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Ch. 6. Frequency-Domain Analysis of Filters*

Outline
e Frequency response of filters
¢ Response to sinusoids and complex exponentials
e Response to periodic signals
e Response to suddenly applied signals
e Frequency response of interconnected systems
e Filtering of sampled continuous-time signals

Introduction

The previous chapter focused on tivae domain properties of systems, using input signals consisting of unit-impulse functions,
step functions, etc.

In particular, we derived the key input-output relationship for LTI systems:

z[n] — ‘ LTI with impulse responsg|n| ‘ — y[n] = z[n] * hin].

This is a time domain relationship. The point of this chapter is to fiffrdguency domainrelationship, which is often the basis
for filter design.

This means we consider sinusoidal signals.

Example

z[n] = cos(gn) —[LT1 hfn] = 6[n] — 6[n — 1]| = yln] =7

(given in class)

Instead of generalizing further with sinusoids, we back up and consider complex exponential signals instead, and later analyze
sinusoids by combining two complex exponential signals.

Frequency response

The response of an LTI system with impulse respdtja¢to a complex exponential input signal with frequericis the following.

z[n] = Ae’?e?“™ — | LTI hln]| = y[n] = 7.

Applying the convolution sum:

oo

yln] =z[n]xhin] = > aln—khk] = Y Ae?? " Fhk] = ( > hlk] eJ“’k> Ae? e,

k=—o0 k=—o0 k=—o0

So the output signal[n] turns out to be the input signal scaled by a the complex value given by the summation in the parentheses.
This summation is so important that it is given a name:fthguency responseof the system, and its own symbol

H@) 2 S ke,

k=—o00

Note that the “ordinary’H will be used in Chapter 8 for something related but different.

The frequency response of a system faactionof frequencyw, because different frequency components are affected differently
by filters; some components are amplified, others attenuated, etc. The frequency response summarizes everything that happens
a complex exponential input signal of any given frequency.

IFor FIR filters, the sum only has a finite number of nonzero terms, so it is always well defined. For IIR filters, the frequency response is only well defined if
the system istable i.e., if the frequency response is absolutely summable.
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Example Determine the response of ttveo-point moving average filterto a complex exponential signal with frequenzy

z[n] = &/*" — | h[n] = 46[n] + 30[n — 1] | — y[n] = 7.

N[

The frequency response is given by

oo

> hlkleh = ) (%5[1@] + %6[k - 1]) e IOk = % + %e—w.

k=—o0 k=—o0

So for this system

. 1 1 N .
oln] =" By = (3 + 5o ) oo

How do we get insight into what this means? By displaying the frequency respoasgcally.

Since () is a complex value for any given frequentywe usually expres# (@) in terms of its magnitude and phase:

H(D) = [H(@)] e? @),

o [H(®)| = \/Re{”H( )} + Im{H(&)}? is called themagnitude responseof the system.
e /1 (w) is called thephase responsef the system.

Usually we plot these two quantities over the rapgeto =

This form allows a concise input-output relationship for complex exponential signals:

z[n] = Ae? Pe?om z yln] = |H(@)| A ¢ EHO+E) el on
—_— ~~—~
new new input
amplitude phase  exponential
signal

For the example above, we have

11, 1 v, —sing
H(@):§+§e—3‘”:§(1+cosw—j sin®) = +;OSW+J S;nw
so
1+ cosw —sind)
)= (F5=2 ) (52 = loostar2)

e —sinw [ —w/2,  |@]<w
LH(&) = tan (1 + cos > o { periodic otherwise
Alternative derivation using “phase splitting” trick:

1 1 - 5791 - - N
H(W) = 5 + 5677‘“ = e*J“’/Qg [e7“/2 + e*J“’/ﬂ =e 792 cos(w/2).

So the magnitude response and the frequency response have the following graphs.

Magnitude respongé{(o)| / { Phase responséH ()
m/2

‘ -
—T T W

- —m/2
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What can we learn from these pictures?

For example, if the input is a constant signal, suck[a$ = 5 = 5¢’°", then the output signal igln] = 5H(0) e? %" = 5.
If the input isz[n] = (—1)™ = e’™, then the output signal ign] = H(w)e?™ = 0.

So this system completely removes a sinusoidal frequency component with frequengy

Whether removing this frequency component is important or not depends on the application.

Ideal magnitude responses

Here are examples of magnitude responses that are often needed in practical appli@itians)
e lowpass filter

e highpass filter

e bandpass filter

e bandstop filter

e notch filter

e resonator

(We focus on the magnitude response here, but in some applications the phase response is also important.)

These are callettieal frequency response functions. But in practice we cannot design filters that have exactly these frequency
responses so we make compromises.

What type of filter is the two-point moving average? It is a crude lowpass filter. Far from ideal!
Would it be a good filter for removing high frequency noise? Not very!

Example The first difference filterh[n] = §[n] — d[n — 1], has frequency response

e1®/2 _ gm10/2

H(@)=1—e 79 =25e77%/2
() e je 5

) = 2sin(0/2)e’? "/2=%/2) (Picture) .

Properties of frequency response
Periodicity
H(w) is periodic with perio@:
H(©+2m) = H(D).
This is natural because digital frequencieandw + 27 areequivalent frequencies
Proof:

H(w 4 27) = i h[k] e? (@+2mk — i hlk] e’k = H(D) .

k=—o0 k=—o00

Conjugate symmetry
hin|real = H(-w) = H" (@)
Proof:

H* (&) = ( i h[k]eﬂ‘:’k> = i R*[k] e 7@k = i hlk]e? Ok = H(—0).

k=—00 k=—oc0 k=—o0

In particular:
e The magnitude response is even
[H(=0)| = [H(@)].
e The phase response is odd
LH(-D) = —LH(®).
These facts make sense intuitively since there is “nothing new” in the negative frequencies.

We could restrict attention t®, =] but | will continue to show—, 7].
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Sinusoidal input signals

Now we turn to sinusoidal signals, which are more important in practice than complex exponential signals and show the following
sine in, sine outproperty:

z[n] = Acos(on + @) — — y[n] = |H(&)| Acos(on + ¢ + LH(D)).

Derivation.Do we resort to convolution again? No!

Using inverse Euler:
1 X 1 .
x[n] = §AeJ¢eJ“’” + §Aeﬂ¢e7“’”

so applying the earlier I/O relation for complex exponential along with the linearity of the system (superposition property) we have:
1 VY e 1 . .
z[n] 7 yln] = §A |H (&) e (p+LH@)) grion 4 §A |H(—a)| ol (m¢+LH(=0)) g —gom
- %A |H(@)| e (p+LH@)) grion 4 %A |H(w)|e™? (p+£H(@)) g—s0n
= [H(@)| Acos(@n + ¢+ LH(@)),

where we used the even symmetry| &f{w)| and the odd symmetry of H ().

Summary: sinusoid in= sinusoid out (with different magnitude and phase)
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Sums of sinusoids

Applying linearity:

D Arcos(@rn + ¢r) — [ LTI H(@) | = Y [H(@n)] A cos(@xn + o + LH(@):
k

k

Eachsinusoidal componenin the input signal will appear as a sinusoidal component in the output signal wisthe frequency
but with amplitudes and phases that are affected by the frequency response of the filter. Some frequency components might b
amplified, whereas others might be attenuated; some might even be eliminated completely by the filter.

Example

Determiney[n] whenz[n] — | h[n] = 1 §[n] + £ §[n — 1] | = y[n] , wherez[n] = 7 + 6 cos(n + 0.8) + 10 cos(mn).

Recall that thérequency responseof this two-pointmoving averagesystem is given b§{ (&) = cos(&/2)e™79/2,

Without any convolution we find the formula as follows:

y[n] H(0)7 4+ |H(1)|6 cos(n + 0.8+ LH(1)) + |H(m)| 10 cos(mn + LH (7))

1
7+ cos(=)6cos(n +0.8—1/2)~ 7+ 5.3cos(n+0.3).
2

Although manipulating such formulas is important for problem solving, understanding the cgnaglpicallyis also very impor-
tant.

Magnitude spectrum af[n] ' Phase spectrum affn]
7 0.8+
5 5
3 3
[ T I ENN e B A S
— -1 1 T w -0.8
Magnitude respongé{(o)| / ' Phase responséH (&)
/2
| . - —/2 @
- T &
Magnitude spectrum af[n] ' Phase spectrum gfin]
7
2.65 2.65 03] .
| I | , n Los| 1 @
- -1 1 T @

We multiply the magnitude of each signal component by the corresponding magnitude respons$g {@&jlie
and weaddthe phase of each signal component by the corresponding phase responséiyalye
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Filtering periodic signals
We have considered input signals that esenplex exponentialssinusoids andsums-of-sinusoids
We now consideperiodic input signals, which are an important special case of sums-of-sinusoids.

Suppose we have an LTI system with frequency respét(se and the input signat[n] is N-periodic. Since the system is time
invariant,
T T
z[n] = y[n] = z[n — N] = y[n — N]J.
But sincez[n] is N-periodic, we have:[n| = z[n — N] so it must also be the case thét] = y[n — N]. So the output signal is
also N-periodic.

| Foran LTI system:N-periodic in = N-periodic out. |

e That was a time-domain discussion. If we wanted to determine the resppride a particular input signat[r] using a time-
domain approach, we would have to perform convolutign] = x[n] * h[n] . For a periodic input signat[n], this convolution
would often be quite cumbersome.

e Instead, we now consider a frequency-domain perspective, which will greatly simplify finding the outputgignahen the
input signalz[n] is periodic.

Whenz[n] andy|[n] are N-periodic, we can use the DFT to expre$s] andy[n] as sums-of-complex-exponentials:

N-1

zn] = X[k]e? Fkn
k=0
N-—1

yln] = Y[kl e ¥,
k=0

In addition, using our earlier analysis of what happens when complex exponential signals are passed through LTI systems:

N-1 N-1
afn] = Y X[k ¥R = [LTIH@) | = yln] = > H(%k) X[k]e? ¥bn,
k=0 k=0

Comparing the preceding two expressionsypt], and recalling that any signal has a unique DFT, we see that we have shown the
following purely frequency domairelationship:

Y[k] = 7—[<2§k> X[k].

Each frequency component of the input signpd] appears in the output signal with the same freque%(zybut with its complex
amplitude scaled by the corresponding frequency respﬁrﬁ@k).

As a side comment, notice thattifn] is supported oM, ..., N — 1, then

0 N-1
2T 27 1 27
_ -3 kn _ -3 kn _
H(—N k) = E hin]e = N—N nE:O hln]e = NHIk],

n=-—oo

whereH [k] denotes theV-point DFT ofh[n]. So there is a relationship between what we are discussing here and the DFT filtering
approach described earlier.

If M is small, direct (time-domain) filtering approach is much fast than a DFT approach, even with FFT.
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Example

Considering the following 6-periodic input signal.

lZT z[n] I

J 4 6 n

What is the response of the two-point moving average to this input signal?

N e

u

(In this case the time domain approach would not be so cumbersome, but we illustrate the frequency-domain approach anyway.)

First we find the spectrum af[n].

[12 — 12e~ %3] = 2 — 2(—1)*.

| =

X[k] = %Zm[n] e I % kn —

N
p——
fa
=
—e
[ ]

T

1 3 5 k

®
—e

So the input signal has the following expression in terms of sinusoids:
x[n] = SCos(gn) + 3 cos(mn).
One-sided magnitude spectri#(w)| = |cos(w/2)|. (Picture)

—G ol < .
©/2, el <m (Picture)

One-sided phase spectrufi{ (o) = { else

UsingY [k] = H(2£k), the output signal spectrum is as follows.

4 }Zlv%z(ls(%)e*”/‘; 4005(5? Ye~ /6

1 3 5 k

So the output signal is

y[n] = 4\/§cos(2§n — %)

(We could have found this by using “sine in / sine out” as well.) Here is what the output signal looks like.

yln]
° { ! . !

-6

N e
|
o

q
(o]
ISE

Here, the DFT is foanalysisof the signals, not for the filtering itself.

In this case, time-domain convolution would have been easy enough, but the frequency-domain approach is often more insightful.
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6.3
Suddenly applied sinusoidal signals / transient response

We have seen that when aternalsinusoidal signal is the input to an LTI system, the output is alsetamalsinusoidal signal
with the same frequency:

z[n] = Acos(on + ¢) — m — y[n] = [H(&)| Acos(on + ¢ + LH(D)).

But in practical situations, a “sinusoidal signal” will not be eternal. A more realistic model would be to consider the input signal to
be zero until some timeg, and then it begins to oscillate:

n <ng

x[n] = { ?Licos(wn + ), n>no = Acos(wn + ¢)uln — ng| .

The step function is a convenient notation (compared to braces!) for a signal that “switches on™aj.time
This type of signal is called suddenly applied sinusoidal signal

Example z[n] = 10 cos(5n)u[n — 3]

10[ z[n]

y _10[ 1 i . 6 . i .o

What is the output of an LTI system if the input signal is a suddenly applied sinusoid?

N e

The answer isiotsimply y[n] = |H ()| Acos(on + ¢ + LH(&))uln — ng] .
We cannot just multiply the input and the outputdiy. — ng]. Linearity only allows us to multiply bgonstantsnot by signals!

Transient response of FIR filters

To answer this question, we focus on FIR filters. To determine the response of an FIR filter to a suddenly applied sinusoid, we
temporarily return to the time-domain input-output relationship for FIR filters:

y[n] = Z brx[n — k.
k=0

For simplicity, we consider a sinusoid that is appliedgt= 0, i.e.,
z[n] = Acos(on + ¢)u[n].

For this input signal, the output is given by

M
yln] = Z brAcos(w(n — k) + ¢)uln — k] .
k=0

Forn < 0, the output signal is zero, since the system is causalnFarM, since0 < k < M, we haveu[n — k] = 1, so the
output signal is given by

M
yln] = ZbkA cos(w(n — k) + ¢) = h[n] * z[n] = |H(®)| Acos(@wn + ¢ + LH(D)), n> M.
k=0

This is called thesteady-state responsef the system.
For0 <n < M, u[n — k] is zero wherk > n, so the response is

y[n]:ZbkAcos(&J(n—k)—l—(ﬁ), 0<n<M.
k=0
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This is called thdransient responseof the system.

In summary, for a sinusoidal signal applied suddenly at time= 0, the response of an/th-order FIR filter with frequency
responsé(w) is given by:
0, n <0
yln] =< Yr_obkAcos(@(n — k) + ¢), 0<n<M
|H(@)| Acos(wn + ¢ + LH(W)), n> M,

whereH (@) = Shr, bre 74k,

Practically speaking, we perform the following analyses.
¢ To find thetransient response we use the time-domain formula.
¢ To find thesteady-state responsave use the frequency-domain formula.

Example Suppose the input signajn] = 3u[n] 4+ 8 cos(3n)u[n] is the input to the 2nd-order FIR filter with, = {1, —v/2,1} .
Determine the output signal.

This system is causal, so the output is zerafet 0.

Next we find the steady-state response. The frequency respol$@)s= 1 — v/2e 7% + e 729,
SOH(0)=1-+v2+1=2—-2~0.6andH(n/4) =1—2e77/* 4 &17/2 = (.
Thus, the steady-state responsesfor M = 2isy[n] = 3(2 — v2) ~ 1.8.

For the transient response, we apply the time-domain formula to see:

yl0] = box[0] = 11
y[1] = box[l] +biz[0] = 1- (3+4V2) + (—V2)- (3+0) =3+ V2~ 4.4.

Rather than using braces, the most concise expressigfvfpis the following:

yln] = 116[n] + 3+ v2)d[n — 1]+ 3(2 — V2)u[n — 2] .

transient response steady-state response

Example Suppose the input signaln| = 3u[n] + 8 cos(Fn)u[n] is the input to the 2nd-order FIR filter with, = {1,2,1}.
Determine the output signal.

This system is causal, so the output is zerafet 0.

Next we find the steady-state response. The frequency respondg(is) = 1 + 2e 7% + e 724,
SOH(0)=1+2+1=4andH(n/2) =14 2e77™/2 £ &7 = 2e777/2,
Thus, the steady-state responseyfor M = 2isy[n] =4-3+2-8cos(fn—5) =12+ 16cos(5n — T).

For the transient response, we apply the time-domain formula to see:

y[0] = box[0] =11
y[l] = boz[l]+b1z[0]=1-(34+0)+2 11 =25.

Rather than using braces, the most concise expressigffifpis the following:

y[n] = 116[n] + 250[n — 1]+ (12 + 16 cos(gn - g)) uln —2].

transient response steady-state response

yln] 25 b b 28
o 1% ¥ 1, 1
1 2 6 n
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6.6
Interconnected LTI systems

We previously analyzed the interconnection of LTI systems in the time domain.
e Series connection of two LTI systems yields an overall impulse resporige|of hq[n] x ha[n].
¢ Parallel connection of two LTI systems yields an overall impulse resporisep hq[n| + ha[n].

We now analyze such interconnections in tlegjuency domain

For two LTI systems connected in series (akacad¢:

x[n] _ eju?m N w[n]=7'l_1(>®)e1wn . y[n] _ 7‘[2((:)) 7‘[1(&1) e]dm'

So the overall frequency response of the interconnected systemsiwthestof the two frequency responses

zln] = [ H(@) = H1() Ha(@) |- yln].

We see therefore a correspondence between convolution in the time domain and multiplication in the frequency domain.

Time Domain Frequency Domain
hi[n] * ha[n] <= Hi(w) Ha (@)
Convolution Multiplication

For two LTI systems connected parallel (Picture) , the overall frequency response is thanof the two frequency responses:

H(@) = Hi (@) + Ha(w).

Time Domain Frequency Domain
Addition Addition

Example Find the overall frequency response of the following cascade:

z[n] —| Lowpasshi[n] = 16[n] + 16[n —1

—| Highpasshs[n] = d[n] — d[n — 1]| = y[n] .

The overall frequency response is

1 1 . . 1 1 . L elY eI .
H(w) = Hi(@0) Ha(w) = <— + —e_7“> l—e79) = —Ze 2@ —e99) 2~ (/2% ging.
279 ( )=3"3 2

In particular, the magnitude responses multiphf ()| = |H1()| [H2(@)| = |cos(©/2)] ]2 sin(w/2)| = |sinw| .

H[H1(@)] = |cos(w/2)]

[ Ha(@)] = 2 [sin(w/2)]

&

HH(@)] = [Hi(0)] [H2(0)] = [sing

-7 —7/2 /2 i w
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6.11

Example

Find the impulse response of the following cascade:

z[n] = | Hi(0) =1+ 27% — 3672 | = | Ha(0) = . _1eg£; — y[n].
The overall frequency response is
. . 1 - - 1 :
H(@) = Ha (@) Hi(@) = (1+2¢7% — 3¢72°) o5 = (1-e’?) (1-3e%) s =1 3e72%.

So bycoefficient matching the impulse response of this (honcausal) system is

hin] = —36[n + 2] + d[n] .

Example Dolby noise reduction (simplified).

x — | high freq. boost ‘—> é — ‘ high freq. reduce?, ‘ — y = x + reduced high frequency noise
T

noise
o F HL(@)] ' [Ha(@)]
- 1 &l L
—Tr T W —Tr T W
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Filter design preliminaries

Example (An allpass filter.)

What filter amplifies all frequency components equally with gain = 10?
Apparently we wantH (w)| = 10 andZH (&) = 0. (Picture)

So we want (&) = 10.

What is the corresponding impulse response h[n]?

(Notice how now we arérst specifying# (<) and then determiningn].)

H(©) = iih%bﬂ“€>~+hkﬂé®+ﬂm+hMeﬂ®+hMeﬂ“+~~
k=—oc0

So bycoefficient matching

10, n=0 -
hin] = { 0, otherwise 100[n] .

Example (A lowpass filter.)
Since the two-point moving average was a fairly poor lowpass filter, let us try to design a somewhat better one.

Acknowledging that the ideal lowpass is unachievable, let us try for the following magnitude response.

Magnitude responsé{ (w)|

‘ -
—7T L)

where|H(@)| = £ + 1 cos@.

What phase response should we choose? For simplicity, we start withH (&) = 0, so
N 1 1 1 1 X 1 .
~) — M el LH@) — = 4 2 N i, I I aIw
H(D) = [H(D)|e 5 + 5 COSW 5 + 1 ¢ + 1 ¢
~— =~ ~~
Ho] A1) H{1]

By coefficient matching, we see that the corresponding impulse response would be
hln] = 16[ 4—1]+—16[ ]+—16[ —1]

Is this a causal filter? No.
How could we make it causal? We could try just shifting it over by one sample:

hy[n] = hln— 1] = id[n] + %(5[7@ 1+ ié[n _9.

Since this is just a “guess” we must compute the frequency respoiisédfand see if it has the desired properties.

> - 1 1 | ~ .
Ho(@) = ) hofkle?®F = Ttge Ze‘ﬂ“ now a phase trick:
k=—o0
1 - 1 1 . 5 1 1 . .
= [Zew +tg+ Ze“’} e Y = {5 + §cosd)} e 7Y = |H(w)|e™?¥.

SO|H, ()| = 1 + 4 cos® andLH, (w) = —&. (Picture)

So the above magnitude response corresponds to the simple 2nd-order filter with impulse réspdresed coefficientd, =

{1/4,1/2,1/4}.
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Example Filter design for removing 60Hz hum

Now we return to the example of trying to eliminate 60 Hz hum, when the sampling frequeficy ¢80 Hz, so the corresponding
digital frequency isvy = zwﬁ =7/4.

We would like other frequencies to be relatively unaffected, but it is impossible to achieve that goal perfectly. As a minimal
constraint, let us require tha€(0) = 1.

Can we do this with a first-order filter? Whéin] = by + b15[n — 1], the frequency response#s(w) = by + bie 7.
Substituting in the two conditior(w/4) = 0 and#(0) = 1 yields the following two equations

0 = by+be?™/*
1 = by+be?%=0by+b.

The solution to these equations gives complex values for the coefficients. We want a real system, so we must consider a highe
order system.

A 2nd-order filter has impulse responige)] = by + b10[n — 1] + b2d[n — 2] and frequency response
H(D) = b + bre ™7 + bye 72,

Substituting in the two conditior® (7w/4) = 0 and#(0) = 1 yields the following two equations

0 = bo+bie ™4 4 bye?7/?
1 = bg+bi+bo.
One way to obtain a real solution is to requise= b, in which case the solution is
1 V2
bo=bs = —F=, 1=——F=.
212 2 -2

This is the design illustrated earlier in the Part 5 lecture notes.
To truly understand how well this filter works, we should examine its frequency response.
H(@) = bo+bie 7% +boe 2 =e 7 (bpe @ + by + boe 7¥)
e 7% (b + 2bg cosd) .

So the magnitude response is
2 V2
H(@)| = |———=cos® — ———].
HEO == 7% 3=/

The easiest way to plot this is to useaWML.AB’s freqz command as follows.

b = [1 -sqrt(2) 1]/(2-sqrt(2));
om = linspace(-pi,pi,201);

H = freqz(b, [1], om);

clf, subplot(211)

plot(om, abs(H))

Magnitude response of notch filter

[H(c)l
L+

- —l:r/2 w TV.2 )
This “trial and error” approach to filter design did accomplish the goal of ha#iitg/4) = 0 and#(0) = 1, but the large

amplification of high frequencies is an undesirable side effect! The next chapter leads to more systematic approaches to filtel
design using z-transforms.
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6.8
Filtering sampled continuous-time signals

One of the most interesting uses of digital signal processing is to apply digital filters to process sampled analog signals. Many
audio systems now include such digital processing as an integral component.

So far we have analyzed what happen whelisarete-timesignal is passed through a discrete-time filter. Before we can apply such
filters to sampled analog signals, we must analyze what happens in the following scenario.

— z[n] > — y[n] — [Ideal D-C with

Every component in this system is linear, so as usual, we begin our analysis with sinusoidal signals, knowing that later we can
consider the more interesting case of sums of sinusoids.

x(t) — | Ideal C-D with f

= y(t)

We consider the case where there is no aliasing, so the freqygéyhe input signab < fo < fs/2.

If 2(t) = cos(27 fot + ¢) then

z[n] = z(nTy) = cos(2m fonTs + ¢) = cos(won + ¢) where the digital frequency isy = 27r% € [0,m).
Thus, applying the frequency response of the LTI systgm]; = |H (wo)| cos(won + ¢ + LH (wp)).

For the ideal interpolator, the output signal will be
fo
cos| 2w fot + ¢ + LH 27rf— .

S

y(t) = [H(wo)] cos(2mfot + 6 + LH(wo)) = ‘H(%%)

s

This is essentially another “sine in / sine out” relationship!

Thus, at least as far as sinusoidal input signals are concerned (and more generally for any suitably bandlimited signal), the overal
system acts like a filter with frequency response
fo>
H <27T— .
fs

(In fact, end-to-end this is a LTI system foandlimited continuous-time signals.)

Thanks to this analysis, we can now considerdhsignof digital filters even for (sampled) analog signals.

Example
x(t) = 3 cos(2m60t) + A cos(27 fot + ¢).

The first term is 60Hz hum, contaminating the second signal which is the signal of interest.

Supposefy = 120Hz. If the sampling rate ig; = 480Hz and the sampled signal is passed through an LTI system with impulse

response
! S V2 g !
2412 2412

d[n —2],

for which
2

g L V2
H(w) =e (2_\/§cosw 2_\/§>.

Note thatH (27 29) = #{(n/4) = 0 andH (27 120) = H(n/2) = eJ”/Q% ~ 2.4e77/2,

Thus, the output signal will be
yt) = ‘7—[ (2#%) ‘ 3 cos <27760t +ZH <27r46—;0>> + ‘7—[ <27T%> ' Acos <277120t +o+LH <2w%>)
= 2.4Acos(2m120t + ¢ + 7/2).

The 60Hz component was removed completely, as desired, but the 120Hz component was amplified by 2.4, which is an undesirabl
side effect. So now it is really truly time to move on to better filter design!



