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Ch. 5-8: Filtering

Ch. 5: FIR filters
• Time domain analysis
• System properties:
◦ linearity, time-invariance, causality, stability

• Impulse response
• Convolution

Ch. 6: Frequency domain analysis of filters(mostly FIR)
• Frequency response of filters
• Response to sinusoids and complex exponentials
• Response to periodic signals

Ch. 7: Z-transform
• Powerful “frequency domain” analysis technique
◦ filter design

Ch. 8: IIR filters
• Time and frequency domain analysis
• Design usingz-domain

Reading
• Text Ch. 5-8
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Ch. 5. FIR Filters

Introduction

Thus far we have focused primarily onsignals. We now turn tosystemsfor the remainder of the course.

Very often we have at hand a (digital) signalx[n] whose properties are somehow less than ideal, so we would like toprocess
(digitally) that signalx[n] to create a new signaly[n] that is somehow an improved version ofx[n].

What we need todesignis asystemthat accepts a signal as itsinput , usually denotedx[n], and produces a modified signal as its
output, or response, usually denotedy[n]. We illustrate this situation generally with the following diagram.

Input signal
x[n] → Discrete-time System→

Output signal
y[n]

This is asingle-input, single-outputsystem, which is the principal variety that we discuss in this course.

Example. Many audio playback systems have some kind of “bass boost” feature that, when engaged, takes the signal and produces
a new version in which the low frequencies are amplified.

Example. Signals contaminated by 60Hz hum (a 60Hz sinusoid).

How could we remove such “hum” using principles covered thus far in the course?
Could use DFT techniques but what if 60Hz does not correspond to an integerk? Recall thatfk = k

N fs for 0 ≤ k ≤ fs/2.
For example, ifN = 100 andfs = 480, then60 = k

100480means we needk = 60/480 · 100 = 12.5, which is not an integer.
The following plot shows result of setting thek = 12 andk = 13 DFT values to zero,i.e.,

Y [k] =

{
0, k = 12, 13, 87, 88
X [k] otherwise,

and then applying the inverse DFT (the synthesis equation) for formy[n]. But the hum is incompletely removed.
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Even ifk were an integer, a DFT approach is poorly suited toreal-time use where the input signal samples are arriving continuously
and the output signal values are needed immediately, such as in a public address system. A DFT approach can be fine for “off line”
purposes and for signals like images that are functions of an argument like spatial location rather than time.
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Systems and their input-output relationships

We represent the operation of taking aninput signal and modifying to produce anoutput signal by the following block diagram.

x[n]→ T → y[n] ,

whereT denotes the mathematical operator that defines thediscrete-time system.

Mathematically we write
y = T {x}

or sometimes
x[n]

T
→ y[n] .

The book writes “y[n] = T {x[n]}” but this is dangerous since it suggests that the output at timen depends only on the input at
timen, which is not true in general.

Thegoal if the rest of the course is to learn how todesigna systemT to achieve desired effects on signals, such as amplifying or
attenuating certain frequency components. But first we must spend a long time simplyanalyzingsuch systems.

We use the symbolT when we refer to systems in general.
When we refer to a specific system, we define itsinput-output relationship .

Example. The (noncausal) 3-point moving averagefilter has the followinginput-output relationship :

y[n] =
1

3
(x[n− 1] + x[n] + x[n+ 1]) .

In words, the output signal value at any timen, considered to be the “current” time, is theaverageof the current signal value, the
previous signal value, and the next signal value.

Does this filter do a good job of attenuating 60 Hz hum? Let us determine the output signal when the input is a 60 Hz sinusoid
sampled atfs = 480 Hz, so

x[n] = cos(2π
1

8
n)

y[n] =
1

3
(x[n− 1] + x[n] + x[n+ 1])

=
1

3

(
cos(
π

4
(n− 1)) + cos(

π

4
n) + cos(

π

4
(n+ 1))

)
=
1

3

(
cos(
π

4
n− π/4) + cos(

π

4
n) + cos(

π

4
n+ π/4)

)

=
(1 +

√
2)

3
cos(
π

4
n) ≈ 0.8 cos(

π

4
n)

So a 60 Hz hum signal (forfs = 480Hz) is attenuated only by about 20%, which still leaves a lot of hum power.

We must also be able to understand the input-output relationship graphically.

Example. x[n] = 6u[n− 3] where we define the followingunit step function:

u[n]
4
=

{
1, n ≥ 0
0, otherwise.

(Picture)

Find the outputy[n].

Example. x[n] = 3δ[n− 4] where we define the following theunit impulse function, akaKronecker impulse function:

δ[n]
4
=

{
1, n = 0
0, otherwise.

(Picture)

Find the outputy[n].
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System properties
• Time-behavior properties

◦ causal vs noncausal
◦ time-invariant vs time-varying

• Other properties
◦ linear vs nonlinear
◦ stable vs unstable
◦ invertible vs non-invertible

• LTI systems
◦ impulse responseh[n]
◦ length of impulse response: FIR vs IIR

Causality

Definition

A system iscausal if the outputy[n] at timen depends only on the current input valuex[n] and past input values:
x[n− 1] , x[n− 2] , . . ..

Mathematically:y[n] = F (x[n] , x[n− 1] , x[n− 2] , . . .) whereF (·) is some function.

Otherwise the system is callednoncausal.

Causality is necessary for real-time implementation, but many DSP problems involved stored data (post-processing),e.g., image
processing (OCR) or restoration of analog audio recordings, so non-causal systems are also relevant.

Is the previous moving average filter causal? No.

Example. Modifiedmoving averageor running averagefilter:

y[n] =
1

3
(x[n] + x[n− 1] + x[n− 2]) .

Causal? Yes. Can process signals in “real time.”

Static vs dynamic
• For astatic systemor memorylesssystem, the outputy[n] depends only on the current inputx[n], not on previous or future

inputs. Example: y[n] = x2[n].
• Otherwise it is adynamic systemand must have memory.

Dynamic systems are the interesting ones and will be our focus. (This time we take the more complicated choice!)

Is a memoryless system necessarily causal? Yes. But dynamic systems can be causal or noncausal.
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Time invariance

Systems whose input-output behavior does not change with time are calledtime-invariant and will be our focus.
Why?
• “Easier” to analyze.
• Time-invariance is a desired property of many systems.

A (relaxed) systemT is calledtime invariant or shift invariant iff

x[n]
T
→ y[n] implies that x[n− n0]

T
→ y[n− n0]

for everyinput signalx[n] andintegertime shiftn0.

Otherwise the system is calledtime variant or shift variant .

Graphically:

x[n] → systemT
y[n]
→ delayz−n0 → y1[n] = y[n− n0]

x[n] → delayz−n0
x2[n]
→ systemT → y2[n]

wherex2[n] = x[n− n0]

Recipe for showing time-invariance.
• Determine the output signaly[n] due to a generic inputx[n]. Delay that output to formy1[n] = y[n− n0] for a generic shiftn0.
• Determine output signaly2[n] due to delayed input signalx2[n] = x[n− n0].
• If y2[n] = y1[n], then the system is time-invariant.

(If you cannot show thaty2[n] = y1[n], try to find a counter-example to demonstrate that the system is time varying.

Example: 3-pointmoving averagey[n] = 1
3 (x[n− 1] + x[n] + x[n+ 1]) . Time invariant? yes.

• Clearly, delaying the output yieldsy1[n] = y[n− n0] = 1
3 (x[n− n0 − 1] + x[n− n0] + x[n− n0 + 1])

• Output due to shifted inputx2[n] = x[n− n0] is

y2[n] =
1

3
(x2[n− 1] + x2[n] + x2[n+ 1]) =

1

3
(x[n− n0 − 1] + x[n− n0] + x[n− n0 + 1]) .

Note that we did this in two steps to avoid errors!
• Sincey1[n] = y2[n], the system is time-invariant.

Example: down-samplery[n] = x[2n]. Time invariant? no. How do we show lack of a property? Find counter-example. If
x[n] = δ[n] theny[n] = δ[n]. If x2[n] = δ[n− 1] theny2[n] = 0 6= y1[n] = y[n− 1] = δ[n− 1]. Simple counterexample all that
is needed.

We will focus mostly on time-invariant systems hereafter.
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“Amplitude” properties (linearity, stability, invertibility)

Linearity

We will also focus onlinear systems.

Why linearity?
• The class oflinear systemsis easier to analyze.
• Often linearity is desirable - avoids distortions.
• Many nonlinear systems are approximately linear, so first-order analysis is linear case.

A systemT is linear iff

x1[n]
T
→ y1[n] , x2[n]

T
→ y2[n] ⇒ α1x1[n] + α2x2[n]

T
→ α1y1[n] + α2y2[n]

for any signalsx1[n], x2[n], and constantsα1 andα2.
Otherwise the system is callednonlinear.

Here is a block-diagram representation of this property.

x1[n]→
⊗
↑

α1

↘

x2[n]→
⊗
↑

α2

↗

⊕
→ T → y[n]

x1[n]→ T → y1[n]→
⊗
↑

α1

↘

x2[n]→ T → y2[n]→
⊗
↑

α2

↗

⊕
→ y[n]

Two important special cases of linearity property.

• scaling property: T [ax[n]] = aT [x[n]]
Note that froma = 0 we see that zero input signal implies zero output signal for a linear system.

• additivity property : T [x1[n] + x2[n]] = T [x1[n]] + T [x2[n]]
Using proof-by-induction, one can easily extend this property to the generalsuperposition property:

T

[
K∑
k=1

xk[n]

]
=

K∑
k=1

T [xk[n]].

In words: the response of a linear system to the sum of several signals is the sum of the response to each of the signals.
In general superposition need not hold for infinite sums; additional continuity assumptions are required.
We assume the superposition summation holds even forinfinite sumswithout further comment in this course.
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Example. Show that the accumulator is a linear system, wherey[n] =
∑n
k=−∞ x[k].

Method:
• Find output signaly1[n] for a general input signalx1[n].
• “Repeat” for inputx2[n] andy2[n].
• Find output signaly[n] when input signal isx[n] = α1x1[n] + α2x2[n] .
• If y[n] = α1y1[n] + α2y2[n] ∀n, then the system is linear.

For the accumulator,y1[n] =
∑n
k=−∞ x1[k] andy2[n] =

∑n
k=−∞ x2[k]. If the input isx[n] = α1x1[n] + α2x2[n] , then the

output is

y[n] =

n∑
k=−∞

x[k] =

n∑
k=−∞

(α1x1[k] + α2x2[k]) = α1

n∑
k=−∞

x1[k] + α2

n∑
k=−∞

x2[k] = α1y1[n] + α2y2[n] .

Since this holds for alln, for all input signalsx1[n] andx2[n], and for any constantsα1 andα2, the accumulator is linear.

Example: To show thaty[n] = x3[n] is nonlinear, all that is needed is a counter-example to the above properties. The scaling
property will usuallysuffice1. Let x1[n] = 2, a constant signal. Theny1[n] = 23 = 8. Now suppose instead that the input is
x2[n] = 10x1[n] = 20, then the output isy2[n] = 203 = 8000 6= 10y1[n] = 80, so the system is nonlinear.

Stability

A system isbounded-input bounded-output (BIBO) stableiff every bounded input produces a bounded output.

If ∃Mx s.t. |x[n] | ≤Mx <∞ ∀n, then there must exist anMy s.t.|y[n] | ≤My <∞ ∀n.

UsuallyMy will depend onMx.

Example. An accumulator system:y[n] = y[n− 1] + x[n].
Consider input signalx[n] = u[n], which is bounded byMx = 1. Assumingy[−1] = 0, the output signal isy[n] = (n + 1)u[n],
which increases without bound. So the accumulator is anunstablesystem.

We will derive a simple test for BIBO stability shortly.

Invertibility skip

A systemT is calledinvertible if there exists a systemT −1that can process the output of systemT and yield the input toT , i.e.,

x[n]→ T → T −1 → x[n] ,

for any possible input signal.

Example. The systemx[n]
T
→ y[n] = 3x[n− 1] is invertible. The inverse system is given byy[n]

T −1
→ x[n] = 1

3y[n+ 1] .

Example. The squaring systemy[n] = x2[n] is not invertible since giveny[n], we cannot determine the sign ofx[n].

Example. Dolby noise reduction.

1In fact, it is challenging to find a system that satisfies the scaling property but is nonlinear. They do exist though. Try to find one as a challenge...
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Linear filters

Having introduced important system properties, we now turn to the family of discrete-time systems that will be our focus for the
rest of this chapter, calledfilters. Usually when we speak of “filters,” we mean a specific type of linear2 time-invariant (LTI)
system.

For an FIR filter, the generalinput-output relationship , also called adifference equationhere, is as follows:

y[n] =

M2∑
k=M1

bkx[n− k] .

• M2 −M1 is called theorder of the filter.
• Thebk ’s are called thefilter coefficients.
• In this equation, the index “k” is in thetime domain.

Properties of FIR filters

• An FIR filter is, by construction,linear andtime invariant , which we abbreviate byLTI .

• For the system to becausalwe must haveM1 ≥ 0. Usually we chooseM1 = 0 and write:

y[n] =

M∑
k=0

bkx[n− k] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−K] ,

whereM is called theorder of the filter.

• For an LTI system, theimpulse responseis the output of the system when input signal is a unit impulse signalx[n] = δ[n].
We usually useh[n] to denote an impulse response function. In other words,

x[n]
T
→ y[n] ⇒ δ[n]

T
→ h[n] .

If we are given the input-output relationship for a system, then it is trivial to find the impulse response: just replacex[n] by
δ[n], andy[n] by h[n]. (Later we will see more complicated cases.)

For the above general FIR filter, the impulse response is

h[n] =

M2∑
k=M1

bkδ[n− k] =




0, n < M1
bM1 , n =M1
...
bM2 , n =M2
0, n > M2.

-
nM1M1 + 1 ... 0 1 ... M2 − 1M2

b2

bM1

bM1+1
b1

b0 bM2−1
bM2

• FIR (M1 andM2 both finite) chapter 5-6
• IIR (M1 orM2 infinite) chapter 7-8

Example. y[n] = 1
2y[n− 1] + x[n] ⇒ h[n] =

∑∞
k=0(

1
2 )
kδ[n− k]

• If an FIR filter is causal, what can we say about its impulse response h[n]? It is zero forn < 0 since

h[n] =

M∑
k=0

bkδ[n− k] =




0, n < 0
b0, n = 0
b1, n = 1
...
bM , n =M
0, n > M.

-
n0 1 ... M − 1 M

6h[n]

b0

b2

b1
bM−1

bM

2There are some exceptions to this terminology. For example, in the lab you will use amedian filter which is a nonlinear, but time-invariant, discrete-time
system. Butusuallywhen people say “filter” then mean an LTI system.
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Example. Consider the following FIR filter.

y[n] =
1

2−
√
2
x[n]−

√
2

2−
√
2
x[n− 1] +

1

2−
√
2
x[n− 2] ≈ 1.7x[n]− 2.4x[n− 1] + 1.7x[n− 2] .

What are the coefficients of this filter? We see:M = 2, b0 = 1
2−
√
2
, b1 =

√
2

2−
√
2
, andb2 = 1

2−
√
2
.

Is this filter a causal system? Yes.

What is the impulse response of this filter?

h[n] =
1

2−
√
2
δ[n]−

√
2

2−
√
2
δ[n− 1] +

1

2−
√
2
δ[n− 2] ≈ 1.7δ[n]− 2.4δ[n− 1] + 1.7δ[n− 2] .

(Picture)

How well does this particular system work for removing 60 Hz hum (when fs = 480 Hz)?

For the particular signal under consideration earlier, we can find out by filtering the signal using the following MATLAB command.
y = filter([1.7 -2.4 1.7], [1], x)

The first argument is the filter coefficients, thebk’s as a vector:[b0 b1 . . . bM ].
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So this FIR filter appears to remove 60Hz hum pretty well.
Where did the coefficients, the bk’s, come from? This is the subject of filter design, which we will tackle in Chapter 7.
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Convolution

In our discussion of Fourier series and the DFT, we said it was useful to take “complicated” signals (like sawtooth waves) and
express them as the sum of “simpler” signals such as sinusoids. Sinusoids are not the only possible choice. For discrete-time
signals, it is also useful to express signals as a sum of impulse functions.

Example. Consider the following signal.

-
n... -3 -2 -1 0 1 2 3 4 5 ...

6
x[n]

10
20
30

The above description is graphical. We also need mathematical descriptions of such signals. One not-so-convenient mathematical
formula would be

x[n] =



20, n = −2
30, n = 3
10, n = 4
0, otherwise.

A more convenient formula is to expressx[n] as the sum of four impulse functions

x[n] = 20δ[n+ 2] + 30δ[n− 3] + 10δ[n− 4] .

Why is this more convenient?
Suppose we are using an LTI system with impulse responseh[n] = 5nu[n− 4] , and we want to determine the response (the
output) of that system when the above signal is the input.

Notice that we havenot been given an input-output relationship! So how can we findy[n]? We have been given the following two
key facts:
• The systemT is LTI.

• The impulse response of the systemT is h[n] = 5nu[n− 4], i.e., δ[n]
T
→ h[n] = 5nu[n− 4]

So usingtime-invariance, we know that

δ[n+ 2]
T
→ h[n+ 2] = 5(n+ 2)u[n− 2]

δ[n− 3]
T
→ h[n− 3] = 5(n− 3)u[n− 7]

δ[n− 4]
T
→ h[n− 4] = 5(n− 4)u[n− 8] .

Therefore, usinglinearity , we know that

x[n] = 20δ[n+ 2] + 30δ[n− 3] + 10δ[n− 4]
T
→ y[n] = 20h[n+ 2] + 30h[n− 3] + 10h[n− 4]

= 100(n+ 2)u[n− 2] + 150(n− 3)u[n− 7] + 50(n− 4)u[n− 8] .

So we have determined the output signaly[n] for this given input signalx[n] without knowing the input-output relationship! We
could have done this foranypossible input signal.

Theconvolution sum, derived next, generalizes the idea illustrated in this example.
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Representingx[n] using impulse functions

We can express any discrete-time signalx[n] using impulse functions as follows:

x[n] =

∞∑
k=−∞

x[k] δ[n− k] = · · ·x[−2] δ[n+ 2] + x[−1] δ[n+ 1] + x[0] δ[n] + x[1] δ[n− 1] + x[2] δ[n− 2] + · · · .

Example.

-
n... -2 -1 0 1 3 ...

x[−2]
x[−1] x[0]

x[1]

x[2]

x[3]

Given an LTI system with impulse responseh[n], usingtime invariance we know that

δ[n]
T
→ h[n] ⇒ δ[n− k]

T
→ h[n− k] .

Using the scaling property associated withlinearity , we know that

x[k] δ[n− k]
T
→ x[k]h[n− k] .

Using the additivity property we see that
∞∑

k=−∞

x[k]h[n− k]
T
→

∞∑
k=−∞

x[k]h[n− k] .

In other words, we have just derived theinput-output relationship for any LTI system in terms of itsimpulse responseas follows:

x[n]→ LTI system with impulse responseh[n] → y[n] =
∞∑

k=−∞

x[k]h[n− k] .

This sum is so important that it is given its own symbol and name. It is called theconvolution sumand we write:

(x ∗ h)[n] = x[n] ∗ h[n]
4
=

∞∑
k=−∞

x[k]h[n− k] .

Expressed compactly:

x[n]→
LTI
h[n] → y[n] = x[n] ∗ h[n] .

The fact that all LTI systems have an input-output relationship described by convolution is a tremendous simplification! When
designing LTI systems,i.e., filters, we can focus our efforts on designing the impulse responseh[n] so that the system behaves
according to whatever properties are desired.

Example. Consider a system with given impulse response

h[n] = 100δ[n− 7] .

What does this system do to a generic input signal x[n]? According to the convolution sum:

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[k]h[n− k] =
∞∑

k=−∞

x[k] 100δ[n− 7− k] = · · ·+ 0 + x[n− 7] 100 · 1 + 0 + · · · = 100x[n− 7] ,

becauseδ[n− 7− k] is zero except when its argument is zero,i.e., whenn− 7− k = 0 sok = n− 7.

So what does this system do? It amplifies the signal by 100, and delays it by 7 samples.

What order system is this? 0th order

What about a system with impulse responses h[n] = δ[n] + δ[n− 7]? This is 7th order, just like1 + x7 is a 7th order
polynomial.
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Sanity check for FIR filters

We had previously stated that for FIR filters the impulse response is

h[n] =

M2∑
k=M1

bkδ[n− k] .

What is the corresponding input-output relationship?

y[n] = x[n] ∗ h[n] =
∞∑

k′=−∞

x[k′]h[n− k′] =
∞∑

k′=−∞

x[k′]

(
M2∑
k=M1

bkδ[n− k
′ − k]

)

=

M2∑
k=M1

bk

(
∞∑

k′=−∞

x[k′] δ[n− k′ − k]

)
=

M2∑
k=M1

bkx[n− k] ,

becauseδ[n− k′ − k] is zero except when its argument is zero,i.e., whenn− k′ − k = 0 sok′ = n− k. This is the input-output
relationship presented previously for a generic FIR filter, confirming that convolution of the input signalx[n] with the impulse
responseh[n] is consistent with our previous formula.

Convolution example

Example. Determine the output signaly[n] when the input signalx[n] is given as follows:

x[n] = u[n] + u[n− 3]→ LTI with h[n] = δ[n]− δ[n− 1] → y[n] = ?

In lecture, three solution approaches were discussed to findy[n] = x[n] ∗ h[n].

1. Graphical convolution, using the following three-step recipe
• flip: drawh[−k]
• drawx[k] vsk rather thann
• slide: shifth[−k] by n samples for somen

(shift to the right ifn is positive, sinceh[n− k] = h[−(k − n)])
• Multiply the shiftedh[−k] by x[k] sample-by-sample, then sum. This yieldsy[n] for a particularn.
• Repeat for all integer values ofn.

2. Finding the input-output relationship, which isy[n] = x[n]−x[n− 1] and examining how this relationship affects the particular
input signalx[n] given above graphically.

This system computes thefirst difference of the input signal, which is a discrete-time analog of the operation of taking the
derivative of a continuous-time signal. It is useful foredge detectionin image processing.

3. Substituting in this particularx[n] into the above input-output relationship and simplifying to find that

y[n] = δ[n] + δ[n− 3] ,

using the handy property:
δ[n] = u[n]− u[n− 1] ,

which was demonstrated graphically.

All three solution methods are useful.
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Properties of convolution and the interconnection of LTI systems

Skill: Use properties to simplify LTI systems.Awareness of these properties necessary for efficient designs.

Support If x[n] has supportn = N1, . . . , N1 + L1 − 1 (lengthL1)
andh[n] has supportn = N2, . . . , N2 + L2 − 1 (lengthL2)
theny[n] = x[n] ∗ h[n] has supportn = N1 +N2, . . . , N1 + L1 − 1 +N2 + L2 − 1 (lengthL2)
What is the duration of y[n]? L = L1 + L2 − 1

Time-shift

x[n] ∗ h[n] = y[n] ⇒
x[n− n0] ∗ h[n] = y[n− n0]

x[n− n1] ∗ h[n− n2] = y[n− n1 − n2]

Commutative law
x[n] ∗ h[n] = h[n] ∗ x[n]

Proof:

x[n] ∗ h[n] =
∞∑

k=−∞

x[k]h[n− k] =
∞∑

k′=−∞

x[n− k′]h[k′] = h[n] ∗ x[n] ,

wherek′ = n− k.

Associative law
(x[n] ∗ h1[n]) ∗ h2[n] = x[n] ∗ (h1[n] ∗ h2[n])

Proof: lety1[n] = (x[n] ∗ h1[n]) ∗ h2[n] andy2[n] = x[n] ∗ (h1[n] ∗ h2[n]).
We must showy1[n] = y2[n].

y1[n] =

∞∑
k=−∞

(x ∗ h1)[k]h2[n− k] =
∑
k

(∑
l

x[l]h1[k − l]

)
h2[n− k] =

∑
l

x[l]

(∑
k

h1[k − l]h2[n− k]

)

= =
∑
l

x[l]

(∑
m

h1[m]h2[n− l −m]

)∑
l

x[l] (h1 ∗ h2)[n− l] = (x ∗ [h1 ∗ h2])[n] = y2[n] ,

wherem = k − l.

The above laws hold in general for any number of systems connected inseries. So the following notation is acceptable:

h[n] = h1[n] ∗ h2[n] ∗ · · · ∗ hk[n] .

In particular:

(x ∗ h1) ∗ h2 = x ∗ (h1 ∗ h2)

= x ∗ (h2 ∗ h1)

= (x ∗ h2) ∗ h1

so order of serial connection of LTI systems with impulse responseh1 andh2 does not affect output signal. See picture.

Distributive law
x[n] ∗ (h1[n] + h2[n]) = (x[n] ∗ h1[n]) + (x[n] ∗ h2[n])

Proof:

x[n] ∗ (h1[n] + h2[n]) =
∞∑

k=−∞

x[n− k] (h1[k] + h2[k])

=

∞∑
k=−∞

x[n− k]h1[k] +
∞∑

k=−∞

x[n− k]h2[k]

= x[n] ∗ h1[n] + x[n] ∗ h2[n] .

All of the above follow from simple properties of addition and multiplication due to LTI assumption.
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Here are the above properties illustrated with block diagrams.

x[n]→ h[n] → y[n]

Commutative

h[n]→ x[n] → y[n]

yields same output!

The order of interconnection of systems inseriesor cascadedoes not affect the output3.

x[n]→ h1[n] → h2[n] → y[n]

Associative

x[n]→ h1[n] ∗ h2[n] → y[n]

Commutative

x[n]→ h2[n] ∗ h1[n] → y[n]

Associative

x[n]→ h2[n] → h1[n] → y[n]

Parallel connection:

x[n]

-

-

h1[n]

h2[n]

?

6

-+ y[n]

Distributive:x[n]→ h[n] = h1[n] + h2[n] → y[n]

Example.

x[n] =→ h1[n] = δ[n]− δ[n− 1] → h2[n] = u[n] → y[n]

Overall impulse response:

h[n] = h1[n] ∗ h2[n] = (δ[n]− δ[n− 1]) ∗ u[n] = u[n]− u[n− 1] = δ[n] .

Block diagram of FIR filters

AnM th order filter hasM − 1 unit delays (whyz−1 explained later),M + 1multiplies, andM adds.

This could be implemented in
• digital hardware (adders, multipliers)

How are delays implemented? With buffers / registers / latches / flip-flops.
• software on general purpose computer (e.g., ANSI C, MATLAB , etc.)

3This claim only holds for ideal LTI systems based on real numbers. In digital systems where the signal values and filter coefficients are quantized, the order of
interconnection can matter in some cases.
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x[n]

y[n]

z−1z−1z−1

b0 b1 bM−2 bM−1 bM
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Convolution with impulses

Time shift / delay:
x[n] ∗ δ[n− n0] = x[n− n0]

Identity:
x[n] ∗ δ[n] = x[n]

Cascade of time shifts:
δ[n− n1] ∗ δ[n− n2] = δ[n− n1 − n2]

Properties of LTI systems in terms of the impulse response

Since an LTI system is completely characterized by its impulse response, we should be able to express the properties of causality
and stability in terms ofh[n].

Causal LTI systems

Recall system is causal iff outputy[n] depends only on present and past values of input.

For an LTI system with impulse responseh[n]:

y[n] =
∞∑

k=−∞

h[k]x[n− k] =
∞∑
k=0

h[k]x[n− k] +
−1∑

k=−∞

h[k]x[n− k] .

The first sum depends on present and past input samplesx[n] , x[n− 1] , . . ., whereas the second sum depends on future input
samplesx[n+ 1] , x[n+ 1] , . . ..
Thus the system is causal iff the impulse response terms corresponding to the second sum is zero.
These terms areh[−1] , h[−2] , . . ..

An LTI system iscausaliff its impulse responseh[n] = 0 for all n < 0.

In the causal case the convolution summation simplifies slightly since we can drop the right sum above:

y[n] =

∞∑
k=0

h[k]x[n− k] =
n∑

k=−∞

x[k]h[n− k] .

Example. Is the LTI system with h[n] = u(n− n0 − 5) causal? Only if n0 + 5 ≥ 0.

A causal sequenceis a sequencex[n] which is zero for alln < 0.

If the input to acausalLTI system is acausal sequence, then the output is simply

y[n] =

{
0, n < 0∑n
k=0 h[k]x[n− k] =

∑n
k=0 x[k]h[n− k] , n ≥ 0.

The above sum is precisely what is computed by MATLAB ’s conv function, for finite-lengthx[n] andh[n].
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Stability of LTI systems

Recally[n] =
∑∞
k=−∞ h[k]x[n− k] so by the triangle inequality

|y[n] | =

∣∣∣∣∣
∞∑

k=−∞

h[k]x[n− k]

∣∣∣∣∣ ≤
∞∑

k=−∞

|h[k]x[n− k]| =
∞∑

k=−∞

|h[k] ||x[n− k] | ≤Mx

∞∑
k=−∞

|h[k] |

if |x[n] | ≤Mx ∀n.

Thus, for an LTI system to be BIBO stable, it is sufficient that its impulse response beabsolutely summable, i.e.

∞∑
n=−∞

|h[n] | <∞.

It is alsonecessaryfor the above summation to be finite. To show necessity of that condition, construct counter-example showing
absence of the condition means we can construct some bounded input signal for which the output is unbounded. A suitable choice
is

x[n] =

{
h∗[−n] /|h[−n] |, h[−n] 6= 0
0, h[−n] = 0

which is bounded byMx = 1. But

y[0] =

∞∑
k=−∞

h[k]x[−k] =
∞∑

k=−∞

|h[k] | =∞

if the impulse response is not absolutely summable, so the output would not be bounded for the specified bounded input signal.

Thus we have shown

A LTI system is BIBO stable iff its impulse response is absolutely summable,i.e.,
∑∞
n=−∞ |h[n]| <∞.

Example: Accumulator:y[n] = y[n− 1] + x[n].
What is impulse response? Let x[n] = δ[n], theny[n] = u[n]. Soh[n] = u[n].
Alternatively, recall thatδ[n] = u[n]− u[n− 1], sou[n] = u[n− 1] + δ[n].
By correspondence with the input-output relationship above, it must be the case thath[n] = u[n].
Stable? No:

∑∞
n=−∞ h[n] =∞, so unstable.

One can also show the following for a BIBO stable system (see text).
• The impulse responseh[n] goes to zero asn→∞.
• If the inputx[n] has finite duration, then the outputy[n] will decay to zero asn→∞.

Duration of impulse response

Two classes
• finite impulse responseor FIR

only a finite number ofh[n] are nonzero
• infinite impulse responseor IIR

an infinite number ofh[n] are nonzero


