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Part. 3a: Spectra of Continuous-Time Signal$

Outline
A. Definition of spectrum
B. Spectra of signals that aseims of sinusoids
o AM radio
. Spectra operiodic signals
o Fourier series analysis and synthesis
D. Spectra obegments of signatndaperiodic signals
E. Bandwidth

Reading

e “Part 3a” lecture notes

e Ch. 3 of text

e 3.4.5 supplement

o Wakefield Fourier series “quick primer”

0O

Principal questions to be addressed
e What, in a general sense, is thgectrumof a signal?

e Why are we interested in spectra? (“spectra” = plural of “spectrum”)
e How does one assess the spectrum of a given signal?

Here we consider continuous-time signals. The next part of the course discusses spectra of discrete-time signals.
Notes

The spectra has two important roles:
e Analysis and design. The spectra is a theoretical tool that enables one to understand, analyze and design signals and systems
e System component: The computation and manipulation of spectra is a component of many important systems.
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Spectra of Continuous-Time Signal#

e Our coverage of spectra goes significantly beyond the coverage in Chapter 3.
e See the list of errata for Chapter 3.

A. Rough definition of spectrum and motivation for studying spectra

A.1. Introduction to the concept of “spectrum”

Definition

Roughly speaking, a “spectrum of a signal” is a description of the signasamaf sinusoids

This definition involves (at least) two keoices
¢ We choosssinusoidsas our elementary components, because of the reasons described in the previous part.
e We choose teumthe sinusoids because that is simpler than other ways of combining.

A spectrum describes the frequencies, amplitudes and phases of the sinusoids that “sum” to yield the signal.
The individual sinusoids that sum to give the signal are calladsoidal components
Alternatively, the spectrum describes the distributions of amplitude and phase versus frequency of the sinusoidal components.

Since each sinusoid can be decomposed into the sum of two complex exponentials, the spectrum equivalently indicates how the
signal may be thought of as being composedarfiplex exponentials

It describes the frequencies, amplitudes and phases of the complex exponentials that “sum” to yield the signal.
The individual complex exponentials that sum to give the signal are cadiegblex exponential components
Sinusoidal and complex exponential components are also cgiktral componentsor frequency components

The “descriptions”

A signal that is a sum of sinusoids candescribedn at least 4 distinct ways.
e Descriptions in theéime domain:

¢ Mathematical formulas N

2(t) = Ao+ Y _ Ay cos(2m fit + ¢r)

k=1

e A plot of z(t) versus time
e Descriptions in thérequency domain
e A list of the amplitudes, phases, and frequencies (and how many there are) such as

{(AO)7(Alvd)l?fl)v"'7(AN7¢N7fN)}

¢ As a plot of those amplitudes and phases as a function of frequency!

The “frequency domain” descriptions are examples of what is meant by spectra.
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Plotting the spectra

To understand signals, we like to plot and visualize their spectra. We plot “spectral” lines at the frequencies of the exponential
components (at both positive and negative frequencies). The height of the line is the magnitude of the component. We label the
line with the complex amplitude of the componeaty, with 2e77/3,

Alternatively, we might make two line plots, one showing the magnitudes of the components and the other showing the phases.
These are called theagnitude spectrumandphase spectrum respectively.

Important note: Why a “rough” definition?

“Spectrum”is a broad collective noun, like “economy” or “health,” for which there is no universal mathematically precise definition.
Rather as with economy and health, there are a variety of specific ways to assess the spectrum of a signal.

For example, to assess the economy, one can measure GNP, average income, unemployment rate, poverty rate, DJIA, NASDAC
money supply, ...

For example, to assess health one can measure body temperature, heart rate, blood pressure, blood chemistry, weight, etc.

Similarly, there are a variety of ways to assess the spectrum of a signal. A limited set will be discussed in this course: principally,
Fourier series (FS) for periodic continuous-time signals, and discrete Fourier transform (DFT) for periodic discrete-time signals.
But there will also be some discussion and use (mainly in the labs) of FS and DFT to assess the spectra of finite segments of signal
The (continuous-time) Fourier transform, which is another important method of assessing the spectrum of continuous-time signals,
will be discussed in EECS 306.

Reasons for decomposing into sinusoids

It's mainly that sinusoids into linear, time-invariant systems lead to sinusoidal output signals.
(No other class of signals has this property.)

This causes the input-output relationship for linear systems to be particularly simple for sinusoidal signals.
So representing signals with sinusoids simplifies analysis greatly.

Because analysis is simplified, efficient design methods can be developed.
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A.2. Why are we interested in spectra?

Here are some reasons:

e Preventing signal interference e.g, AM radio

Signals with non-overlapping spectrum do not interfere with one another. Thus many information carrying signals can be
transmitted over a single communication medium (wire, fiber, cable, atmosphere, water, etc.).

To design such systems, we need to be able to quantitatively determine the spectrum of signals to be able to assess wheth
or not they overlap, and if they do, by how much. Also, we need to able to develop systgméliers) that select one
signal over another, based on its spectrum.

e Signal recognition

Some signals can be recognized based on their speafrayowels (Labs 8,9), touchtone telephone key presses, musical
notes and chords, bird songs, whale sounds, mechanical vibration analysis, atomic/molecular makeup of sun and other star:
etc. To build systems that automatically recognize such signals, we need to able to quantitatively determine the spectrum of
a signal.

e Signal propagation

Communication mediae.g, the atmosphere, the ocean, a wire, an optical fiber, often limit propagation to signals with
components only in a certain frequency range (atmosphere is high frequency, ocean is low frequency, wire is low frequency,
optical fiber is high frequency, but what is considered “high” or “low” depends on the media. We need to be able to assess
the spectrum of a signal to see if it will propagate. We need to be able to design signals to have appropriate spectra for
appropriate media.

e System design

In many situations, the behavior of many natural and man-made linear systems is best analyzed in the “frequency domain”,
i.e., one determines the behavior in response to sinusoids (or complex exponentials) at various frequencies, and from this
one can deduce the response to other signals. The previous bullet is a special case of this.

o Noise removal

In many situations, an undesired signal interferes with a desired s@gathe desired signal might correspond to someone
speaking and the undesired signal might be background noise. We wish to reduce or eliminate the background signal. In
order to be able to reduce or eliminate the background signal it must have some characteristic that is distinctly different than
the desired signal. Often it happens that the desired and undesired signals have distinctly differenegpabieanpise has

mostly high frequency components). In such cases, one can design systems, called “filters”, that selectively reduce certair
frequency components. These can be used to reduce the noise while having little effect on the desired signal.

e Information hiding
Watermarking, etc.

e Many other signals and systems methods are based on spegtreontrol engineering, data compression, voice recognition,
music processing.

Example The bass and treble controls on an audio amplifier have been designed to affieetjtieacy components a
signal. “Turning up the bass” means amplifying the low frequency components. To describe this quantitatively, and to design
such systems, one must understand spectra thoroughly.

e And....
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A.3. How does one assess the spectrum of a given signal?

The remainder of these notes are intended to make progress on this question, with occasional references to questions 1 and 2.
There is no single answer.
The answer/answers do not fit into one course.

We address this question in spiral fashion in EECS 206. The answer continues in EECS 306 and beyond. (Just like you don't learn
all there is to know about the economics in Econ. 101.)

We will develop several methods for continuous-time signals, several methods for discrete-time signals.
There is no single universal spectral concept in wide use.
We use different measures of the spectrum for different types of signals.

We will discuss mainly:
B. spectra of a sum of sinusoids (with supp@Fito, 00))
C. spectra of periodic signals (with suppfrtoco, 00)) via Fourier series

and briefly discuss
e spectra of a segment of a signal via Fourier series, which leads to:
e the spectra of signal with finite support
e the spectra of signal with infinite support via Fourier series applied to successive segments

We won't discuss:
e spectra of a signal with infinite support and finite energy via Fourier transform.
This will be discussed in EECS 306.

We will have a similar discussion of spectra for discrete-time signals in the next part of the course.

We won't get too rigorous in our treatment of Fourier series. We'll leave that to future courses such as EECS 306.
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B. The spectrum of a finite sum of sinusoids

As in the text Section 3.1, we begin the discussion of how to assess a spectrum by considering signals that are finite sums o
sinusoids.

To illustrate the main ideas, we start with an example.

Example Consider the following sum-of-sinusoids signal (in standard form):
x(t) = 6 + 9cos(2n7t + m/3) + 4 cos(2w11t — 0.1).

A Sum-of-Sinusoids Signal
20 T T T T T T T T T

x(t)

o
T
I

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
t

From this graph, would you expect this signal to sound pleasing to the ear? (“Harmonic”) Who knows!
Can you tell from the graph how many sinusoids there are, or even for sure if they are sinusoids? Doubtful!

First, we emphasize that this is sum of sinusaifidifferent frequencieso the “simplifications” developed in the previous part are
inapplicable.

Second, it is going to be more convenient later to express spectra in terms of complex exponential signal components instead o
sinusoidal signal components. So our next step is to rewfiteusing the following inverse Euler identity:

) @nfot+d) 4 o—1(2nfot+d) /4 A
Acos(2m fot + ¢) = Ae +26 = <5e3¢) el 2mfot 4 <5e_7¢) e~ 127 fot,

Applying that identity to each term in our signal yields the followfogmula:
x(t) =6+ (gejﬂ/3> e]27r7t + (gejﬂ/?;) 67]27r7t + (2€7j0.1) e]27r11t + (2€j0.1) efj27r11t.

Recall that the terms in parentheses are callebors

One way todescribethis signal would be to uselst of the (phasor, frequency) pairs, as follows:

{1,210, Gerrms, 1), 6,0), G 1), (e 1)

This is acompletedescription of the signal in the sense that if | give you this list then you know what the si¢fas, and could
write down its formula, or plot it, or compute the valueadf) at some time of interest, etc.

However, our visual system is much better at understanding patterns shown graphically than it is at understanding a list of numbers
So we visualize the spectrum using the followpigt:

Spectrum ofc(t)
ge—]ﬂ-/3 6 gejﬂ'/f}
ZeJO.l 267J0.1
11 -7 0 7 11 [H7]

Compare the plot of the spectrum to the plot of the signal. The spectrum plot is “simpler, more compact and more intuitively
informative” than the plot of(t). This illustrates what we mean by “the spectrum is a compact representation of the signal.”

Would this sound harmonic? Probably not. The ratio 11/7 is not a ratio of powers of 3 and 2Pythagorean intervalg.
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General case for sum-of-sinusoids

3a.7

Consider ssum-of-sinusoidssignal of the form

N
z(t) = Ao+ Y Ajcos(2mfrt + ¢r)

k=1
Ag + Aj cos(2m f1t + 1) + Az cos(2m fot + ¢a) + - - - + An cos(2m fnt + on ),

whereN, Ao, A1, é1, f1,-.., AN, OnN, fn, are parameters that specify the signél). We derive its spectrum.

Using Euler’s formula, we can rewritg(t) as

N

z(t) = Xo + ZRe{Xkeﬂ”f’“t}
k=1

where
Xo=A4p, and X, =A% k=1,....N

is the phasor corresponding #; cos(2 fit + ¢x). (The phasor is a complex number.)

Using the fact thaRe{z} = Z“ , we further rewrite this as

X}
x(t) = X0+Z[ kor2mfit 4 2k —szt}

_ <%ej2ﬂ'f1\7t+ RS %ej%rflt) +X0+ (%e]2ﬂf1t+ RS %ej2ﬂ'f1\7t> )

To make this expression more compact, we rewrite it as the following ssugteof-complex-exponentials

N
_ § akeJQTrfkt

k=—N

— (a_Ne]27rf,Nt+'_'+a_1e]27rf,1t) +Oé()+ (ale]27rf1t+_”+aNe]27rth) )

Two make these two forms match, tB€ term (corresponding to zero frequency, a constant signal) is given by

‘OCOZX():AOZM(IL'),

and the coefficients for positive frequencies are given by

1 1
akziszﬁAkemk, k=1,...,N,

and the coefficients for negative frequencies are given by the follogangigate symmetryrelationship:

and where we define the negative frequencies by
f*k:_fkv k=1,...,N.

(And fo = 0.)

Using the above sum-of-complex-exponentials formufir, we make the following definition.
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Definition: The (two-sided) spectrum of this signal is the list of pairs

{(a—Nvf—N)7 R (a—hf—l)? (040,0), (a17f1)7 EERE) (aN7fN)}

or equivalently,

{(O‘}k\h_fN)v AR (ath_fl)? (040,0), (a17f1)7 R (CYN,fN)}-

A picture of a generic spectrum for a sum-of-sinusoids signal is the following.

Generic spectrum of sum-of-sinusoids
kao
o] a1
oy an
| .
-fn ... —=fi 0 fi N

Notes
e The spectrumi.e., this list, is considered to be a “compact” representation of the sigigali.e., just a few numbers.
Example This compactness is the essence of how MP3 audio compression can shrink an entire hour of music from an audio
recoding into a modest number of bits!
e The “spectrum” is also called tHeequency-domain representationof the signal.
In contrastz(t) is thetime-domain representationof the signal.
e The termAy, cos(27 fi.t + ¢ ) is called thesinusoidal componenif z(t) at frequencyfy.
e The termay, is called thecomplex exponential componenbr spectral componentof z(¢) at frequencyfy.
o Itis equally valid to express the spectrum with frequencies in rad/sec or Hz. However, Hz, kHz, and MHz, etc., are more typical
in engineering practice, as opposed to in engineering textbooks...
e To obtain a useful visualization, we often plot the spectrum by drawing, for eaghpectral line at frequencyf; with height
equal to|ay | and labelling the line with the (usually complex) valuenaf
o Alternatively, we sometimes separate the spectrum into magnitude and phase parts:
e Themagnitude spectrum

{(|O‘7N|vffN)v ) (|O{,1|,f,1), (050,0), (|a1|7f1)7 sy (|OCN|7fN)}
:{(|O‘N|7_fN)7 ) (|ak|7_f1)7 (a070)7 (|O{1|,f1), R (|aN|7fN)}'

e Thephase spectrum

{(Za—Naf—N)7 ey (Z()é_l,f_l), (040,0), (Zozl,fl), RN (LaN,fN)}

= {(_éal\“_fN)? "'(_Lakv_f1)7 (a070)7 (Lahfl)) R (ZaNMfN)}'

In particular, we often make separate plots of magnitude and phase. That is, fdr, daeimagnitude plot has a line of height
|a | at frequencyfy, and the phase plot has a line of heighi;, at frequencyfy.

e Often, but certainly not always, we are more interested in the “magnitude spectrenthe magnitude of they’s, than the
“phase spectrum”.

e Alternatively, people sometimes focus on tiree-sided spectrum(rather than our “two-sided” spectrum), which in the case of
a finite sum of sinusoids is

{(a070)7 (a17f1)7 SRR (anfN)}
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Example Problem: Assess the spectrum of the following sum-of-sinusoids signal:
x(t) = 2 + 3 cos(2m4t + .1) + 10sin(278t).

Sincesin(278t) = cos(278t — 7/2), the spectrum is:

{2 -8, Geot -, 2.0, Gerota), (5o
. Spectrum of(?)
5€j7r/2 5€7j7r/2
%eljo.l ) %e]IO.l
-8 -4 0 4 8 f[HzZ]

Example Given the spectrum of the signa(t) shown below, find)(t) = 2z(3t — 1/4).

. Spectrum of(t)

QeI /4 Qe—I7/4
5 5
2 2
| |

-7 -3 0 3 7 fHz]
First we findz(t) by “reading off” the components:
5 Jom3t | O _j2m3t —gm/4, 52Tt /4, . —327Tt
x(t) = 24 el T4 —eTIT f 4eT I T L 4e? T eI ET

2 2
= 2+ 5cos(2m3t) + 8cos(2nTt — w/4).

Alternatively, we could jump right to that second expression as long as one remembets th&@lay,| for k& # 0.

Thus we findy(t) by substituting and simplifying (watch the phases!):

yt) = 2x(3t—1/4)
= 2[2+5cos(2m3(3t — 1/4)) + 8cos(277(3t — 1/4) — 7/4)]
= 4+ 10cos(279t — 37/2) 4 16 cos(2m21t — Tr/2 — 7w /4)
= 4+ 10cos(279t + 7/2) + 16 cos(2m21t + 7/4).

3a.9
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Effects of time shift/scale and amplitude shift/scale on spectra
At this point we have considering the spectra only of sums-of-sinusoids sigeals:

N

a(t) = Ao+ Y _ A cos(2mfit + ¢r).

k=1
If we apply some of our simple signal operatioag,
y(t) = a+bx(ct +d),

then how does the spectrumg(f) relate to that ofc(¢)?

First note that
cos(2m fr(ct + d) + ¢r) = cos(2m(cfi)t + dr + 27 frd).

Simply substituting in then we see

N
y(t) = (a+ Ao) + Y _(bAg) cos(2m(cfr)t + [ + 27 frd))
k=1

N
y(t) = (a+Ao)+ Y (bAk) cos(2m (cfi) t+ dn + 27 fud).
N—_—— 1 N——" N—— N ——r
new DC newamp. new freq.  new phase
From this expression we could read off the coefficients to plot the spectrum.
The most interesting is perhaps the time shift and time scale effects. Visualizing these is left as an exercise.

It is also useful to examine these effects in the compact sum-of-complex-exponentials form:

N
= E apel 7Tkt
k=—N

Then
y(t) = a+bx(ct+d)

N
= a-+b Z ozkeﬂ”f’“(“*d)
k=—N

N
= a4 § bake]27rfkdej27rfkct
k=—N

N
= Z Be? 2 (efi)t
=N

k=—

where the coefficients qf(¢) are related to the coefficients oft) as follows:

By = a + bag, k=0
FT be?? ey k£ 0.

So the DC term is scaled and amplitude shifted, whereas the other terms are scaled and phase shiftetr by tieem.
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Amplitude Modulation (AM)

As an example to illustrate the utility of the concept of spectra, consider the form of a signal transmitted by an AM radio station
z(t) = (v(t) + d) cos(27 f.t),

whereu(t) is the audio signal, anebs(27 f..t) is thecarrier signal.

We assume thai(¢) is scaled so that(t) > —d for all ¢, so that the audio information is encoded in #reelopeof z(¢) as
discussed previously.

Thecarrier frequency f. is usually a high frequencg,g, 660 kHz. This is the frequency that you to tune your radio to.

A block diagram of the transmission process is:

1) > P = R — — antenna
) T

d cos(2mf.t)

Motivation:

Our audio signal is low frequency typically 0 to 5 kHz.
Low frequencies do not propagate through the atmosphere.

Need to generate a high frequency signal that “carries” the audio signal.
The carrier signatos(27 f.t) has high frequency, so it can propagate.
z(t) is obtained by “modulating” the carrier signal by the audio signal.
v(t) becomes the envelope oft). (adding the constatinsures this)

Example Suppose a single “audio test tone” is to be transmitted. Specifically, we assume:
v(t) = Acos(2m fyt),
for0 < A <d.

Problem: find and plot the spectruma(t).

(A real radio station is not usually interested in transmitting a sinusoidal audio signal. The sinugtidsijust a stand-in for a
genuine audio signal. We're assuming this choice(sf, because so far it is about all that we can analyze.)

Solution:
z(t) = [d + Acos(2n fyt)] cos(2m ft) = d cos(2m f.t) + écos(%’(fc + fo)t) + gcos(Zﬂ'(fc — fu)t).
The spectrum has components at frequengies. — f,), = f., £(fc + f»)}. Specifically, the spectrum is:
{(A/4, = (fe + f0)), (d/2,=fc), (A)4, —(fe = £0)), (A4, fe = fo), (d/2,fe), (A/4, fe+ fo)}-
(Picture) of spectrum.
Discuss how it depends ofy, f,, andd. Mention thebandwidth.

What values of d would be preferable?

Note: This example is intended as a simple example of using the concept of “spectrum” to do an “analysis”. Usually we must
analyzebefore we can attempt tesign
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Design problem: AM radio station carrier frequency spacing
How closely can one space the carrier frequencies of AM radio broadcasters?

Example Frequency multiplexing of AM signals
(This example uses spectra to design a frequency multiplexing parameter.)

Suppose:
Radio station 1 wants to transmit audio signglt) at carrier frequency;
Radio station 2 wants to transmit audio signglt) at carrier frequency, > c¢;.

Question. How far apart must andcs be to prevent interference of the two transmitted signals?
For concreteness assume(t) = cos(2mait), va(t) = cos(2waqt).

Then:
Radio station 1 transmitsz; (t) = (1 + v1(t)) cos(2mert)
Radio station 2 transmitsiz(t) = (1 + v2(t)) cos(2meat)

Solution:
The spectrum of4 (¢) has components at frequencigs- a1, ¢1,¢1 + a1 (Picture)
The spectrum of(¢) has components at frequencigs- aq, c2, ca + as (Picture)

To prevent overlap of the spectra, we need to chegsadc; so that
c1+ayp <c2—as

i.e, so that
cg > c1 + a1+ as.

In a practical AM system, the audio signal has spectrum ranging from 0 kHz to +5 kHz. In fact they limit the audio signals to this
range. So the AM radio signal handwidth about 10kHz, frony,. — 5kHz to f. + 5kHz. Because of this, AM radio stations are
assigned frequencies in increments of 10 kHz. And the FCC avoids having two stations in the same area being separated only b
10 kHz. This is because the spectra of real audio signals do not quite fit exactly between 0 and +5 kHz. (See EECS 306 for more
details.) And because even if they did, a radio receiver cannot pick out the signal components in tifg +abigdz to f. + 5kHz

without also accepting at least some signal components outside this band. Sometimes you can hear two AM radio stations at once
especially if you've tuned to a weak one while a powerful one is transmitting at a frequency only 10kHz away, especially if you
have an old/cheap radio receiver.

Note: This example is intended to be a concrete example of the practical use of the concept of spectrum to do a simple design task

Other examples of spectra

Example Modern digital oscilloscopes usually have “spectrum” option that you can select to examine the spectrum of the input
signal, instead of seeing just the usual time-domain display of the signal.

Example Some adventurous musicians use “pitch trackers” that (in real time) determine which note is being played on the
instrument (by analyzing the spectrum of the signal measured by a microphone or some other electrical input), so that an electronic
instrument (usually a digital synthesizer) can be synchronized to play the same note (or related notes).

We will better understand these exampdéter we describe how to compute a spectrum from sampled data.
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C. The spectrum of a periodic signal

We have seen how to assess and plot the spectrum of a sum-of-sinusoids signal. You might say that those plots are fairly “obvious
since you can just read off the amplitudes, frequencies, and phases from the sum-of-sinusoids expression. So at this point it migh
not seem like the spectrum offers much “value added” over the time-domain formula.

But what about a signal like the following square wave?

L 21(t)

A

0 2 4 6 8 t [ns]

Sincet is in nanoseconds, the fundamental peridflis= 4ns.

So the fundamental frequency of this periodic signgbis= 1/To = 250MHz.

But what is thespectrum of this signal?

You might wonder why we should care, since this signal appears perfectly easy to “understand” in the time domain.

Example

Here is a (simplified) example of an engineering design problem where we would need to know the spectrum of the above square
wave. Suppose you are designing a very high-speed digital systgmcomputer motherboard) and you need to have a common
clock signal to synchronize different subunits of that system. The conductors (printed circuit board paths) that connect the different
subunits will attenuate frequencies that are “too high,” due to parasitic capacitances and resistances. For simplicity, we assume
here that these interconnects completely attenuate all frequency components above 5GHz, while passing unchanged all frequenc
components below that cutdff Notice that this is a frequency-domain description of the conductors. Such descriptions are
commonplace in engineering systems, for example, plain old telephone service has a maximum frequency of about 3kHz.

You are debating between using the square wave given above or instead the pulse train given below as the clock signal.

L 22(t)

A

0 1 4 5 8 t [ns]

Both signals will be degraded by the attenuating properties of the interconnects.
Which signal do you use?

One way to make the choice would be to use whichever signal is deglesiede., whichever signal is more immune to the
imperfections of the interconnects. (This is not the whole picture by any means, but it is one reasonable way to start thinking about
such problems.)

We cannot solve even this elementary design problem with the tools discussed so far! We will revisit it after laying more foundation.

Although the signals above appear easy to “understand” in the time domain, for all the reasons enumerated previously, it is alsc
very important to understand what are the properties of this signal, and other periodic signalfggubecy domain

But how can we do that since all we have above is a picture!? There is no “sum-of-sinusoids” anywhere in view!

Fortunately for us, a brilliant French mathematician and Egyptologist named Joseph Fourier (17681®38) in 1807 the
following amazing factany periodic signal can be expressed as a sum-of-sinusoids!

This result is so surprising that it was quite controversial when Fourier first discovered it, and some mathematicians and scientists
of the day did not believe it!

1we will see later in the course that in reality there is a shoulder region where some frequency components are partially attenuated, but atttréscpoirsen
we stick with this “all or nothing” model for simplicity.
2See Oppenheim & Willsky for biosketch.
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C.1 Fourier Series

The main point of this section is the following theorem, which we will not prove, but which we will illustrate and use.
Fourier Series Theorem

Any periodic signal z(t) with periodT can be written as a (usually infinite) sum of sinusoids, all of which have frequencies that
are integer multiples of /T". Thatis, there is a set of amplitudes and phd$és., 0), (A1, ¢1), (A2, ¢2), ...} and corresponding
frequencieq0,1/T,2/T, ...}, such that

> k
Ap + Z A}, cos <2ﬂ'Tt + ¢k>

k=1

x(t)

Ay + Aq cos <27r%t + d)1> + As cos (27r%t + ¢2) +

Notice that the frequency of thigh sinusoid in this expression is

Ak
fk - Ta
which is a multiple of théundamental frequency f; = 1/T'. (These frequencies are calledrmonic frequencies)
This form of the Fourier series is called th@usoidal Fourier series since it is a sum-of-sinusoids form.

As we have stated repeatedly, it will be more convenientto use inverse Euler identities to rewrite this expression in terms of complex
exponential signals, instead of sinusoidal signals, recalling that

% (Ake.]¢k) el 2mfut | % (Ak€7j¢k) eI 27 fit

_ %Xkejzwfkt n %X}:Q*J%Tfkt’

Ay cos(2m fit + ¢r)

where, as usualX; = A,e’?* denotes th@hasorassociated with the componetit cos(27 fit + ¢y).

Substituting in this equality yields

1
x(t) = Ag+ Z [ Akej¢k: j27‘l’f}ct + 5 (Ake_jm) e—jQTrfkt:|

Xo + Z [ Xye? 27t 4 %X;eﬂﬂfﬁ} = Xo+ Y Re{ X2t}
k=1

With some judicious renaming of things, we can simplify the preceding form to the follesumgof-complex-exponentialéorm:

k .
> gl synthesis formula

k=—o0

where we express tHeourier coefficients{«y } in terms of the phasors as follows:

‘a():Ao:XO:M(m),

1 1
=X, = A k=1,2,...
k 2 k 2 k€ s 4y )

‘oz_k:ozz k:1,2,....‘

This form is called thexponential Fourier seriesand we will focus on it throughout 206.

SWell, almost any periodic signal. Any periodic signal of any practical interest is covered by the conditions of the theorem. There are pathotmjzal pe
functions for which Fourier series would not work, but they have no practical relevance. But they do necessitate footnotes like this.
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Notes

e The proof of the theorem is beyond the scope of this class, and EECS 306, too.

e The theorem says thanhyperiodic signal can be represented as a sum-of-sinusoids. fayibake an infinite number of them,
and often will!

e Ay cos(2m it + ¢;) is the sinusoidal component oft) at frequency:/T".

o All sinusoids in the above formulae have frequencies that are multiple§of 1/

e Usually we choos& to be thefundamental period of z(¢), but any period will do.

e The theorem also says thay periodic signal can be represented as a sum of complex exponentials. (It may take an infinite
number.)

e oy, is the complex exponential component (equivalently, the spectral componeiit) et frequencyt /7.

o |t follows from the theorem that the spectrum of a periodic signal with pefigglconcentrated at frequencies

0,+ ! + 2 + 3
T TT Y
or some subset theredk., z(t) has spectral componerdsly at these frequencies.
So by examining the spectrum of a signal, it is easy to see whether it is periodic.
e The three summation expressions idr) given in the theorem are considered to be three forms of the “Fourier series”. (A
“series” is an infinite sum.)
The first is called the “sinusoidal Fourier series”; the third is called the “exponential Fourier series”.
The book introduces the first two forms in Section 3.4 (equation (3.4.1)
It is most common to use the third form (the exponential Fourier series), because it is easier to work with. We'll primarily use
the third form.
There is another form called thiegonometric Fourier series that looks like

z(t) = ap + ,; [ak COS(QWTt) + by sin(?th) .

This form is the least convenient for the purposes of signals and systems.

e The Ay’s, ¢i's, Xi's, anday’s are called~ourier series coefficientor justFourier coefficients

e The summing of sinusoids to obtain an arbitrary signal is very well illustrated withitis&im demo program in the 206 Lab
and with the Matlab demo program callefburier.m

e The Fourier series coefficients areique: there is one and only one set®f’s that will reproduce a given periodic signa(t)
for a given period".

The analysis formula

Fourier proved more than what we have stated so far! Not only did he prove that any periodic signal can be expressed as a sum ©
harmonic sinusoids with certain amplitudes and phases, helatsged a simple formulfor finding those coefficients:

1" 2mkt
o = T/o x(t)e 77Tt dt.

This is called theanalysis formula.
The derivation of the analysis formula is presented well in the new section 3.4.5. Reading it is strongly recommended.

This formula is quite remarkable. It tells us that we can start wipicture or some other description eft) that appears to have
nothing to do with sinusoids, and then we can use the analysis formula to find the coeffieightand then we can insert those
coefficients into the synthesis formula, availa, we have a sum-of-sinusoids expressiona#@r)! And of course, once we have
that type of expression, we can display the spectrum(of
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Summary of Fourier series

Synthesis formula: shows howz(t) is a sum of complex exponentials
o0
k
z(t) = Z el 27Tt
k=—o0

Analysis formula: shows how to compute the;’s, i.e., the Fourier coefficients

1" 2mkt
o = T/o x(t)e 77Tt dt.

(Alternatively, we could integrate over affiysecond interval since botk(¢) and the complex exponential éfeperiodic.)

Definition: The (two-sided) spectrum of a periodic signal with periods
{‘ (R (O{,% _2/T)7 (O‘flv _1/T)7 (050, 0)7 (alv 1/T)7 (042, 2/T)7 e } .

More Notes:
e Finding the spectrum of a periodic signal involves finding the peTiahd the Fourier coefficientgy }.
e Finding theay's is often called “taking the Fourier series”.

e To aid the understanding of the synthesis formula, it can be useful to view it in long form:

Con2 ol 1 2
xz(t)=...+ a_ge 12mTt Ly e TITT 4 g+ @ T 4 ped 2T 4L

e The frequency /T (usually in Hz) is called théundamental or first harmonic frequency.
The frequencyt/T is called thekth-harmonic frequency.
Likewise, the component at frequentyT is called thefundamental or first harmonic component, and the component at
frequencyk /T is called thekth-harmonic component.

e If a signal has period’, then it also has perio2ll’. So when applying Fourier analysis, we have a choice &5 tOften, but
certainly not always, we choo§eéto equal the fundamental period.
When we want to explicitly specify the value ©fused, we will say “thd’-second Fourier series”.

e If you wish to find the other forms of the Fourier series, use the formulas:

Ap = ag, A =2 |ag], o = Lag, k=1,2,...

X():a(), Xk:2ak, k':1,2,...

e The Fourier series Theorem applies to complex signals as well as to real signals.
¢ Notice thatoy is the correlation of:(t) with e’ 27+t normalized byl /T, which is the energy of one period of the exponential.
e Suggested reading. The discussion of “sighal components” at the end of Section Il1.B of “Introduction to Signals” by DLN.
This will show help one to understand why the analysis formula has the form that it has.
In the terminology of that discussion:
ape? 2™ 7t is the component of (¢) that is likee? 27 7,
ai, measures the similarity af(¢) to the exponential.
There is a similar interpretation thaf, cos(2r %t + ¢ ) is the component of () that is like a cosine at frequengy 7.

At first glance the analysis and synthesis formulae for the Fourier series might seem “circular,” since it appeérs diepends
on theay’s yet theay's depend orx(t). When working with Fourier series, the usual “chain of events” is the following.
¢ \We start with some simple descriptionaft), usually a picture, for which there are no sinusoids in sight.
e We compute they;, coefficients using the analysis formula.
¢ We substitute those;'s into the synthesis formula.
e Having made that substitution, we can readily display the spectrur(¢pf
e Or we can compute(t) (approximately) for any values ofof interest (using a finite number of terms).
e Or we can can build a device (calledsgnthesize) that generates(t) (approximately) by connecting together several
sin-wave generators with appropriate amplitudes and phases.
(This is how the additive synthesis worked in the early days of electronic music.)
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Example Find the spectrum of the following squarewave signal.

L 21(t)

0 2 4 6 8 t [ns]

Sincet is in nanoseconds, the fundamental peridflis= 4ns.
So the fundamental frequency of this periodic signgbis= 1/To = 250MHz.

For this signal, the spectrum cannot be computed by inspection! We very much need the analysis formula.
First we find the DC term:
apg = M(z) = A/2.
Using the analysis formula, the Fourier coefficients are given by
1 [T

k
= — z(t)e 7P ot 4t
To Jo (®)

ag

For convenience, we integrate using nanoseconds units for

1/4 —j2mky 1 —j2mky A 1 725152
o = - acteJ“dt:—/Aej“dtz—iej7T4
A k A A
_ 7‘]271'—2_1:—1_ 7]7rk:_1__1k’
—127k {e ’ } ]27rk[ ¢ } j27Tk[ ( )]

This formula is validonly for k£ # 0 since otherwise we would have divided by zero. To simplify, note that

1—(=1)F _{ 0, keven

2 1, kodd
Thus we have
A/2, k=0
Af2, k=0 i/e—J”/Q k > 0 odd
= A k odd = ™ ’ (3a-l)
o (J)W k #0, k even =ige’ /% k< 0odd
’ ’ 0, k #0, k even
Thus, the spectrum of this square waxe) has the following plot.
Spectrum ofc4 (¢)
A2
éeJﬂ'/Q ée_J”/Q
%eﬂm 3%6]7?/2 I I 3%@*]#/2 %efjﬂ'/Q
i 1 1 ! F s
-1.25 -0.25 0 025 050 075 1 1.25 f [GHZ]

The sinusoidal Fourier series representation for this signal ig (fons):
A XA k
z1(t) = 3 + kz::l &COS<27TZt - 7r/2) .
k odd
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Coefficient matching

Inthe preceding example, we found the Fourier coefficients by integration. Integration is the usual approach, but of course we would
like to avoid integration when possible. One case where integration is avoidable is when we can use some simple manipulations tc
express the signal directly in a sum-of-complex-exponentials form. For such signals, we can determine the Fourier cdwfficients
inspection as the following example illustrates.

Example Find the Fourier coefficients and plot the spectrum of the sig(tal= cos?(rt — 7/3).

First, what is the fundamental period of z(t)?
Sincecos(rt — m/3) = cos(2m3t — m/3), a period of this signal i’ = 2. We will start with that for now even though it is not the
fundamental period.

Thehard wayto find the Fourier coefficients would be to use the analysis equation:
1 [T

A = —
TO 0

Comk 1 [2 ’ 1
J}(t) e 72 Il*cot dt = 5 / COSQ(TFt _ 7T/3)e—1271'%t dt = / COSQ(QTFt o 7T/3)e_]27rkt dt.
0 0

This integral can be done by using the inverse Euler identitydsf-). You should try doing it as an exercise. Chances are very
high that you will do it incorrectly because you will divide by zero at some point.

The easier way is to express the signal directly in a sum-of-complex-exponentials form by using the inverse Euler identity in the

first place.

1 1 1 1 1
x(t) = cos®(nt — 7/3) = 3 + 3 cos(2nt — 2m/3) = 3 + Ze*j am/3er2mt Zeﬂ”/%ﬂ 2mt,

Now we see that the fundamental periodjs= 1.

Compare the above expression to the sum-of-complex-exponentials synthesis formula expanded out:
2(t) =+ a_e P Lo eI 4 ag + ! T 4aye? 2T 4

By matching the corresponding coefficients we see that for this signal:

, k=0

e J 2”/3, k=2

e’ 2”/3, k=-2
otherwise.

o =

(RN

Notice that there are only a finite number of nonzegts. This is always the case whet(t) is finite sum-of-sinusoids.

The spectrum of thig(t) is simply the following.

Spectrum ofz(t)
1/2
ie]iwm I ie—]lzwm
-1 0 1 f

In this example we found the spectruire(, the Fourier series coefficients) by inspection, just as we did in the section on finite
sums of sinusoids. Since there is a one-to-one relation between Fourier coefficients and periodic signals, the coefficients we obtait
by inspection are the Fourier series coefficients.

Example Show a real-world nearly periodic signal, like a vowel.

Show its spectrum, as computed by a computer.
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C.2 Properties of Fourier series

This section lists several useful properties of Fourier series. These properties are important both in terms of understanding the
concepts and because often one can use these properties to avoid integration!

P1. Unigueness
There is a one-to-one relationship between periodic signals with péramtd sequences of Fourier coefficients. Specifically for
any given signak(t), the analysis formula gives the unique set of coefficients from which the synthesis formulazyiglds

This implies that the Fourier coefficients can sometimes by found by means other the analysis fexgrojanspection. That is,
if by some means you find a collectign, } such that

o0
k
t)= Y e,

k=—o0
then thosey,'s are necessarily the Fourier coefficients that would be computed by the analysis formula.

Similarly, for any given set of coefficien{sy; }, the synthesis formula gives the unique sign@) with periodT" from which the
analysis formula yields these,’s. That is, if by some means you find a signét) such that

1T ok
ap = —/ x(t)e 77T dt, kel,
T Jo

thenz(t) is the one and only signal that has thegsés as its Fourier coefficients.

Another statement of the one-to-oneness is the following; (f) andx,(t) are distinct signafs and each i§'-periodic, then for
at least oné;, o, for 21 (t) does not equaly, for zo(t).

P2. Mean value(important)
o is the mean or DC value af(t)

This is because (putting = 0 in the analysis formula):
o ——/ z(t)e 72 7Otdt——/ z(t) dt = M(x)
0 — T - T - .

P3. Integration limits
One can compute the Fourier coefficients by integrating over any time interval of [Ength

1 [T o k
ap = T/o z(t)e 72Tt dt
1 flofT 8
= T/ x(t)e 72Tt dt for any value ofty (important)
to
1

= T/ :z:(t)e*ﬂ”%tdt (shorthand for “some interval of lengffi’)
(T)

P4. Conjugate symmetry(important)
If one knowsay, for k > 0, then one can easily find the remaining's using:

a_p = af, for real signals

(This property does not apply to complex signals.)

4Here, “distinct” means that their difference has nonzero poweerMSD (z1, 22) # 0.
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Derivation:

1 "
T/< z(t)e 2 it dt —T/<T>x(t)*eJ2”§tdt

7)
1 . *
= T/ z(t) 27T 4t because:(t) is real, saz(t)* = x(t)
(T)

1/ —g2n( £t
= = z(t) e N T ) At = a_y.
T Jir)

The following properties follow.
e |a_i| = |ag| so the magnitude spectrum is lesen symmetry
e La_j, = —Zay] so the phase spectrum is hadd symmetry.

P5. Sinusoids
Each conjugate pair of coefficients synthesizes a sinusoid (this is also important):

k
akenw%t + a_ke—jzw%t = 2|ay| cos (271'?75 + éak> .

Thus, when looking at a spectrum, one should “see” the sinusoidal terms in the signal, one for every conjugate pair of coefficients.
Derivation:
e T eI = pe? 2Tt fafe 2Tt by the previous property

g2kt g2mkt *
e T + |age T

, k
= QRe{akeﬂw%t} = 2|ay| cos <2ﬂ'Tt + Lak> .
In particular, the sinusoidal Fourier series is as follows:

- k
z(t) = ap + Z 2|a| cos (27rft + 4ak> .
k=1

P6. Linearity
Suppose:(t) andy(t) are periodic with period” and withay, andg;;, as theirT-second Fourier coefficients, respectively. Then
theT-second Fourier coefficients oft) + y(t) are given by, + S.

This property is useful for “recycling” previously computed Fourier series.

Similarly, if «;, and3, are sequences of Fourier coefficients, then the signal whose Fourier coefficients-ar®, is the sum of
the signals corresponding tq, and ;.

P7. Harmonic complex exponentials are uncorrelated
A key step in many derivations involving Fourier series is the following very useful property of the integral of complex exponentials:

1 m 1, m=0
- 72w Rt _ ’
T/me Tt {0, m=+1,42,....

Because of this property, different complex exponential signals with harmonically related frequencies are uncorrelated. Define
Yi(t) = 22Tt for k € Z. Then

L €
e]27the j27thdt:/

ej27r%tdt_{ T7 k=1
(T)

(e, th) = /(T> r ()97 () dt = /<T> Gl dt‘/< 0, K#L

T)

This property is useful in proving the next theorem.
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P8. Parseval’'s theorem
Theaverage powerof a periodic signal can be computed in the time donaaiim the frequency domain as follows:

1 o0

MS@) =7 [ O = 3 joul

k=—o00

(Recall that for periodic signals, we compute the average power over a period of the signal.)

Derivation:
1

M@ = gz f |m(t)|2dt:% /<T>m(t)m*(t) dt

o0 o0 *
= %/ [ Z akeﬂ“;t] lz aleﬂ”%t] dt
(T)

k=—00 l=—o0

= 23 Y aai Ol

k=—o00l=—00

= % Z agap T by preceding property
k=—o0

D ol

k=—0o0

(You should think about why we usédather thark for the second summation.)

Interpretation.

The kth frequency component in the spectrum contributes an arﬂomﬁt to the overall average power of the signal. So the
magnitude (squared) spectrum directly reveals the relative power in each frequency component. For example, one can see easi
which frequency ranges have the greatest fraction of the power.

Though useful, the following properties will be emphasized less in this class. They are studied in more detail in EECS 306.

P9. Choice of period
Supposex(t) is periodic with period’, and supposéa. } are theT-second Fourier coefficients af{t) and suppos¢g;. } are the
2T-second Fourier coefficients aft). Then,
_ | agse, keven
B = { 0, k odd
This means that the spectrum based on thes2cond Fourier series is the same as that based dn$eeond Fourier series. That
is,

{en T @ T @00 (0 ), (an

= {"'7(0‘—272__;)7 (072__;:)7 (a—172__;)7 (072__111)7 (a070)7 (07%)7 ((11,%), (07%)7 (0‘27%)7"'}

P10. Finite approximation
In most practical situations, if we want to calculate the values of a signal from the Fourier synthesis formula, we must approximate
the signal using a finite number of terms. Usually we use the lower frequency terms:

K
z(t) ~ xx(t) 2 Z ape? T
k=—K

How good is this approximation? One way to answer this is to look antBan-squared differencebetweenz(t) and the
approximationek (t), or equivalently to look at the average power of the difference signal

ex(t) 2 z(t) — zx ().
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One can show that the average power of this difference signal is

oo

MS(eK) = Z [|ak|2 + |Oé_k|2] .
k=K +1

Furthermore, this mean-squared difference goes to zekoiasreases.

Indeed, the proof of this fact is essentially the proof of the Fourier Series Theorem. If possible, weEHaaoge so that the error
is small.

P11. Time shift
If z(t) has Fourier coefficient&xy }, theny(t) = z(t — to) has Fourier coefficients

Br = ape 92T,
This shows, not surprisingly, that a time shift causes a phase shift of each spectral component, where the phase shift is proportione
to the frequency of the component. The derivation is left as an exercise.

P12. Frequency shifting
If z(¢) has Fourier coefficientfny }, theny(t) = z(t) e?2™ 7 ¢ has Fourier coefficients

/6k = Ok—m-
This shows that multiplying a signal by a complex exponential has the effect of shifting the spectrum of the signal. The derivation
is left as an exercise.

P13. Time scaling
Leta > 0. If z(t) is T-periodic withT-second Fourier coefficien{gy }, theny(t) = x(at) is T'/a-periodic and ha¥'/a-second
Fourier coefficients given by

Br = a.
This shows that the Fourier coefficients are not affected by time scaling. However, time scaling does affect the spectrum. Specif-
ically, the Fourier coefficients af(¢) are spaced at intervals of7ZLHz, whereas the Fourier coefficientsgft) are spaced at
intervals ofa /T Hz. For example, it: > 1, then the Fourier coefficients are more widely spaced, and consequently, the spectrum
of y(t) is expanded towards higher frequencies. This is consistent with the fact thatwusirigmeans thay(t) fluctuates more
rapidly thanz(t). The derivation is left as an exercise.

P14. Technicalities
(mostly a warning that there are such)

For the integral in the analysis formula to be well defined and for the synthesis formula to hold, one needs to assume
/ w(t)|dt < 0o andlor / lo(t) | dt < oo.
(T) (T)
These are very mild conditions from a practical perspective; any signal of practical interest will satisfy both of these conditions.
When mathematicians prove that

[e.¢]
sty =d(t) & Y ape?®H,

k=—o0

what they really show is that the average power of the difference signal isizaro,

0 = MS(z(t) - 2(t)),
assuming thaf<T> |z(t) |? dt < co. Sox(t) andz(t) can differ atisolated points Such differences have no practical engineering
importance.
Moreover, assumin%> |z(t) | dt < oo and the so-calleBirichlet conditions®, the only points at which they can differ are points
of discontinuity inz(¢). Specifically,

e samke [ (1), if 2(¢) is continuousatt
#t)= 3. e { Lla(tt) + =(t7)], if z(t) is discontinuousatt.

k=—o0

5Dirichlet conditions. In addition t(f(,m |z(t) | dt < oo, in any one period:(¢) has only a finite number of maxima and minimum and only a finite number of
discontinuities.
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There’s more discussion of “technicalities” in EECS 306.

P15. Self consistency
The following argument shows that the Fourier series analysis and synthesis formulae are self consistent, bat iyistself a
rigorous proof of correctness:

1 j[ —j2mkt 1 - 2rkt| —jomtt
o = = x(t)e =TT dt:—/ l el “TTh | eI Tt
T Jiry T Jir k;oo

o 1 okt —jy2mLt _ - 1 ambt —
= Zak T/@)ej Tle™J Tdt—zakTU)eJ T dt| = .

k=—o00 k=—o00
lifk=1else0

Example Find the Fourier series of the following signal.

) 2 4 6 8 10  t[ns]

-2

One way to solve this problem would be to use the analysis formula. The integral is a bit messy. An alternative approach is to use
properties of the Fourier series since we can recognize that the above signal is related to our égrherfollows:

1 1 1 1
() =ar(t = 3)oos(2n3t) =anle =) 3 [0274 4 2] = o= 502 4 G- e

To express the Fourier series coefficiefis } of y(¢) in terms of the coefficients af; (¢), denoted{«. }, we apply the linearity
property, the time-shift property and the frequency-shift property.
First, by the time-shift property, the FS of(¢) = x1 (¢ — 3) has coefficients

Yo = ake—327r§3.
By the frequency-shift property, the FSof(t) e’ 2mit s ~vk—1. Combining using linearity, the FS gf¢) is

1 1 1 k-1 1 o EEL 1 k s -
B = 51+ 51 = G017 T - Sapy T = e g g0 "+ ogpre?? /2} :

Now we “just” substitute in our the values fay, computed earlier in (3a-1).

Example The signalz(t) has the following spectrunfPicture) .

Determine the average powerax(t).

From the spectrum we see that the FS coefficientagre 3, ay = 3/2/Fl exp(n/k), k # 0.

o)

S larlP=0f+2) k=1%ax? =3 +2> k=1%3/2M exp(n/k)[* =32 +2) k=1%3/2"]

k=—o0
Zk:o‘”@)kq] =9+18L_11/4—1] =15

MS(z)

k
1
:9+182k=1°"<1> =9+18
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Average Power of a Sum-of-Sinusoids
(Prelude tgparseval’s theorem)
Fact. For a sum-of-complex-exponentials signals with different frequencies:

x(t) = Z&kejzwfkty fk # fl: k # l7
k

theaverage powercan be computed in the time domainin the frequency domain:

. I 9 2
MS(2) = Jim 5 [ Ja(t)] =3 ol

The spectrum of a signal also characterizes its average power!

To prove this property, we first show the following useful limit:

T
lim L/ o) 2 (fu=fi)t 3¢ :{ L, fiu=1 (3a-2)

T—o0 2T J_p 0, otherwise.

The casef, = f; is obvious, so consider the case whére f; and definev = 27 ( fi.— f)):

R Y 101 T
lim — It qt = lim — —e¥!
T—o0 2T T T—o0 2T jw _T
T —yuT : T
= lim © , © = lim sin(wT) =0,
T—o0 ]QT T—o0

sincesin(-) is bounded by unity. So (3a-2) is shown.

Now we can proceed to use (3a-2) to derive the above power equation:
T T

1 1 .
MS(z) — Tli_]g)loﬁ/T]a:(t) |2dt:zlggoﬁ/Tx(t)x(t) dt
1 T ’
= Tlggoﬁ/T Zakeﬂﬁf’“t] [Z ozleﬂ”flt] dt (why “1” ?)
L k l

T

= LS | o |

kool -T
- oot = Yot
k k

Interpretation. Theéth frequency component in the spectrum contribtpdi(ﬁ2 to the over-
all average power of the signal. One can “see where the power is” in the spectrum.

e 2k =ft dt] [lis1if k =lelse O
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Finite Fourier Series Approximation

Any T-periodic signal can be expressed as a (usually infinite) sum-of-complex-exponentials
Infinite sums are fine for analysis, but for practical implementation a finite sum approxima-
tion is necessary:
K
p(t) mig(t) = Y G

k=—K
When making such a finite-series approximation, it is natural to try to choose the coeffi-
cients{ ;. } to make this approximation “as good as possible.”
How should we measure the “goodness of fit” ?

Choosegy’s that minimize themean-squared differencebetweenz(¢) and the approxi-
mationz k (t):
MSD(z, k) = MS(z — Zk).

We show here that the best’s are those given by the analysis equation:

1

By = T /<T> x(t) e 12T ¢ (3a-3)

In other words, the same FS coefficients that work “perfectly” if we alsef them also
are optimal in the MS sense fanyfinite series approximation!
Useful facts for the derivation.
o For anyT-periodic signak(t), MS(2) = 7 [, [2(t) [P dt = 7 [ip, 2(t) 2%(t) dt = Cr (2, 2),
whereCr(z, y) denotes a time-normalized correlation.
e Bilinearity: C (3", xr, >, wi) = 2o 2o, Clxk, w1), likewise forCr

: . ] 1, k=1
e Harmonic complex exponentials are uncorrelatgg(e? 27 tt, 727 t) — { ’

0, otherwise
o Average power of finite seriedlS(ix (1)) = ZkK= e 1Bel?

e Completing the squarés|® — 2Re{3*v} = |B]> — B*y = By + /[P = W[ = 18— > — A ?
Derivation

MS(J} — .f?K) = CT(J? —TK,T — .f?K) = CT(J},QS) — CT(J?,JA?K) — CT(.f?K,m) + CT(i‘K,.f?K)
= MS(z) — [Cr(z,2k) + CF(z, 2x)] + MS(2k)

K
= MS(z) - 2Re{Cr(z,2x)} + Y |Bsl?
=—K
1 = £\ * =
= MS(x)—QRe{T/ z(t) | Y B (eﬂ”?t) 1 dt}+ > 1Bk
(T) k=—K k=—K
= MS(z) + i [|ﬂ |2—2Re{ﬂ*l/ m(t)e_ﬂ”%tdt}]
k kT )

k=—K
2
- l/ a:(t)e*ﬂ”%tdt
T Jiry

K
= MS(z) + Z [

k=—K

1
Bk — —/ x(t) e 12Tt gt
T Jiry

|
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From this final expression, we see that the MS difference is minimized when the middle term (the only term that deggrnids on
zero,i.e., when when we use (3a-3).

When we use this optimal choice f8g, the MSD simplifies as follows:

K 2

1 k
MS(z —Zx) = MS(z)— E —/ z(t)e 2 Tt dt
k=—K T (T)

0 K
= D = X0 = Y fouf®
k=—K

k=—o0 |k|>K
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Signal synthesis

Example

d ‘ .

2 4 6 8 t [ns]

The FS coefficients of the above sawtooth signal are given by (exercise):

. _{ 1/2, k=0
g 7]127rk’ k#o

The following figure shows the finite-series approximatiopgt) to z(t) for various number of term&’.

Sawtooth wave synthesis

0 4 8 12
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The clock signal design problem revisited

We now return to the problem of choosing between the square wave and the pulse train for a high-speed clock signal in the presenc
of imperfect interconnects.

We have already computed the spectrum:gf), the square wave.

By similar manipulations, the spectrumf(¢), the pulse train, has Fourier coefficients given by

A [! A 4 k=0
= — 1.e]27TTtdt—...—{ 47 .
& 4/0 S [1—e?™ 2] k0,
where .
1 |:1 o e—]wk/2:| _ 1 |:ej7rk/4 . e—jﬂ'k/4:| e—jﬂ'k/4 — Sln(Wk/4)e—]7rk/4
727k 927k k '
Spectrum ofe,(t) for A =1
1/4 \/E/Qe—]ﬂ'/él
" %e—jQTr/él
X§£26403w/4 V32 gmja Y22 e2m/4 gy s
51 6T o €
l | I i " .
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 f [GHz]

Now we examine the effects of tliétering caused by the imperfect interconnects. We can model these effects using the following

block diagram
clock signal — interconnect§5—> ‘ other componenl{s
2(t) = —y(t),

where the output signal(¢) consists of all frequency components up to 5Giz,

K

Z x(t) e]27‘rTi0t

k=—K

y(t) =

wherefy = 1/T, = 0.25 GHz and wherd{ = 5GHz/0.25GHz = 20. So the DC term and the first 20 harmonics are passed by
the interconnects, whereas the higher frequency components are removed.

A natural measure of the signal distortion introduced by the imperfect interconnects is the normalized RMS difference:
NRMS = w

. By Parseval’s theorem,
RMS(z) ) ooV

o0

D lanf=

k=—o0

RMS(z) = v/MS(z) = ad+2) " |al?,
k=1

where the second expression is due to conjugate symmetry af, theSimilarly, sincey(¢) andz(t) have the same low-frequency
components, the spectrum of the error siga@) — y(¢) only consists of the attenuation high frequency components, so

o0
Do lawlP= ]2 > fal

|k|>K k=K+1

RMS(z —y) =

Like most interesting practical problems, there is no analytical expression for this summation, so we compute it numerically using
MATLAB . (We take a very large number of terms in the sum anddisel without loss of generality.)
MS(z; —y1)  0.0704 RMS(z2 —y2)  0.0704

= = 0.0996 and = = 0.1408.
RMS(z1) 0.707 RMS(z2) 0.5
The NRMS error is higher for the pulse train, because a larger fraction of its power is above 5GHz. So the square wave is

. R
The numerical results are
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preferable by this criterion. There are other criteria that must also be considered in practice. This has been a frequency-domai
analysis; time-domain perspectives are also important for such problems.

Normalized RMS error due to attenuation

—©— Pulse Train
—&— Square Wave

o
o )
N a1

RMS(x — y) / RMS(x)
o
H
A

0.1f
0.05¢
O 3 3 3 3 3
0 10 20 30 40 50 60
K = index of maximum retained harmonic
0.1 T r T T
005 B Square wave magnitude spectrum -

0.05F Square wave components below 5GHz -
0 0 2 4 6 8 10
O . 1 LJ L) T T
0.05F Pulse train magnitude spectrum -

005 - Pulse train components below 5GHz -

9 2 4 6 8 10
f[GHZ]
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D. The spectra of segments of a signal

Question: How can we assess the spectrum of a signal that is not periodic?
Example

e What if the signal has finite support?

e What if the signal has infinite support, but is not periodic?

Observation: The Fourier series analysis formula works with a finite segment of a signal. It is just a question of how we interpret
the synthesis formula!

Signals with finite support

We will see that to assess the spectrum of a sig@dlwith finite suppor{t;, t2] we can apply the Fourier series analysis formula
directly to the signal over its support interval. Let us begin by defidi(ty to be a periodic signal that equal&) on the interval
[t1, t2] and simply repeats this behavior on other intervals of the same length. Thaffis=lés — ¢;, and let

o0

Z(t) = Z z(t —mT).

m=—0o0

This is called theeriodic extensionof z(t). Its periodT is the support length cf(t).
Example

Here is a finite-support signal.

Here is its periodic extension.

Sincez(t) is T-periodic, we can represent it by a sum-of-complex-exponentials:

[e 9]
B(t)= Y ape’>T'  (synthesis formula)
k=—o0

with FS coefficients .

1 1 (" :

ag = —/ P(t)e 2Tt dt = — Z(t)e 72" Tt dt  (analysis formula)

T Jiry T Ji,

where we have used the fact that the limits in the analysis formula integral can by any interval ofllength

Now we note that since o
i), t<t<ty
o(t) = { 0, otherwise,

we also have the following expression for the FS coefficients:

1 [t

=7 z(t)e 72"t dt  (analysis formula)
t1
and more importantly,
z(t), t1<t<t S a2 <<ty .
t) = - = k=—00 ’ -7 synthesis formula
z(t) { 0, otherwise, { 0, otherwise, (sy )
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Thus we may view the two formulas above as synthesis and analysis formulas for a spectral representation of the finite-duratior
signalz(t). The synthesis formula shows that on its support intema), can be viewed as a sum-of-complex-exponentials having
frequencies that are multiples bfT'. The analysis formula shows how to find the spectral components(the It is important

to note that the synthesis formula yield&) only in the support interval. Outside the support interval it yietds, rather than

z(t) = 0. So we can use the synthesis formula as long as we remember that the valy&sare zero outside of the support
interval.

In summary, just as we did for periodic signals, for a signal with finite support we can take the spectrum to be:
-2 -1 1 2
{' KR (Oé_g, ?)7 (Oé_l, ?)7 (OKQ,O), (alv T)v (OQ? T)) .. } .

Note: Though we have introduced the Fourier series as fundamentally applying to periodic signals and secondarily applying to
signals with finite support, some presentations take the opposite point of view, which is equally valid.

The Fourier Transform

The preceding discussion for finite-support signals is by no means the whole story. Instead of forming the periodic extension using
the duratioril” as the period, we could instead using a larger period.

Example

] |

2 To To+2 t

For any sucl{ > T', we have a periodic signalt) for which we can determine its FS coefficients:

1 [t

k
= z(t)e 7 Tot dt.
A (t)

Ak

The spectra corresponding to each choicelfpwill be different, yet somehow related. Which one to choose? The usual answer is
to examine the limit agdy — oo, in which case the spectral line get closer and closer and, in the limit, can be though to meld into
a continuous curve. The formula for that curve is

X(1) 2 [alye i,

where, for any given finitdy,

o = %OX(f)‘

The functionX ( f) is called the~ourier transform of z(t), and is the usual method for assessing the spectra of aperiodic signals.
The Fourier transform is a primary topic in EECS 306.

Aperiodic signals with infinite support

A common approach to assessing the spectrum of an aperiodic signal with infinite support is to choose a time inter{al length
divide the support interval into segments of len@thas in[0, 7], [T, 2T, [2T,3T], ..., and apply the previous approach to each
segment.

With this approach, we obtain a sequence of spectra, one for each segment. Notice that with this approach the spectra “varies witl
time.” Indeed, there are aperiodic signals for which it makes very good sense that the spectrum should differ from segment to
segment. For example, the signal produced by a musical instrument can be viewed as having a spectrum that changes with eac
note. This and other examples can be found in Section 3.5 of the text and in the Demos on the CD-ROM relating to Chapter 3.

There are lots of issues here, for example, what choi@&?oBut we will leave this discussion to future courses.

This same approach is also useful for “long” aperiodic signals fiiite support. A grayscale picture of such spectrais called a
spectrogram
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E. Bandwidth

One of the primary motivations for assessing the spectrum of signal is to find the range of frequencies occupied by it. This range
is often called the signal’s “band of spectral occupancy” or, more simplfreitgiency band The width of the frequency band

is called thebandwidth of the signal. As one example of the usefulness of the concept of frequency band, signals with non-
overlapping spectra do not interfere with each other. So if we know the frequency band occupied by each of a set of signals, we car
determine if they interfere. As another example, certain communication meediaa conductor on a printed circuit board, limit
propagation to signals with spectral components in a certain range. If we know the frequency band occupied by a signal, we car
determine if it will propagate.

Most signals of practical interest, such as that shown in the previous section, have spectral components that extend over a brog
range of frequencies. We are rarely interested iretit@e range of frequencies over which the spectrum is not zero. Usually we

are more interested in the range of frequencies over which the spectrum is “significantly large”. As such, we need a definition of
“significantly large” to define the concepts of “frequency band” and “bandwidth”. There are several such definitions in use. The
definition given below is based on one such definition.

Definition:

The “band of spectral occupancy” frequency band of a signals(¢) is the smallest interval of frequencies that includes all
frequencies at which the magnitude spectrum is at least one half as large as the maximum value of the magnitude spectrum.

Example For the magnitude spectrum shown below, where the horizontal axis is the frequency in Hz, the frequency band is,
approximately, [800, 2100] Hz, and the bandwidth is, approximately, 1300 Hz.

5 . T T T T T
Loy magnitude spectrum




