. Sometimes you can hear two AM radio stations at once,
especially if you’ve tuned to a weak one while a powerful one is transmitting at a frequency only 10kHz away, especially if you
have an old/cheap radio receiver.

Note: This example is intended to be a concrete example of the practical use of the concept of spectrum to do a simple design task.

Other examples of spectra

Example. Modern digital oscilloscopes usually have “spectrum” option that you can select to examine the spectrum of the input
signal, instead of seeing just the usual time-domain display of the signal.

Example. Some adventurous musicians use “pitch trackers” that (in real time) determine which note is being played on the
instrument (by analyzing the spectrum of the signal measured by a microphone or some other electrical input), so that an electronic
instrument (usually a digital synthesizer) can be synchronized to play the same note (or related notes).

We will better understand these examplesafter we describe how to compute a spectrum from sampled data.
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C. The spectrum of a periodic signal

We have seen how to assess and plot the spectrum of a sum-of-sinusoids signal. You might say that those plots are fairly “obvious”
since you can just read off the amplitudes, frequencies, and phases from the sum-of-sinusoids expression. So at this point it might
not seem like the spectrum offers much “value added” over the time-domain formula.

But what about a signal like the following square wave?

-
t [ns]

6
x1(t)

0 2 4 6 8

A
· · ·

Sincet is in nanoseconds, the fundamental period isT0 = 4ns.
So the fundamental frequency of this periodic signal isf0 = 1/T0 = 250MHz.
But what is thespectrumof this signal?
You might wonder why we should care, since this signal appears perfectly easy to “understand” in the time domain.

Example.

Here is a (simplified) example of an engineering design problem where we would need to know the spectrum of the above square
wave. Suppose you are designing a very high-speed digital system (e.g., computer motherboard) and you need to have a common
clock signal to synchronize different subunits of that system. The conductors (printed circuit board paths) that connect the different
subunits will attenuate frequencies that are “too high,” due to parasitic capacitances and resistances. For simplicity, we assume
here that these interconnects completely attenuate all frequency components above 5GHz, while passing unchanged all frequency
components below that cutoff1. Notice that this is a frequency-domain description of the conductors. Such descriptions are
commonplace in engineering systems, for example, plain old telephone service has a maximum frequency of about 3kHz.

You are debating between using the square wave given above or instead the pulse train given below as the clock signal.

-
t [ns]

6
x2(t)

0 1 4 5 8

A
· · ·

Both signals will be degraded by the attenuating properties of the interconnects.

Which signal do you use?

One way to make the choice would be to use whichever signal is degradedless, i.e., whichever signal is more immune to the
imperfections of the interconnects. (This is not the whole picture by any means, but it is one reasonable way to start thinking about
such problems.)

We cannot solve even this elementary design problem with the tools discussed so far! We will revisit it after laying more foundation.

Although the signals above appear easy to “understand” in the time domain, for all the reasons enumerated previously, it is also
very important to understand what are the properties of this signal, and other periodic signals, in thefrequency domain.

But how can we do that since all we have above is a picture!? There is no “sum-of-sinusoids” anywhere in view!

Fortunately for us, a brilliant French mathematician and Egyptologist named Joseph Fourier (1768-1830)2 proved in 1807 the
following amazing fact:any periodic signal can be expressed as a sum-of-sinusoids!

This result is so surprising that it was quite controversial when Fourier first discovered it, and some mathematicians and scientists
of the day did not believe it!

1We will see later in the course that in reality there is a shoulder region where some frequency components are partially attenuated, but at this point inthe course
we stick with this “all or nothing” model for simplicity.

2See Oppenheim & Willsky for biosketch.
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C.1 Fourier Series

The main point of this section is the following theorem, which we will not prove, but which we will illustrate and use.

Fourier Series Theorem

Any periodic signal3 x(t) with periodT can be written as a (usually infinite) sum of sinusoids, all of which have frequencies that
are integer multiples of1/T . That is, there is a set of amplitudes and phases{(Ak, 0), (A1, φ1), (A2, φ2), . . .} and corresponding
frequencies{0, 1/T, 2/T, . . .}, such that

x(t) = A0 +

∞∑
k=1

Ak cos

(
2π

k

T
t+ φk

)

= A0 +A1 cos

(
2π
1

T
t+ φ1

)
+A2 cos

(
2π
2

T
t+ φ2

)
+ · · · .

Notice that the frequency of thekth sinusoid in this expression is

fk
4
=
k

T
,

which is a multiple of thefundamental frequencyf1 = 1/T . (These frequencies are calledharmonic frequencies.)

This form of the Fourier series is called thesinusoidal Fourier series, since it is a sum-of-sinusoids form.

As we have stated repeatedly, it will be more convenient to use inverse Euler identities to rewrite this expression in terms of complex
exponential signals, instead of sinusoidal signals, recalling that

Ak cos(2πfkt+ φk) =
1

2

(
Ake

 φk
)
e 2πfkt +

1

2

(
Ake

− φk
)
e− 2πfkt

=
1

2
Xke

 2πfkt +
1

2
X?ke

− 2πfkt,

where, as usual,Xk = Ake φk denotes thephasorassociated with the componentAk cos(2πfkt+ φk).

Substituting in this equality yields

x(t) = A0 +

∞∑
k=1

[
1

2

(
Ake

 φk
)
e 2πfkt +

1

2

(
Ake

− φk
)
e− 2πfkt

]

= X0 +

∞∑
k=1

[
1

2
Xke

 2πfkt +
1

2
X?ke

− 2πfkt

]
= X0 +

∞∑
k=1

Re
{
Xke

 2πfkt
}
.

With some judicious renaming of things, we can simplify the preceding form to the followingsum-of-complex-exponentialsform:

x(t) =

∞∑
k=−∞

αke
 2π kT t, synthesis formula

where we express theFourier coefficients{αk} in terms of the phasors as follows:

α0 = A0 = X0 = M(x) ,

αk =
1

2
Xk =

1

2
Ake

 φk k = 1, 2, . . . ,

α−k = α
?
k k = 1, 2, . . . .

This form is called theexponential Fourier seriesand we will focus on it throughout 206.

3Well, almost any periodic signal. Any periodic signal of any practical interest is covered by the conditions of the theorem. There are pathological periodic
functions for which Fourier series would not work, but they have no practical relevance. But they do necessitate footnotes like this.
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Notes
• The proof of the theorem is beyond the scope of this class, and EECS 306, too.
• The theorem says thatanyperiodic signal can be represented as a sum-of-sinusoids. But itmaytake an infinite number of them,

and often will!
• Ak cos(2π

k
T t+ φk) is the sinusoidal component ofx(t) at frequencyk/T .

• All sinusoids in the above formulae have frequencies that are multiples of 1/T .
• Usually we chooseT to be thefundamental period of x(t), but any period will do.
• The theorem also says thatanyperiodic signal can be represented as a sum of complex exponentials. (It may take an infinite

number.)
• αk is the complex exponential component (equivalently, the spectral component) ofx(t) at frequencyk/T .
• It follows from the theorem that the spectrum of a periodic signal with periodT is concentrated at frequencies

0,±
1

T
,±
2

T
,±
3

T
, . . . ,

or some subset thereof,i.e., x(t) has spectral componentsonlyat these frequencies.
So by examining the spectrum of a signal, it is easy to see whether it is periodic.
• The three summation expressions forx(t) given in the theorem are considered to be three forms of the “Fourier series”. (A

“series” is an infinite sum.)
The first is called the “sinusoidal Fourier series”; the third is called the “exponential Fourier series”.
The book introduces the first two forms in Section 3.4 (equation (3.4.1)
It is most common to use the third form (the exponential Fourier series), because it is easier to work with. We’ll primarily use
the third form.
There is another form called thetrigonometric Fourier series that looks like

x(t) = a0 +

∞∑
k=1

[
ak cos(2π

k

T
t) + bk sin(2π

k

T
t)

]
.

This form is the least convenient for the purposes of signals and systems.
• TheAk ’s, φk ’s,Xk’s, andαk ’s are calledFourier series coefficientsor justFourier coefficients.
• The summing of sinusoids to obtain an arbitrary signal is very well illustrated with thesinsum demo program in the 206 Lab

and with the Matlab demo program calledxfourier.m .
• The Fourier series coefficients areunique: there is one and only one set ofαk ’s that will reproduce a given periodic signalx(t)

for a given periodT .

The analysis formula

Fourier proved more than what we have stated so far! Not only did he prove that any periodic signal can be expressed as a sum of
harmonic sinusoids with certain amplitudes and phases, he alsoderived a simple formulafor finding those coefficients:

αk =
1

T

∫ T
0

x(t) e− 2π
k
T t dt.

This is called theanalysis formula.
The derivation of the analysis formula is presented well in the new section 3.4.5. Reading it is strongly recommended.

This formula is quite remarkable. It tells us that we can start with apictureor some other description ofx(t) that appears to have
nothing to do with sinusoids, and then we can use the analysis formula to find the coefficients{αk}, and then we can insert those
coefficients into the synthesis formula, andvoila, we have a sum-of-sinusoids expression forx(t)! And of course, once we have
that type of expression, we can display the spectrum ofx(t).
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Summary of Fourier series

Synthesis formula:shows howx(t) is a sum of complex exponentials

x(t) =

∞∑
k=−∞

αke
 2π kT t

Analysis formula: shows how to compute theαk ’s, i.e., the Fourier coefficients

αk =
1

T

∫ T
0

x(t) e− 2π
k
T t dt.

(Alternatively, we could integrate over anyT -second interval since bothx(t) and the complex exponential areT -periodic.)

Definition: The (two-sided) spectrum of a periodic signal with periodT is

{. . . , (α−2,−2/T ), (α−1,−1/T ), (α0, 0), (α1, 1/T ), (α2, 2/T ), . . .} .

More Notes:
• Finding the spectrum of a periodic signal involves finding the periodT and the Fourier coefficients{αk}.
• Finding theαk ’s is often called “taking the Fourier series”.
• To aid the understanding of the synthesis formula, it can be useful to view it in long form:

x(t) = . . .+ α−2e
− 2π 2T t + α−1e

− 2π 1T t + α0 + α1e
 2π 1T t + α2e

 2π 2T t + . . .

• The frequency1/T (usually in Hz) is called thefundamental or first harmonic frequency.
The frequencyk/T is called thekth-harmonic frequency.
Likewise, the component at frequency1/T is called thefundamental or first harmonic component, and the component at
frequencyk/T is called thekth-harmonic component.
• If a signal has periodT , then it also has period2T . So when applying Fourier analysis, we have a choice as toT . Often, but

certainly not always, we chooseT to equal the fundamental period.
When we want to explicitly specify the value ofT used, we will say “theT -second Fourier series”.
• If you wish to find the other forms of the Fourier series, use the formulas:

A0 = α0, Ak = 2 |αk| , φk = \αk, k = 1, 2, . . .

X0 = α0, Xk = 2αk, k = 1, 2, . . .

• The Fourier series Theorem applies to complex signals as well as to real signals.
• Notice thatαk is the correlation ofx(t) with e 2π

k
T t normalized by1/T , which is the energy of one period of the exponential.

• Suggested reading. The discussion of “signal components” at the end of Section III.B of “Introduction to Signals” by DLN.
This will show help one to understand why the analysis formula has the form that it has.
In the terminology of that discussion:
αke

 2π kT t is the component ofx(t) that is likee 2π
k
T t,

αk measures the similarity ofx(t) to the exponential.
There is a similar interpretation thatAk cos(2π kT t+ φk) is the component ofx(t) that is like a cosine at frequencyk/T .

At first glance the analysis and synthesis formulae for the Fourier series might seem “circular,” since it appears thatx(t) depends
on theαk ’s yet theαk ’s depend onx(t). When working with Fourier series, the usual “chain of events” is the following.
• We start with some simple description ofx(t), usually a picture, for which there are no sinusoids in sight.
• We compute theαk coefficients using the analysis formula.
• We substitute thoseαk ’s into the synthesis formula.
• Having made that substitution, we can readily display the spectrum ofx(t).
• Or we can computex(t) (approximately) for any values oft of interest (using a finite number of terms).
• Or we can can build a device (called asynthesizer) that generatesx(t) (approximately) by connecting together several

sin-wave generators with appropriate amplitudes and phases.
(This is how the additive synthesis worked in the early days of electronic music.)
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Example. Find the spectrum of the following squarewave signal.

-
t [ns]

6
x1(t)

0 2 4 6 8

A
· · ·

Sincet is in nanoseconds, the fundamental period isT0 = 4ns.
So the fundamental frequency of this periodic signal isf0 = 1/T0 = 250MHz.

For this signal, the spectrum cannot be computed by inspection! We very much need the analysis formula.

First we find the DC term:
α0 = M(x) = A/2.

Using the analysis formula, the Fourier coefficients are given by

αk =
1

T0

∫ T0
0

x(t) e
− 2π k

T0
t
dt.

For convenience, we integrate using nanoseconds units fort:

αk =
1

4

∫ 4
0

x(t) e− 2π
k
4 t dt =

1

4

∫ 2
0

Ae− 2π
k
4 t dt =

A

4

1

− 2π(k/4)
e− 2π

k
4 t

∣∣∣∣2
0

=
A

− 2πk

[
e− 2π

k
4 2 − 1

]
=

A

 2πk

[
1− e− πk

]
=

A

 2πk

[
1− (−1)k

]
.

This formula is validonly for k 6= 0 since otherwise we would have divided by zero. To simplify, note that

1− (−1)k

2
=

{
0, k even
1, k odd.

Thus we have

αk =




A/2, k = 0
A
πk

, k odd
0, k 6= 0, k even.

=




A/2, k = 0
A
πke

− π/2, k > 0 odd
A
π|k|e

 π/2, k < 0 odd
0, k 6= 0, k even.

(3a-1)

Thus, the spectrum of this square wavex(t) has the following plot.

-
f [GHz]0 0.25-0.25 0.50 0.75 1 1.25-1.25

. . .. . .

6

Spectrum ofx1(t)
A/2

A
π
e− π/2A

π
e π/2

A
3π e

− π/2A
3π e

 π/2 A
5π e

− π/2A
5π e

 π/2

The sinusoidal Fourier series representation for this signal is (fort in ns):

x1(t) =
A

2
+

∞∑
k=1
k odd

A

πk
cos

(
2π
k

4
t− π/2

)
.
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Coefficient matching

In the preceding example, we found the Fourier coefficients by integration. Integration is the usual approach, but of course we would
like to avoid integration when possible. One case where integration is avoidable is when we can use some simple manipulations to
express the signal directly in a sum-of-complex-exponentials form. For such signals, we can determine the Fourier coefficientsby
inspection, as the following example illustrates.

Example. Find the Fourier coefficients and plot the spectrum of the signalx(t) = cos2(πt− π/3).

First, what is the fundamental period of x(t)?
Sincecos(πt− π/3) = cos(2π 12 t− π/3), a period of this signal isT = 2. We will start with that for now even though it is not the
fundamental period.

Thehard wayto find the Fourier coefficients would be to use the analysis equation:

αk =
1

T0

∫ T0
0

x(t) e− 2π
k
T0
t dt =

1

2

∫ 2
0

cos2(πt− π/3)e− 2π
k
2 t dt =

∫ 1
0

cos2(2πt− π/3)e− 2πkt dt.

This integral can be done by using the inverse Euler identity forcos(·). You should try doing it as an exercise. Chances are very
high that you will do it incorrectly because you will divide by zero at some point.

The easier way is to express the signal directly in a sum-of-complex-exponentials form by using the inverse Euler identity in the
first place.

x(t) = cos2(πt− π/3) =
1

2
+
1

2
cos(2πt− 2π/3) =

1

2
+
1

4
e− 2π/3e 2πt +

1

4
e 2π/3e− 2πt.

Now we see that the fundamental period isT0 = 1.

Compare the above expression to the sum-of-complex-exponentials synthesis formula expanded out:

x(t) = · · ·+ α−2e
− 2π 2T t + α−1e

− 2π 1T t + α0 + α1e
 2π 1T t + αNe

 2π 2T t + · · · .

By matching the corresponding coefficients we see that for this signal:

αk =




1
2 , k = 0
1
4e
− 2π/3, k = 2

1
4e
 2π/3, k = −2

0, otherwise.

Notice that there are only a finite number of nonzeroαk ’s. This is always the case whenx(t) is finite sum-of-sinusoids.

The spectrum of thisx(t) is simply the following.

-
f0 1-1

Spectrum ofx(t)
1/2

1
4e
− 2π/31

4e
 2π/3

In this example we found the spectrum (i.e., the Fourier series coefficients) by inspection, just as we did in the section on finite
sums of sinusoids. Since there is a one-to-one relation between Fourier coefficients and periodic signals, the coefficients we obtain
by inspection are the Fourier series coefficients.

Example. Show a real-world nearly periodic signal, like a vowel.

Show its spectrum, as computed by a computer.
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C.2 Properties of Fourier series

This section lists several useful properties of Fourier series. These properties are important both in terms of understanding the
concepts and because often one can use these properties to avoid integration!

P1. Uniqueness
There is a one-to-one relationship between periodic signals with periodT and sequences of Fourier coefficients. Specifically for
any given signalx(t), the analysis formula gives the unique set of coefficients from which the synthesis formula yieldsx(t).

This implies that the Fourier coefficients can sometimes by found by means other the analysis formula,e.g.by inspection. That is,
if by some means you find a collection{αk} such that

x(t) =

∞∑
k=−∞

αke
 2π kT t,

then thoseαk ’s are necessarily the Fourier coefficients that would be computed by the analysis formula.

Similarly, for any given set of coefficients{αk}, the synthesis formula gives the unique signalx(t) with periodT from which the
analysis formula yields theseαk ’s. That is, if by some means you find a signalx(t) such that

αk =
1

T

∫ T
0

x(t) e− 2π
k
T t dt, k ∈ Z,

thenx(t) is the one and only signal that has theseαk ’s as its Fourier coefficients.

Another statement of the one-to-oneness is the following. Ifx1(t) andx2(t) are distinct signals4, and each isT -periodic, then for
at least onek, αk for x1(t) does not equalαk for x2(t).

P2. Mean value(important)
α0 is the mean or DC value ofx(t)

This is because (puttingk = 0 in the analysis formula):

α0 =
1

T

∫ T
0

x(t) e− 2π
0
T t dt =

1

T

∫ T
0

x(t) dt = M(x) .

P3. Integration limits
One can compute the Fourier coefficients by integrating over any time interval of lengthT .

αk =
1

T

∫ T
0

x(t) e− 2π
k
T t dt

=
1

T

∫ t0+T
t0

x(t) e− 2π
k
T t dt for any value oft0 (important)

=
1

T

∫
〈T 〉

x(t) e− 2π
k
T t dt (shorthand for “some interval of lengthT ”)

P4. Conjugate symmetry(important)
If one knowsαk for k ≥ 0, then one can easily find the remainingαk ’s using:

α−k = α
?
k, for real signals.

(This property does not apply to complex signals.)

4Here, “distinct” means that their difference has nonzero power,i.e.,MSD(x1, x2) 6= 0.
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Derivation:

α?k =

[
1

T

∫
〈T 〉

x(t) e− 2π
k
T t dt

]?
=
1

T

∫
〈T 〉

x(t)? e 2π
k
T t dt

=
1

T

∫
〈T 〉

x(t) e 2π
k
T t dt becausex(t) is real, sox(t)? = x(t)

=
1

T

∫
〈T 〉

x(t) e− 2π(
−k
T )t dt = α−k.

The following properties follow.
• |α−k| = |αk| so the magnitude spectrum is haseven symmetry.
• \α−k = −\αk| so the phase spectrum is hasodd symmetry.

P5. Sinusoids
Each conjugate pair of coefficients synthesizes a sinusoid (this is also important):

αke
 2π kT t + α−ke

− 2π kT t = 2|αk| cos

(
2π

k

T
t+ \αk

)
.

Thus, when looking at a spectrum, one should “see” the sinusoidal terms in the signal, one for every conjugate pair of coefficients.

Derivation:

αke
 2π kT t + α−ke

− 2π kT t = αke
 2π kT t + α?ke

− 2π kT t by the previous property

= αke
 2π kT t +

[
αke

 2π kT t
]?

= 2Re
{
αke

 2π kT t
}
= 2|αk| cos

(
2π

k

T
t+ \αk

)
.

In particular, the sinusoidal Fourier series is as follows:

x(t) = α0 +

∞∑
k=1

2|αk| cos

(
2π

k

T
t+ \αk

)
.

P6. Linearity
Supposex(t) andy(t) are periodic with periodT and withαk andβk as theirT -second Fourier coefficients, respectively. Then
theT -second Fourier coefficients ofx(t) + y(t) are given byαk + βk.

This property is useful for “recycling” previously computed Fourier series.

Similarly, if αk andβk are sequences of Fourier coefficients, then the signal whose Fourier coefficients areαk + βk is the sum of
the signals corresponding toαk andβk.

P7. Harmonic complex exponentials are uncorrelated
A key step in many derivations involving Fourier series is the following very useful property of the integral of complex exponentials:

1

T

∫
〈T 〉
e 2π

m
T t dt =

{
1, m = 0
0, m = ±1,±2, . . . .

Because of this property, different complex exponential signals with harmonically related frequencies are uncorrelated. Define
ψk(t) = e

 2π kT t for k ∈ Z. Then

C(ψk, ψl) =

∫
〈T 〉

ψk(t)ψ
?
l (t) dt =

∫
〈T 〉
e 2π

k
T t
[
e 2π

l
T t
]?
dt =

∫
〈T 〉
e 2π

k
T te− 2π

l
T t dt =

∫
〈T 〉
e 2π

k−l
T t dt =

{
T, k = l
0, k 6= l.

This property is useful in proving the next theorem.



c© D. Neuhoff and J. Fessler, June 9, 2003, 12:56 (student version) 3a.21

P8. Parseval’s theorem
Theaverage powerof a periodic signal can be computed in the time domainor in the frequency domain as follows:

MS(x) =
1

T

∫
〈T 〉
|x(t) |2 dt =

∞∑
k=−∞

|αk|
2.

(Recall that for periodic signals, we compute the average power over a period of the signal.)

Derivation:

MS(x) =
1

T

∫
〈T 〉
|x(t) |2 dt =

1

T

∫
〈T 〉

x(t)x∗(t) dt

=
1

T

∫
〈T 〉

[
∞∑

k=−∞

αke
 2π kT t

] [
∞∑

l=−∞

αle
 2π lT t

]?
dt

=
1

T

∞∑
k=−∞

∞∑
l=−∞

αkα
?
l C(ψk, ψl)

=
1

T

∞∑
k=−∞

αkα
?
k T by preceding property

=
∞∑

k=−∞

|αk|
2.

(You should think about why we usedl rather thank for the second summation.)

Interpretation.
The kth frequency component in the spectrum contributes an amount|αk|

2 to the overall average power of the signal. So the
magnitude (squared) spectrum directly reveals the relative power in each frequency component. For example, one can see easily
which frequency ranges have the greatest fraction of the power.

Though useful, the following properties will be emphasized less in this class. They are studied in more detail in EECS 306.

P9. Choice of period
Supposex(t) is periodic with periodT , and suppose{αk} are theT -second Fourier coefficients ofx(t) and suppose{βk} are the
2T -second Fourier coefficients ofx(t). Then,

βk =

{
αk/2, k even
0, k odd.

This means that the spectrum based on the 2T -second Fourier series is the same as that based on theT -second Fourier series. That
is, {

. . . , (α−2,
−2

T
), (α−1,

−1

T
), (α0, 0), (α1,

1

T
), (α2,

2

T
), . . .

}

=

{
. . . , (α−2,

−4

2T
), (0,

−3

2T
), (α−1,

−2

2T
), (0,

−1

2T
), (α0, 0), (0,

1

2T
), (α1,

2

2T
), (0,

3

2T
), (α2,

4

2T
), . . .

}

P10. Finite approximation
In most practical situations, if we want to calculate the values of a signal from the Fourier synthesis formula, we must approximate
the signal using a finite number of terms. Usually we use the lower frequency terms:

x(t) ≈ xK(t)
4
=

K∑
k=−K

αke
 2π kT t.

How good is this approximation? One way to answer this is to look at themean-squared differencebetweenx(t) and the
approximationxK(t), or equivalently to look at the average power of the difference signal

eK(t)
4
= x(t)− xK(t) .
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One can show that the average power of this difference signal is

MS(eK) =
∞∑

k=K+1

[
|αk|

2 + |α−k|
2
]
.

Furthermore, this mean-squared difference goes to zero asK increases.

Indeed, the proof of this fact is essentially the proof of the Fourier Series Theorem. If possible, we chooseK large so that the error
is small.

P11. Time shift
If x(t) has Fourier coefficients{αk}, theny(t) = x(t− t0) has Fourier coefficients

βk = αke
− 2π kT t0 .

This shows, not surprisingly, that a time shift causes a phase shift of each spectral component, where the phase shift is proportional
to the frequency of the component. The derivation is left as an exercise.

P12. Frequency shifting
If x(t) has Fourier coefficients{αk}, theny(t) = x(t) e 2π

m
T t has Fourier coefficients

βk = αk−m.

This shows that multiplying a signal by a complex exponential has the effect of shifting the spectrum of the signal. The derivation
is left as an exercise.

P13. Time scaling
Let a > 0. If x(t) is T -periodic withT -second Fourier coefficients{αk}, theny(t) = x(at) is T/a-periodic and hasT/a-second
Fourier coefficients given by

βk = αk.

This shows that the Fourier coefficients are not affected by time scaling. However, time scaling does affect the spectrum. Specif-
ically, the Fourier coefficients ofx(t) are spaced at intervals of 1/T Hz, whereas the Fourier coefficients ofy(t) are spaced at
intervals ofa/T Hz. For example, ifa > 1, then the Fourier coefficients are more widely spaced, and consequently, the spectrum
of y(t) is expanded towards higher frequencies. This is consistent with the fact that usinga > 1 means thaty(t) fluctuates more
rapidly thanx(t). The derivation is left as an exercise.

P14. Technicalities
(mostly a warning that there are such)

For the integral in the analysis formula to be well defined and for the synthesis formula to hold, one needs to assume∫
〈T 〉
|x(t) | dt <∞ and/or

∫
〈T 〉
|x(t) |2 dt <∞.

These are very mild conditions from a practical perspective; any signal of practical interest will satisfy both of these conditions.

When mathematicians prove that

x(t) = x̂(t)
4
=

∞∑
k=−∞

αke
 2π kT t,

what they really show is that the average power of the difference signal is zero,i.e.,

0 = MS(x(t)− x̂(t)) ,

assuming that
∫
〈T 〉 |x(t) |

2 dt < ∞. Sox(t) andx̂(t) can differ atisolated points. Such differences have no practical engineering
importance.

Moreover, assuming
∫
〈T 〉 |x(t) | dt <∞ and the so-calledDirichlet conditions5, the only points at which they can differ are points

of discontinuity inx(t). Specifically,

x̂(t) =

∞∑
k=−∞

αke
 2π kT t =

{
x(t) , if x(t) is continuousat t
1
2 [x(t

+) + x(t−)] , if x(t) is discontinuousat t.

5Dirichlet conditions. In addition to
∫
〈T〉 |x(t) | dt <∞, in any one periodx(t) has only a finite number of maxima and minimum and only a finite number of

discontinuities.



c© D. Neuhoff and J. Fessler, June 9, 2003, 12:56 (student version) 3a.23

There’s more discussion of “technicalities” in EECS 306.

P15. Self consistency
The following argument shows that the Fourier series analysis and synthesis formulae are self consistent, but this isnot by itself a
rigorous proof of correctness:

αl =
1

T

∫
〈T 〉

x(t) e− 2π
l
T t dt =

1

T

∫
〈T 〉

[
∞∑

k=−∞

αke
 2π kT t

]
e− 2π

l
T t dt

=

∞∑
k=−∞

αk

[
1

T

∫
〈T 〉
e 2π

k
T te− 2π

l
T t dt

]
=

∞∑
k=−∞

αk

[
1

T

∫
〈T 〉
e 2π

k−l
T t dt

]
︸ ︷︷ ︸

1 if k = l, else 0

= αl.

Example. Find the Fourier series of the following signal.

-
t [ns]0 2 4 6 8 10

6
y(t)

-2

2

...

One way to solve this problem would be to use the analysis formula. The integral is a bit messy. An alternative approach is to use
properties of the Fourier series since we can recognize that the above signal is related to our earlierx1(t) as follows:

y(t) = x1(t− 3) cos

(
2π
1

4
t

)
= x1(t− 3)

1

2

[
e 2π

1
4 t + e− 2π

1
4 t
]
=
1

2
x1(t− 3) e

 2π 14 t +
1

2
x1(t− 3) e

− 2π 14 t.

To express the Fourier series coefficients{βk} of y(t) in terms of the coefficients ofx1(t), denoted{αk}, we apply the linearity
property, the time-shift property and the frequency-shift property.
First, by the time-shift property, the FS ofx3(t) = x1(t− 3) has coefficients

γk = αke
− 2π k4 3.

By the frequency-shift property, the FS ofx3(t) e 2π
1
4 t is γk−1. Combining using linearity, the FS ofy(t) is

βk =
1

2
γk−1 +

1

2
γk+1 =

1

2
αk−1e

 2π k−14 3 +
1

2
αk+1e

 2π k+14 3 =
1

2
e 2π

k
4 3
[
αk−1e

− 3π/2 + αk+1e
 3π/2

]
.

Now we “just” substitute in our the values forαk computed earlier in (3a-1).

Example. The signalx(t) has the following spectrum.(Picture) .

Determine the average power ofx(t).

From the spectrum we see that the FS coefficients areα0 = 3, αk = 3/2|k| exp(π/k), k 6= 0.

MS(x) =

∞∑
k=−∞

|αk|
2 = α20 + 2

∑
k = 1∞|αk|

2 = 32 + 2
∑

k = 1∞|3/2|k| exp(π/k) |2 = 32 + 2
∑

k = 1∞|3/2k|2

= = 9 + 18
∑

k = 1∞
(
1

4

)k
= 9 + 18

[∑
k = 0∞

(
1

4

)k
− 1

]
= 9 + 18

[
1

1− 1/4
− 1

]
= 15
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Average Power of a Sum-of-Sinusoids

(Prelude toparseval’s theorem.)

Fact. For a sum-of-complex-exponentials signals with different frequencies:

x(t) =
∑
k

αke
 2πfkt, fk 6= fl, k 6= l,

theaverage powercan be computed in the time domainor in the frequency domain:

MS(x) = lim
T→∞

1

2T

∫ T

−T
|x(t) |2 dt =

∑
k

|αk|
2.

The spectrum of a signal also characterizes its average power!

To prove this property, we first show the following useful limit:

lim
T→∞

1

2T

∫ T

−T
e 2π(fk−fl)t dt =

{
1, fk = fl
0, otherwise.

(3a-2)

The casefk = fl is obvious, so consider the case wherefk 6= fl and defineω = 2π(fk−fl):

lim
T→∞

1

2T

∫ T

−T
e 2π(fk−fl)t dt = lim

T→∞

1

2T

1

jω
e ωt
∣∣∣∣T
−T

= lim
T→∞

e ωT − e− ωT

j2T
= lim

T→∞

sin(ωT )

T
= 0,

sincesin(·) is bounded by unity. So (3a-2) is shown.

Now we can proceed to use (3a-2) to derive the above power equation:

MS(x) = lim
T→∞

1

2T

∫ T

−T
|x(t) |2 dt = lim

T→∞

1

2T

∫ T

−T
x(t)x(t)? dt

= lim
T→∞

1

2T

∫ T

−T

[∑
k

αke
 2πfkt

][∑
l

αle
 2πflt

]?
dt (why “l” ?)

=
∑
k

∑
l

αkα
?
l

[
lim
T→∞

1

2T

∫ T

−T
e 2π(fk−fl)t dt

]
[ ] is 1 if k = l else 0

=
∑
k

αkα
?
k =
∑
k

|αk|
2.

Interpretation. Thekth frequency component in the spectrum contributes|αk|
2 to the over-

all average power of the signal. One can “see where the power is” in the spectrum.
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Finite Fourier Series Approximation

Any T -periodic signal can be expressed as a (usually infinite) sum-of-complex-exponentials.
Infinite sums are fine for analysis, but for practical implementation a finite sum approxima-
tion is necessary:

x(t) ≈ x̂K(t)
4
=

K∑
k=−K

βke
 2π k

T
t.

When making such a finite-series approximation, it is natural to try to choose the coeffi-
cients{βk} to make this approximation “as good as possible.”
How should we measure the “goodness of fit” ?

Chooseβk’s that minimize themean-squared differencebetweenx(t) and the approxi-
mationx̂K(t):

MSD(x, x̂K) = MS(x− x̂K).

We show here that the bestβk’s are those given by the analysis equation:

βk =
1

T

∫
〈T 〉
x(t) e− 2π

k
T
t dt. (3a-3)

In other words, the same FS coefficients that work “perfectly” if we useall of them also
are optimal in the MS sense foranyfinite series approximation!
Useful facts for the derivation.
• For anyT -periodic signalz(t),MS(z) = 1

T

∫
〈T 〉 |z(t) |

2 dt = 1
T

∫
〈T 〉 z(t) z

∗(t) dt = CT (z, z),

whereCT (x, y) denotes a time-normalized correlation.
• Bilinearity: C(

∑
k xk,

∑
l yl) =

∑
k

∑
l C(xk, yl), likewise forCT

• Harmonic complex exponentials are uncorrelated:CT (e
 2π kT t, e 2π

l
T t) =

{
1, k = l
0, otherwise

• Average power of finite series:MS(x̂K(t)) =
∑K
k=−K |βk|

2

• Completing the square:|β|2 − 2Re{β?γ} = |β|2 − β?γ − βγ? + |γ|2 − |γ|2 = |β − γ|2 − |γ|2

Derivation

MS(x− x̂K) = CT (x− x̂K , x− x̂K) = CT (x, x)− CT (x, x̂K)− CT (x̂K , x) + CT (x̂K , x̂K)

= MS(x)− [CT (x, x̂K) + C
?
T (x, x̂K)] + MS(x̂K)

= MS(x)− 2Re{CT (x, x̂K)}+
K∑

k=−K

|βk|
2

= MS(x)− 2Re

{
1

T

∫
〈T 〉

x(t)

[
K∑

k=−K

β?k

(
e 2π

k
T t
)?]
dt

}
+

K∑
k=−K

|βk|
2

= MS(x) +
K∑

k=−K

[
|βk|

2 − 2Re

{
β?k
1

T

∫
〈T 〉

x(t) e− 2π
k
T t dt

}]

= MS(x) +

K∑
k=−K


∣∣∣∣∣βk − 1T

∫
〈T 〉

x(t) e− 2π
k
T t dt

∣∣∣∣∣
2

−

∣∣∣∣∣ 1T
∫
〈T 〉

x(t) e− 2π
k
T t dt

∣∣∣∣∣
2

 .
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From this final expression, we see that the MS difference is minimized when the middle term (the only term that depends onβk) is
zero,i.e., when when we use (3a-3).

When we use this optimal choice forβk, the MSD simplifies as follows:

MS(x − x̂K) = MS(x) −
K∑

k=−K

∣∣∣∣∣ 1T
∫
〈T 〉

x(t) e− 2π
k
T t dt

∣∣∣∣∣
2

=

∞∑
k=−∞

|αk|
2 −

K∑
k=−K

|αk|
2 =

∑
|k|>K

|αk|
2



c© D. Neuhoff and J. Fessler, June 9, 2003, 12:56 (student version) 3a.27

Signal synthesis

Example.

-
t [ns]

6
x(t)

0 2 4 6 8

1
· · ·

The FS coefficients of the above sawtooth signal are given by (exercise):

αk =

{
1/2, k = 0
1

− 2πk , k 6= 0.

The following figure shows the finite-series approximationsxK(t) to x(t) for various number of termsK.

0 4 8 12

0

1

x 1(t
)

Sawtooth wave synthesis

0 4 8 12

0

1

x 2(t
)

0 4 8 12

0

1

x 3(t
)

0 4 8 12

0

1

x 10
(t

)

0 4 8 12

0

1

x 30
(t

)

t
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The clock signal design problem revisited

We now return to the problem of choosing between the square wave and the pulse train for a high-speed clock signal in the presence
of imperfect interconnects.

We have already computed the spectrum ofx1(t), the square wave.

By similar manipulations, the spectrum ofx2(t), the pulse train, has Fourier coefficients given by

βk =
A

4

∫ 1
0

1 · e− 2π
k
T t dt = · · · =

{ A
4 , k = 0
A
 2πk

[
1− e− πk/2

]
, k 6= 0,

where
1

 2πk

[
1− e− πk/2

]
=

1

 2πk

[
e πk/4 − e− πk/4

]
e− πk/4 =

sin(πk/4)

πk
e− πk/4.

-
f [GHz]0 0.25 0.50 0.75 1.00 1.25 1.50 1.75

. . .. . .

6Spectrum ofx2(t) for A = 1

1/4
√
2/2
π
e− π/4

1
2π e

− 2π/4
√
2/2
3π e

− 3π/4 √
2/2
5π e

 π/4
√
2/2
6π e

 2π/4√2/2
7π e

 3π/4

Now we examine the effects of thefiltering caused by the imperfect interconnects. We can model these effects using the following
block diagram

clock signal→ interconnects→ other components,

x(t)→ filter → y(t) ,

where the output signaly(t) consists of all frequency components up to 5GHz,i.e.,

y(t) =
K∑

k=−K

x(t) e 2π
k
T0
t

wheref0 = 1/T0 = 0.25 GHz and whereK = 5GHz/0.25GHz= 20. So the DC term and the first 20 harmonics are passed by
the interconnects, whereas the higher frequency components are removed.

A natural measure of the signal distortion introduced by the imperfect interconnects is the normalized RMS difference:

NRMS =
RMS(x− y)

RMS(x)
. By Parseval’s theorem,

RMS(x) =
√
MS(x) =

√√√√ ∞∑
k=−∞

|αk|2 =

√√√√α20 + 2 ∞∑
k=1

|αk|2,

where the second expression is due to conjugate symmetry of theαk ’s. Similarly, sincey(t) andx(t) have the same low-frequency
components, the spectrum of the error signalx(t)− y(t) only consists of the attenuation high frequency components, so

RMS(x− y) =
√ ∑
|k|>K

|αk|2 =

√√√√2 ∞∑
k=K+1

|αk|2.

Like most interesting practical problems, there is no analytical expression for this summation, so we compute it numerically using
MATLAB . (We take a very large number of terms in the sum and useA = 1 without loss of generality.)

The numerical results are
RMS(x1 − y1)

RMS(x1)
=
0.0704

0.707
= 0.0996 and

RMS(x2 − y2)

RMS(x2)
=
0.0704

0.5
= 0.1408.

The NRMS error is higher for the pulse train, because a larger fraction of its power is above 5GHz. So the square wave is
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preferable by this criterion. There are other criteria that must also be considered in practice. This has been a frequency-domain
analysis; time-domain perspectives are also important for such problems.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

K = index of maximum retained harmonic

R
M

S
(x

 −
 y

) 
/ R

M
S

(x
)

Normalized RMS error due to attenuation

Pulse Train
Square Wave

0 2 4 6 8 10
0

0.05

0.1

Square wave magnitude spectrum

0 2 4 6 8 10
0

0.05

0.1

Square wave components below 5GHz

0 2 4 6 8 10
0

0.05

0.1

Pulse train magnitude spectrum

0 2 4 6 8 10
0

0.05

0.1

Pulse train components below 5GHz

f [GHz]
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D. The spectra of segments of a signal

Question: How can we assess the spectrum of a signal that is not periodic?
Example.
• What if the signal has finite support?
• What if the signal has infinite support, but is not periodic?

Observation: The Fourier series analysis formula works with a finite segment of a signal. It is just a question of how we interpret
the synthesis formula!

Signals with finite support

We will see that to assess the spectrum of a signalx(t) with finite support[t1, t2] we can apply the Fourier series analysis formula
directly to the signal over its support interval. Let us begin by definingx̃(t) to be a periodic signal that equalsx(t) on the interval
[t1, t2] and simply repeats this behavior on other intervals of the same length. That is, letT = t2 − t1, and let

x̃(t) =

∞∑
m=−∞

x(t−mT ) .

This is called theperiodic extensionof x(t). Its periodT is the support length ofx(t).

Example.

Here is a finite-support signal.

-
t

6x(t)

2 4

A

Here is its periodic extension.

-
t

6̃x(t)

0 2 4 6 8

A
· · ·

Sincex̃(t) is T -periodic, we can represent it by a sum-of-complex-exponentials:

x̃(t) =

∞∑
k=−∞

αke
 2π kT t (synthesis formula)

with FS coefficients

αk =
1

T

∫
〈T 〉

x̃(t) e− 2π
k
T t dt =

1

T

∫ t2
t1

x̃(t) e− 2π
k
T t dt (analysis formula),

where we have used the fact that the limits in the analysis formula integral can by any interval of lengthT .

Now we note that since

x(t) =

{
x̃(t) , t1 ≤ t ≤ t2
0, otherwise,

we also have the following expression for the FS coefficients:

αk =
1

T

∫ t2
t1

x(t) e− 2π
k
T t dt (analysis formula),

and more importantly,

x(t) =

{
x̃(t) , t1 ≤ t ≤ t2
0, otherwise,

=

{ ∑∞
k=−∞ αke

 2π kT t, t1 ≤ t ≤ t2
0, otherwise,

(synthesis formula).
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Thus we may view the two formulas above as synthesis and analysis formulas for a spectral representation of the finite-duration
signalx(t). The synthesis formula shows that on its support interval,x(t) can be viewed as a sum-of-complex-exponentials having
frequencies that are multiples of1/T . The analysis formula shows how to find the spectral components (theαk ’s). It is important
to note that the synthesis formula yieldsx(t) only in the support interval. Outside the support interval it yieldsx̃(t), rather than
x(t) = 0. So we can use the synthesis formula as long as we remember that the values ofx(t) are zero outside of the support
interval.

In summary, just as we did for periodic signals, for a signal with finite support we can take the spectrum to be:{
. . . , (α−2,

−2

T
), (α−1,

−1

T
), (α0, 0), (α1,

1

T
), (α2,

2

T
), . . .

}
.

Note: Though we have introduced the Fourier series as fundamentally applying to periodic signals and secondarily applying to
signals with finite support, some presentations take the opposite point of view, which is equally valid.

The Fourier Transform

The preceding discussion for finite-support signals is by no means the whole story. Instead of forming the periodic extension using
the durationT as the period, we could instead using a larger period.

Example.

-
t

6̃x(t)

0 2 T0 T0 + 2

A
· · ·

For any suchT0 > T , we have a periodic signal̃x(t) for which we can determine its FS coefficients:

αk =
1

T0

∫ t2
t1

x(t) e− 2π
k
T0
t dt.

The spectra corresponding to each choice forT0 will be different, yet somehow related. Which one to choose? The usual answer is
to examine the limit asT0 → ∞, in which case the spectral line get closer and closer and, in the limit, can be though to meld into
a continuous curve. The formula for that curve is

X(f)
4
=

∫
x(t) e− 2πft dt,

where, for any given finiteT0,

αk =
1

T0
X(f)

∣∣∣∣
f=k/T0

.

The functionX(f) is called theFourier transform of x(t), and is the usual method for assessing the spectra of aperiodic signals.
The Fourier transform is a primary topic in EECS 306.

Aperiodic signals with infinite support

A common approach to assessing the spectrum of an aperiodic signal with infinite support is to choose a time interval lengthT ,
divide the support interval into segments of lengthT , as in[0, T ], [T, 2T ], [2T, 3T ], . . . , and apply the previous approach to each
segment.

With this approach, we obtain a sequence of spectra, one for each segment. Notice that with this approach the spectra “varies with
time.” Indeed, there are aperiodic signals for which it makes very good sense that the spectrum should differ from segment to
segment. For example, the signal produced by a musical instrument can be viewed as having a spectrum that changes with each
note. This and other examples can be found in Section 3.5 of the text and in the Demos on the CD-ROM relating to Chapter 3.

There are lots of issues here, for example, what choice ofT? But we will leave this discussion to future courses.

This same approach is also useful for “long” aperiodic signals withfinite support. A grayscale picture of such spectra is called a
spectrogram.
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E. Bandwidth

One of the primary motivations for assessing the spectrum of signal is to find the range of frequencies occupied by it. This range
is often called the signal’s “band of spectral occupancy” or, more simply, itsfrequency band. The width of the frequency band
is called thebandwidth of the signal. As one example of the usefulness of the concept of frequency band, signals with non-
overlapping spectra do not interfere with each other. So if we know the frequency band occupied by each of a set of signals, we can
determine if they interfere. As another example, certain communication media,e.g., a conductor on a printed circuit board, limit
propagation to signals with spectral components in a certain range. If we know the frequency band occupied by a signal, we can
determine if it will propagate.

Most signals of practical interest, such as that shown in the previous section, have spectral components that extend over a broad
range of frequencies. We are rarely interested in theentire range of frequencies over which the spectrum is not zero. Usually we
are more interested in the range of frequencies over which the spectrum is “significantly large”. As such, we need a definition of
“significantly large” to define the concepts of “frequency band” and “bandwidth”. There are several such definitions in use. The
definition given below is based on one such definition.

Definition:

The “band of spectral occupancy” orfrequency band of a signals(t) is the smallest interval of frequencies that includes all
frequencies at which the magnitude spectrum is at least one half as large as the maximum value of the magnitude spectrum.

Example. For the magnitude spectrum shown below, where the horizontal axis is the frequency in Hz, the frequency band is,
approximately, [800, 2100] Hz, and the bandwidth is, approximately, 1300 Hz.
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