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1 – ARM Cortex-M3 Microcontroller

The ARM® Cortex-M3 microcontroller is a low-power processor that features low gate count, low and
predictable interrupt latency, and low-cost debug. It is intended for deeply embedded applications that
require fast interrupt response features. The processor implements the ARMv7-M architecture and is
depicted in its entirety in Figure 1-1. Microsemi SoC Products Group SmartFusion® customizable
system-on-chip (cSoC) devices use the R1P1 version of the Cortex-M3 core. The following manuals,
available from the ARM Infocenter, are recommended reading:

• Cortex-M3 Technical Reference Manual
• ARMv7-M Architecture Reference Manual 
• ARMv7-M Architecture Application Level Reference Manual

The Definitive Guide to the ARM Cortex-M3 by Joseph Yiu is recommended as additional reading (ISBN:
978-0-7506-8534-4).

Manufacturers of Cortex-M3 integrated circuits are permitted some latitude in configuring a particular
implementation of the Cortex-M3 processor delivered by ARM. These are the implementation specifics in
the SmartFusion device:

• Number of interrupts set to 150 (151 including NMI)
• 32 levels of interrupt priority
• Memory Protection Unit (MPU)
• The Data Watchpoint and Trace (DWT) unit is configured to include data matching.
• The Embedded Trace Macrocell (ETM) is not included.

Figure 1-1 • Cortex-M3 R1P1 Block Diagram
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• The debug port is implemented using a Serial Wire JTAG Debug Port (SWJ-DP) rather than a
Serial Wire Debug Port (SW-DP). This enables either the JTAG or SW protocol to be used for
debugging. The SWJ-DP defaults to JTAG mode at power-up and can be switched to SW by
applying a specific sequence to the debug pins.

The Trace Port Interface Unit (TPIU) is configured to support Instrumentation Trace Macrocell (ITM)
debug trace only, and not Embedded Trace Macrocell (ETM) debug trace. The optional ETM is not
included. Also, Serial Wire mode is used for the TPIU output data and this is overlaid on the JTAG TDO
port (Figure 1-2). One implication of this is that Instrumentation Trace cannot be used along with JTAG-
based debugging. SW debugging and ITM can be used together. SW debugging operates at 98 KHz for
the A2F200 device only. A2F060 and A2F500 allow debug at up to 10 MHz, as limited by the debugger.

• The ROM table has not been modified and matches the description given in the Cortex-M3
Technical Reference Manual. 

• The deployment of a Cortex-M3 microcontroller in a SmartFusion cSoC combines the I-Code and
D-Code buses into a single shared code bus. This multiplexing occurs within the AHB bus matrix.
The Cortex-M3 microcontroller internally arbitrates between these two buses to determine which
one obtains ownership of the code bus at any given time.

Cortex-M3 SysTick Timer
The SysTick Timer is used to generate a periodic interrupt to the Cortex-M3 microcontroller. It is
essentially a 24-bit down counter. 
The Cortex-M3 microcontroller has four internal registers related to the SysTick timer, described briefly in
Table 1-1. 

The SYSTICK_CR, located in the SYSREG address space at address 0xE0042038, is used in
conjunction with the SysTick control registers embedded within the NVIC module to control the behavior
of the SysTick timer. Individual bits of the SYSTICK_CR register are described in Table 1-3. The SysTick
counter in the Cortex-M3 microcontroller is clocked by the free-running clock FCLK, and it can count
either the free-running clock itself, or the cycles of the timing reference signal STCLK. The SysTick timer
uses FCLK if NOREF is set to 1, and uses STCLK if NOREF is set to 0. STCLK is divided down from

Figure 1-2 • SWJ-DP / Single Wire Viewer
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Table 1-1 • SysTick Control Register Embedded in NVIC Module

Register Name Address R/W Reset Value Description

SysTick Control and Status 0xE000E010 R/W 0x0 Basic control of SysTick, 
including enable, clock source, 
interrupt, or poll

SysTick Reload Value 0xE000E014 R/W Unpredictable Value to load in Current Value
register when 0 is reached

SysTick Current Value 0xE000E018 R/W Unpredictable The current value of the count
down

SysTick Calibration Value 0xE000E01C R STCALIB Contains the number of ticks to
generate a 10 ms interval.
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FCLK based on how you program the STCLK_DIVISOR field. If you run the SysTick Timer using STCLK,
the remaining fields in SYSTICK_CR must be programmed properly. FCLK must always be greater than
or equal to 2.5 × STCLK, even when the Cortex-M3 microcontroller is in sleep mode.
To generate an exact 10 ms tick, for example (applicable to –1 speed device), use these steps:

1. Program the MSS_CCC to provide a 100 MHz clock to the MSS and, hence, to the Cortex-M3
microcontroller. FCLK = 100 MHz.

2. Program STCLK_DIVISOR to 0x03 to divide by 32. STCLK is now 100 MHz divided by 32, or
3.125 MHz. 

3. Set NOREF to 0, indicating that a reference clock is provided. With a 3.125 MHz reference clock,
the counter must be reloaded with a value of 31,250, which is 0x7A12. This value is loaded into
the TENMS field of the SYSTICK_CR register. 

4. Set the SKEW bit to 0, indicating there is an exact 10 ms period.
5. You can verify the settings programmed into the SYSTICK_CR register by reading the SysTick

Calibration Value (STCVR) register, located at 0xE000E01C. 
Refer to the ARM Infocenter for more information. An ARM Knowledge Article with further detail on
STCLK is posted in the ARM Infocenter at the time of this writing.

The STCLK_DIVISOR field of SYSTICK_CR is used to divide the FCLK by 4, 8, 16, or 32 (Table 1-4).
The resultant clock is used to provide the STCLK input to the SysTick Timer of the Cortex-M3
microcontroller. The reset state of STCLK_DIVISOR is FCLK divided by 32. FCLK must always be
greater than or equal to 2.5 × STCLK. 

Table 1-2 •  SYSTICK_CR Map

Register Name Address R/W Reset Value Description

SYSTICK_CR 0xE0042038 R/W 0x32000000 Provides firmware control of the
STCALIB[25:0] pins of Cortex-M3
microcontroller.

Table 1-3 • SYSTICK_CR

Bit 
Number Name R/W Reset Value Description

29:28 STCLK_DIVISOR R/W 0b11 See Table 1-4.

27:26 Reserved Do not use.

25 NOREF R/W 1 1 = Reference clock is not provided.

24 SKEW R/W 0 1 = The calibration value is not exactly 10 ms
because of clock frequency.

23:0 TENMS R/W 0 This value is the Reload value to use for 10 ms
timing. Depending on the value of SKEW, this
might be exactly 10 ms or might be the closest
value.

Table 1-4 • STCLK_DIVISOR Definition

STCLK_DIVISOR

FCLK Divided ByBit 29  Bit 28

0 0  4

0 1 8

1 0 16

1 1 32
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The NOREF, SKEW, and TENMS fields of the SYSTICK_CR are mapped to the STCALIB[25:0] input
pins of the Cortex-M3 microcontroller. Within the NVIC module of the Cortex-M3 microcontroller, you
have read access to the STCALIB pins through the SysTick Calibration Value (STCVR) register, located
at address 0xE000E01C. The SYSTICK_CR at address 0xE0042038 can be read and written by user
firmware. The NOREF, SKEW, and TENMS fields in SYSTICK_CR map directly to the same fields in the
SysTick Calibration Value register, located at 0xE000E01C, although at different bit locations.
Specifically, NOREF of SYSTICK_CR (bit 25) is mapped to NOREF of STCVR (bit 31) and SKEW of
SYSTICK_CR (bit 24) is mapped to SKEW of STCVR (bit 30).
An application note describing the configuration of the SysTick Timer is available at the ARM Infocenter
at the time of this writing.

Interrupts
Table 1-5 lists the interrupt numbers (corresponding to the NVIC input pins of the Cortex-M3
microcontroller), their sources, and which functions assert the interrupt for the SmartFusion family of
cSoCs. Details for each specific interrupt are located in the relevant section of the SmartFusion
Customizable System-on-Chip (cSoC) datasheet where the interrupt is sourced. A description of
exceptions 0–15 can be found in the Cortex-M3 Technical Reference Manual. The Watchdog Timer
interrupt is mapped to the Non-Maskable interrupt of the NVIC. All other SmartFusion interrupts are
mapped to the external interrupt pins of the Cortex-M3 microcontroller (NVIC), starting at INTISR[0].

Table 1-5 • SmartFusion Interrupt Sources 

Cortex-M3 NVIC Input IRQ Label IRQ Source

NMI WDOGTIMEOUT_IRQ WATCHDOG

INTISR[0] WDOGWAKEUP_IRQ WATCHDOG

INTISR[1] BROWNOUT1_5V_IRQ VR/PSM

INTISR[2] BROWNOUT3_3V_IRQ VR/PSM

INTISR[3] RTCMATCHEVENT_IRQ RTC

INTISR[4] PU_N_IRQ RTC

INTISR[5] EMAC_IRQ Ethernet MAC

INTISR[6] M3_IAP_IRQ IAP

INTISR[7] ENVM_0_IRQ ENVM Controller

INTISR[8] ENVM_1_IRQ ENVM Controller

INTISR[9] DMA_IRQ Peripheral DMA

INTISR[10] UART_0_IRQ UART_0

INTISR[11] UART_1_IRQ UART_1

INTISR[12] SPI_0_IRQ SPI_0

INTISR[13] SPI_1_IRQ SPI_1

INTISR[14] I2C_0_IRQ I2C_0

INTISR[15] I2C_0_SMBALERT_IRQ I2C_0

INTISR[16] I2C_0_SMBSUS_IRQ I2C_0

INTISR[17] I2C_1_IRQ I2C_1

INTISR[18] I2C_1_SMBALERT_IRQ I2C_1

INTISR[19] I2C_1_SMBSUS_IRQ I2C_1

INTISR[20] TIMER_1_IRQ TIMER
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INTISR[21] TIMER_2_IRQ TIMER

INTISR[22] PLLLOCK_IRQ MSS_CCC

INTISR[23] PLLLOCKLOST_IRQ MSS_CCC

INTISR[24] ABM_ERROR_IRQ AHB BUS MATRIX

INTISR[25] Reserved Reserved

INTISR[26] Reserved Reserved

INTISR[27] Reserved Reserved

INTISR[28] Reserved Reserved

INTISR[29] Reserved Reserved

INTISR[30] Reserved Reserved

INTISR[31] FAB_IRQ FABRIC INTERFACE

INTISR[32] GPIO_0_IRQ GPIO

INTISR[33] GPIO_1_IRQ GPIO

INTISR[34] GPIO_2_IRQ GPIO

INTISR[35] GPIO_3_IRQ GPIO

INTISR[36] GPIO_4_IRQ GPIO

INTISR[37] GPIO_5_IRQ GPIO

INTISR[38] GPIO_6_IRQ GPIO

INTISR[39] GPIO_7_IRQ GPIO

INTISR[40] GPIO_8_IRQ GPIO

INTISR[41] GPIO_9_IRQ GPIO

INTISR[42] GPIO_10_IRQ GPIO

INTISR[43] GPIO_11_IRQ GPIO

INTISR[44] GPIO_12_IRQ GPIO

INTISR[45] GPIO_13_IRQ GPIO

INTISR[46] GPIO_14_IRQ GPIO

INTISR[47] GPIO_15_IRQ GPIO

INTISR[48] GPIO_16_IRQ GPIO

INTISR[49] GPIO_17_IRQ GPIO

INTISR[50] GPIO_18_IRQ GPIO

INTISR[51] GPIO_19_IRQ GPIO

INTISR[52] GPIO_20_IRQ GPIO

INTISR[53] GPIO_21_IRQ GPIO

INTISR[54] GPIO_22_IRQ GPIO

INTISR[55] GPIO_23_IRQ GPIO

INTISR[56] GPIO_24_IRQ GPIO

INTISR[57] GPIO_25_IRQ GPIO

Table 1-5 • SmartFusion Interrupt Sources  (continued)
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INTISR[58] GPIO_26_IRQ GPIO

INTISR[59] GPIO_27_IRQ GPIO

INTISR[60] GPIO_28_IRQ GPIO

INTISR[61] GPIO_29_IRQ GPIO

INTISR[62] GPIO_30_IRQ GPIO

INTISR[63] GPIO_31_IRQ GPIO

INTISR[64] ACE_PC0_FLAG0_IRQ ACE[0]

INTISR[65] ACE_PC0_FLAG1_IRQ ACE[1]

INTISR[66] ACE_PC0_FLAG2_IRQ ACE[2]

INTISR[67] ACE_PC0_FLAG3_IRQ ACE[3]

INTISR[68] ACE_PC1_FLAG0_IRQ ACE[4]

INTISR[69] ACE_PC1_FLAG1_IRQ ACE[5]

INTISR[70] ACE_PC1_FLAG2_IRQ ACE[6]

INTISR[71] ACE_PC1_FLAG3_IRQ ACE[7]

INTISR[72] ACE_PC2_FLAG0_IRQ ACE[8]

INTISR[73] ACE_PC2_FLAG1_IRQ ACE[9]

INTISR[74] ACE_PC2_FLAG2_IRQ ACE[10]

INTISR[75] ACE_PC2_FLAG3_IRQ ACE[11]

INTISR[76] ACE_ADC0_DATAVALID_IRQ ACE[12]

INTISR[77] ACE_ADC1_DATAVALID_IRQ ACE[13]

INTISR[78] ACE_ADC2_DATAVALID_IRQ ACE[14]

INTISR[79] ACE_ADC0_CALDONE_IRQ ACE[15]

INTISR[80] ACE_ADC1_CALDONE_IRQ ACE[16]

INTISR[81] ACE_ADC2_CALDONE_IRQ ACE[17]

INTISR[82] ACE_ADC0_CALSTART_IRQ ACE[18]

INTISR[83] ACE_ADC1_CALSTART_IRQ ACE[19]

INTISR[84] ACE_ADC2_CALSTART_IRQ ACE[20]

INTISR[85] ACE_COMP0_FALL_IRQ ACE[21]

INTISR[86] ACE_COMP1_FALL_IRQ ACE[22]

INTISR[87] ACE_COMP2_FALL_IRQ ACE[23]

INTISR[88] ACE_COMP3_FALL_IRQ ACE[24]

INTISR[89] ACE_COMP4_FALL_IRQ ACE[25]

INTISR[90] ACE_COMP5_FALL_IRQ ACE[26]

INTISR[91] ACE_COMP6_FALL_IRQ ACE[27]

INTISR[92] ACE_COMP7_FALL_IRQ ACE[28]

INTISR[93] ACE_COMP8_FALL_IRQ ACE[29]

INTISR[94] ACE_COMP9_FALL_IRQ ACE[30]

Table 1-5 • SmartFusion Interrupt Sources  (continued)
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INTISR[95] ACE_COMP10_FALL_IRQ ACE[31]

INTISR[96] ACE_COMP11_FALL_IRQ ACE[32]

INTISR[97] ACE_COMP0_RISE_IRQ ACE[33]

INTISR[98] ACE_COMP1_RISE_IRQ ACE[34]

INTISR[99] ACE_COMP2_RISE_IRQ ACE[35]

INTISR[100] ACE_COMP3_RISE_IRQ ACE[36]

INTISR[101] ACE_COMP4_RISE_IRQ ACE[37]

INTISR[102] ACE_COMP5_RISE_IRQ ACE[38]

INTISR[103] ACE_COMP6_RISE_IRQ ACE[39]

INTISR[104] ACE_COMP7_RISE_IRQ ACE[40]

INTISR[105] ACE_COMP8_RISE_IRQ ACE[41]

INTISR[106] ACE_COMP9_RISE_IRQ ACE[42]

INTISR[107] ACE_COMP10_RISE_IRQ ACE[43]

INTISR[108] ACE_COMP11_RISE_IRQ ACE[44]

INTISR[109] ACE_ADC0_FIFOFULL_IRQ ACE[45]

INTISR[110] ACE_ADC0_FIFOAFULL_IRQ ACE[46]

INTISR[111] ACE_ADC0_FIFOEMPTY_IRQ ACE[47]

INTISR[112] ACE_ADC1_FIFOFULL_IRQ ACE[48]

INTISR[113] ACE_ADC1_FIFOAFULL_IRQ ACE[49]

INTISR[114] ACE_ADC1_FIFOEMPTY_IRQ ACE[50]

INTISR[115] ACE_ADC2_FIFOFULL_IRQ ACE[51]

INTISR[116] ACE_ADC2_FIFOAFULL_IRQ ACE[52]

INTISR[117] ACE_ADC2_FIFOEMPTY_IRQ ACE[53]

INTISR[118] ACE_PPE_FLAG0_IRQ ACE[54]

INTISR[119] ACE_PPE_FLAG1_IRQ ACE[55]

INTISR[120] ACE_PPE_FLAG2_IRQ ACE[56]

INTISR[121] ACE_PPE_FLAG3_IRQ ACE[57]

INTISR[122] ACE_PPE_FLAG4_IRQ ACE[58]

INTISR[123] ACE_PPE_FLAG5_IRQ ACE[59]

INTISR[124] ACE_PPE_FLAG6_IRQ ACE[60]

INTISR[125] ACE_PPE_FLAG7_IRQ ACE[61]

INTISR[126] ACE_PPE_FLAG8_IRQ ACE[62]

INTISR[127] ACE_PPE_FLAG9_IRQ ACE[63]

INTISR[128] ACE_PPE_FLAG10_IRQ ACE[64]

INTISR[129] ACE_PPE_FLAG11_IRQ ACE[65]

INTISR[130] ACE_PPE_FLAG12_IRQ ACE[66]

INTISR[131] ACE_PPE_FLAG13_IRQ ACE[67]

Table 1-5 • SmartFusion Interrupt Sources  (continued)
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INTISR[132] ACE_PPE_FLAG14_IRQ ACE[68]

INTISR[133] ACE_PPE_FLAG15_IRQ ACE[69]

INTISR[134] ACE_PPE_FLAG16_IRQ ACE[70]

INTISR[135] ACE_PPE_FLAG17_IRQ ACE[71]

INTISR[136] ACE_PPE_FLAG18_IRQ ACE[72]

INTISR[137] ACE_PPE_FLAG19_IRQ ACE[73]

INTISR[138] ACE_PPE_FLAG20_IRQ ACE[74]

INTISR[139] ACE_PPE_FLAG21_IRQ ACE[75]

INTISR[140] ACE_PPE_FLAG22_IRQ ACE[76]

INTISR[141] ACE_PPE_FLAG23_IRQ ACE[77]

INTISR[142] ACE_PPE_FLAG24_IRQ ACE[78]

INTISR[143] ACE_PPE_FLAG25_IRQ ACE[79]

INTISR[144] ACE_PPE_FLAG26_IRQ ACE[80]

INTISR[145] ACE_PPE_FLAG27_IRQ ACE[81]

INTISR[146] ACE_PPE_FLAG28_IRQ ACE[82]

INTISR[147] ACE_PPE_FLAG29_IRQ ACE[83]

INTISR[148] ACE_PPE_FLAG30_IRQ ACE[84]

INTISR[149] ACE_PPE_FLAG31_IRQ ACE[85]

Table 1-5 • SmartFusion Interrupt Sources  (continued)
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2 – AHB Bus Matrix 

The AHB bus matrix (ABM) is a multi-layer AHB matrix. It is not a full crossbar switch, but a customized
subset of a full switch. It works purely as an AHB-Lite (AHBL) matrix. The SmartFusion AHB Matrix has
five masters and eight direct slaves, as depicted in Figure 2-1. One master is permitted to access a slave
at the same time another master is accessing a different slave. If more than one master is attempting to
access the same slave simultaneously, then arbitration for that slave is performed. Arbitration is
programmable by the user and is either pure round robin or a weighted round robin where certain
masters have favor over others. One master is elected as the winner, while the other masters are held up
temporarily. Theoretical maximum bus bandwidth through the AHB bus matrix is 16 Gbps. This assumes
that the five masters are communicating with five different slaves at the maximum clock rate of 100 MHz.

Functional Description
Figure 2-1 depicts the connectivity of masters and slaves in the ABM. Label nomenclature such as MM0
and MS0 refers to a mirrored master and mirrored slave. A mirrored master port in the matrix connects
directly to an AHB master; it has the same set of signals, but the direction of the signals is described
relative to the other end of the connection. A mirrored slave port in the matrix connects directly to an AHB
slave.

Only a subset of the full set of theoretical paths is implemented within the AHB bus matrix. Furthermore,
the I-Code and D-Code buses of the ARM Cortex-M3 microcontroller are multiplexed within the AHB bus
matrix, so they actually constitute one combined master between them. The Cortex-M3 microcontroller is
configured to avoid activating both buses together.

Figure 2-1 • AHB Bus Matrix Masters and Slaves
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The connections available in the AHB bus matrix are shown in Table 2-1.

By default, non-Cortex-M3 ports are disabled on power-up. Users must enable each port by setting the
appropriate bits in the AHB_MATRIX_CR register (refer to Table 2-12 on page 31. The Cortex-M3
microcontroller is the only master in the system that can enable other masters, since the control registers
that enable masters reside on the Private Peripheral Bus of the Cortex-M3 microcontroller. Access errors
in the AHB bus matrix set the appropriate bit in the COM_ERRORSTATUS field of the MSS_SR register.
The ABM_ERROR_IRQ signal is also asserted and an error can be trapped if IRQ24 is enabled in the
NVIC. IRQ24 corresponds to bit location 24 in the 32-bit word at address location 0xE000E100. The
following types of errors can occur:

1. Write by an enabled master to a slave that is not R/W
2. Write by a disabled master to any location
3. A read by an enabled master to any slave that is not R or R/W
4. A read by a disabled master to any location

Reads to a non-enabled slave or unimplemented address space return undefined values. Write errors do
not propagate beyond the AHB bus matrix, that is, the ABM consumes the write error.
The user has the option of restricting access to eNVM from a fabric master by programming the
appropriate registers in FAB_PROT_SIZE_CR and FAB_PROT_BASE_CR. If a region of memory in the
eNVM is protected and a fabric master attempts to read or write to it, the COM_ERRORSTATUS field of
the MSS_SR register is updated to reflect the appropriate error and the ABM_ERROR_IRQ (IRQ24)
signal is asserted.

Table 2-1 • AHB Bus Matrix Connectivity
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eSRAM_1
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eNVM
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S3

APB_2
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Fabric 
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R*

Cortex-M3 System
M1

R/W R/W R/W* R/W R/W R/W R/W R/W

Fabric Master
M2

R/W R/W R/W* R/W R/W R/W R/W R/W

Ethernet MAC
M3

R/W R/W R/W R/W

Peripheral DMA
M4

R/W R/W R* R/W R/W R/W R/W R/W

Note: *Users must exercise caution when commanding the eNVM to program or erase data. Other masters in the
system may not be aware that the eNVM is unavailable. Therefore users should use some form of software
semaphore to control access.
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Arbitration
Each of the slave interfaces contains an arbiter. The arbiter has two modes of operation: round robin and
weighted round robin. The arbitration scheme selected is applied to all slave interfaces.

Round Robin Arbitration
This is the default arbitration mode. As depicted in Figure 2-2 in this mode, the arbitration scheme for
each slave port is identical. Each master accessing a slave has equal priority on a round robin basis.
However, if a locked transaction occurs, the master issuing the lock maintains ownership of the slave
until the locked transaction completes. Clearing bit COM_WEIGHTEDMODE in the AHB_MATRIX_CR
sets arbitration to round robin.

The pure round robin scheme has the advantage of low latency. So, for example, the Cortex-M3
microcontroller can respond quickly to service a high-priority interrupt, even if the MAC is performing a
long AHB burst to the same slave required by the Cortex-M3 microcontroller. This is at the expense of
not taking full advantage of the slave bandwidth achievable via burst accesses, in some cases.

Weighted Round Robin Arbitration
The user can configure arbitration by setting the bit COM_WEIGHTEDMODE in the AHB_MATRIX_CR
to operate as weighted round robin. In this mode, the slave arbiter for every slave operates on a round
robin basis, with three of the master interfaces (Cortex-M3 I-Code/D-Code interface, Cortex-M3 system
interface, and the Ethernet MAC) having a maximum of eight consecutive access opportunities to the
slave in each round of arbitration.

Figure 2-2 • Round Robin Arbitration
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This scheme is illustrated in Figure 2-3.

Weighted round robin arbitration allows more efficient usage of slave bandwidth in the cases where the
slaves have a penalty when transitioning from one master to another. For example, in situations where
both the Ethernet MAC and Cortex-M3 I-Code/D-Code interfaces are performing write and read AHB
bursts to eSRAM, this scheme groups together a maximum of eight Ethernet MAC accesses followed by
a maximum of eight Cortex-M3 accesses (even if AHB bursts of greater than eight transfers are in
progress from the master’s point of view). Due to the fact that the eSRAM AHB controller inserts an idle
cycle every time there is a write followed by a read, enabling weighted round robin can increase the
effective eSRAM bandwidth during this time from 66% to 94% of the theoretical maximum. If a sequence
of locked transfers is in progress, then the locked master remains selected by the slave arbiter until the
lock sequence is finished, regardless of the number of transfers (which could be more than eight).
Weighted round robin arbitration would also be useful in situations where more than one master is
accessing eNVM, as it allows each master to access multiple prefetched data words in the eNVM buffer
instead of repeatedly filling the buffer with one word. Refer to the "Embedded Nonvolatile Memory
(eNVM) Controller" section on page 49 for details.
This arbitration mode has slightly longer potential latencies than pure round robin mode. For example, an
urgent interrupt to the Cortex-M3 microcontroller could require servicing that involves accesses to a
slave while the MAC is using that slave. However, by limiting the bursts to eight at the arbitration level,
regardless of AHB burst size, the latency can be kept at a low value.
It is possible to switch between the two arbitration modes dynamically.

Figure 2-3 •  Weighted Round Robin Arbitration
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System Memory Map
The AHB bus matrix is responsible for implementing the address decoding of all masters to all slaves, so
it defines the system memory map. Figure 2-4 on page 20 depicts the default system memory map for
the A2F200 device.

Unimplemented Address Space
The AHB bus matrix performs address decoding based on the memory map defined in Figure 2-4 on
page 20 and Figure 2-6 on page 22, to decide which slave, if any, is being addressed. Any access to
memory space outside of these regions is considered unimplemented from the point of view of the AHB
bus matrix and results in the assertion of a COM_ERRORSTATUS register bit and the interrupt
COM_ERRORINTERRUPT to the Cortex-M3 microcontroller, as well as the assertion of HRESP by the
AHB bus matrix to the master—which could be in the FPGA fabric.
If any master attempts a write access to unimplemented address space, the AHB bus matrix completes
the handshake to the master, with an HRESP error indication. No write occurs to any slave.
If any master attempts a read access from unimplemented address space, the AHB bus matrix
completes the handshake to the master, with an HRESP error indication. Undefined data is returned in
this case.
Within individual slave memory regions, there may be further memory areas that are unimplemented.
Depending on the slave, accesses may be aliased within these areas or not. Firmware should not
perform writes to these locations because the aliasing may cause a write to another location within the
slave. Data read from these intra-slave unimplemented regions may be undefined. In the case of the
external memory controller, some of these accesses may result in HRESP assertion by the memory
controller. This occurs when attempting to access a location corresponding to an external memory that is
not present at that address.

Burst Support
The AHB bus matrix handshakes correctly with masters performing AHB bursts to any slave. However, it
does not pass the transactions through to the slaves as bursts. Instead, the AHB bus matrix converts the
burst accesses into single-cycle accesses of the type NONSEQ. This simplifies the design of the slaves
(which can exist in the FPGA fabric), since they do not need to support AHB bursts. It also allows the
system designer to avoid having long latencies incurred by bursts of indeterminate length (such as those
from the FPGA fabric). The AHB bus matrix does not connect to the HBURST bus of any master or slave.

Locked Transactions 
The AHB bus matrix supports implementation of locked transactions for accesses by the Cortex-M3
microcontroller to the memory controllers (eNVM AHB controller, eSRAM AHB controller, and external
memory controller), by monitoring the HMASTLOCK signal. The only slave to which HMASTLOCK is
actually passed is the fabric slave, because a circuit within the FPGA fabric may need to perform further
locking. For a more detailed description of HMASTLOCK, refer to the ARM AMBA bus specification at the
ARM website.

Memory Map
In the memory map shown in Figure 2-4 on page 20, the eNVM is mapped into the Cortex-M3 system
space. This allows other masters in AHB bus matrix to read from and write to eNVM. The capability exists
to map a physical portion of eNVM into the address space occupied at 0x0, which is the Cortex-M3 code
space. This essentially creates a virtual view of the eNVM at address 0x0, allowing users the option of
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storing multiple application images in eNVM and mapping the newest or desired version to address 0x0
in the Cortex-M3 code space.

Figure 2-4 •  System Memory Map with 64 Kbytes of SRAM (A2F200)
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Remapping Embedded SRAMs
The AHB bus matrix supports the ability of remapping the eSRAM address space into code space (both
eSRAM blocks are remapped). In this case, the two eSRAM blocks are remapped to appear at the
bottom of Cortex-M3 code space. During this boot stage, the actual runtime firmware is copied into
eSRAM and the firmware then sets the COM_ESRAMFWREMAP bit in the ESRAM_CR to 1. The
resultant memory map is illustrated in Figure 2-6 on page 22.
By allowing the Cortex-M3 code bus to perform instruction fetches from the eSRAMS, performance is
improved.
The eSRAM remap is actually performed by aliasing the eSRAM blocks, so that they appear in the code
space, but are still accessible in system space. Therefore, the system designer must manage eSRAM
accesses in such a way that a portion of eSRAM allocated in one space (the code space, for example) is
left untouched in the other space (system space, for example).
In Figure 2-5, the Cortex-M3 microcontroller executes the application (including ISRs) from code space,
allowing optimal performance. However, the corresponding region in system space is grayed out.
Conversely, the stack (and heap, if present) as well as buffering for non-M3 masters (such as peripheral
DMA or Ethernet DMA) is allocated out of system space and so must be left grayed out in code space.

Figure 2-5 • Remapped eSRAMs
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Figure 2-6 shows the resulting memory map when eSRAM is remapped.

Figure 2-6 • Memory Map with eSRAM Remapped
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This scheme allows flexibility to the system designer as to how much eSRAM is to be dedicated to each
class of storage. For example, if the application, stack, and heap are small, this allows a large chunk of
contiguous RAM to be allocated to buffering. If on the other hand, the system designer is more interested
in optimal performance than flexibility, then eSRAM_0 could be dedicated to the application (and ISRs),
while eSRAM_1 would be dedicated to stack, heap, and buffering. This would mean that the Cortex-M3
microcontroller operates in a fully Harvard fashion, since eSRAM_0 would only be accessed by the
combined code bus, while eSRAM_1 would only be accessed by the system bus of M3, as well as the
other (non-M3) masters.
Furthermore, if the system designer wishes to have deterministic latencies of ISR execution, the ISRs
need to be located in eSRAM. However, the eSRAM must be uncontended in order to guarantee true
determinism. Therefore, in such situations, the ISR and the stack should be in a separate eSRAM block
from the memory being accessed for buffering by other masters, such as DMA.
The allocation of these memory classes to specific locations in eSRAM is accomplished by configuring
the Cortex-M3 firmware linker script. 
It is also possible for the user to execute code out of external memory (SRAM or flash). This is a slower
interface, due to the latencies in accessing external memory and the fact that instruction fetches from
system space are registered by the Cortex-M3 microcontroller.

The Boot Process
The boot process consists of three distinct steps: factory boot, system boot, and user boot.
Factory boot is reserved for use by Microsemi. System boot can be automated by the Libero® System-
on-Chip (SoC) tool flow using the MSS configurator or can be performed by the user. User boot is
generated by the user, if needed.

Factory Boot 
After reset, the AHB bus matrix maps spare pages 1–17 of eNVM down into the bottom of Cortex-M3
code space at location 0x00000000. These spare pages are factory write protected. Factory boot
initializes the device to a known state and passes control to system boot.

System Boot
System boot consists of the following steps:

1. C startup code.
2. Mapping of eNVM and, optionally, eSRAM to the desired address spaces.
3. Initialization of the microcontroller subsystem (MSS) to a known state.

The user can write portions of the system boot code or use the Libero MSS configurator to provide all the
desired functionality of system boot. The current version of the System Boot code can be read at location
0x60080840.

User Boot
User boot would be any custom code that does not accomplish the steps outlined in the automated
system boot and is optional.
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AHB Bus Matrix Register Map 

AHB Bus Matrix Register Bit Definitions
The AHB bus matrix control registers are located in the system registers address space at 0xE0042000
and extend to address 0xE004FFFF in the Cortex-M3 memory map.

eSRAM Configuration Register

Table 2-2 • AHB Bus Matrix Register Map

Register Name Address R/W Reset Value Description

ESRAM_CR 0xE0042000 R/W 0x00000010 Controls address mapping of the 
eSRAMs

ENVM_CR 0xE0042004 R/W 0x00000072. Configures eNVM parameters 

ENVM_REMAP_SYS_CR 0xE0042008 R/W 0x00000001 eNVM mapping in system space 

ENVM_REMAP_FAB_CR 0xE004200C R/W 0x0 eNVM mapping in fabric master space

FAB_PROT_SIZE_CR 0xE0042010 R/W 0x0000001E Fabric protect size

FAB_PROT_BASE_CR 0xE0042014 R/W 0x0 Fabric protect base address 

AHB_MATRIX_CR 0xE0042018 R/W 0x00000007 Configures the AHB bus matrix

MSS_SR 0xE004201C R 0x0 MSS status bits

CLR_MSS_SR 0xE0042020 W 0x0 Clear the MSS status bits

Table 2-3 • ESRAM_CR

Bit 
Number Name R/W

Reset 
Value Description

31:1 Reserved R/W 0 Read 0. Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the value
of a reserved bit should be preserved across a read-
modify-write operation.

0 COM_ESRAMFWREMAP R/W 0 Remap of embedded SRAMs.
0 = No remapping of the eSRAMs occurs.
1 = eSRAM_0 is mapped to location 0x00000000 and
eSRAM_1 is mapped directly above it.
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eNVM Configuration Register
Table 2-4 • ENVM_CR

Bit 
Number Name R/W

Reset 
Value Description

31:8 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

7 ENVM_SIX_CYCLE R/W 1 0 = No extra delay when reading from eNVM.
1 = Reads from eNVM will have one extra clock cycle of
delay.

6 ENVM_PIPE_BYPASS R/W 0 0 = Pipeline bypass disabled.
1 = Pipeline bypass enabled.

5 Reserved R/W 0 Reserved

4:0 COM_ENVMREMAPSIZE R/W 0b10010 COM_ENVMREMAPSIZE indicates the size of the
segment in eNVM, which is to be remapped to location
0x00000000. This logically splits eNVM into a number of
segments, each of which can be used to store a different
firmware image. COM_ENVMREMAPSIZE is used to
define the segment size for remapping of eNVM to
Cortex-M3 space and for remapping a segment of eNVM
for a soft processor in fabric if one so desires.
SeeTable 2-8 on page 28.
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ENVM_PIPE_BYPASS and ENVM_SIX_CYCLE are used to control access behavior to the eNVM. The
latency of the initial access to a new eNVM page and the subsequent three accesses, if initiated, to the
same eNVM page depends on the state of both ENVM_PIPE_BYPASS and ENVM_SIX_CYCLE. The
latencies (number of FCLK cycles) corresponding to the various combinations of ENVM_SIX_CYCLE
and ENVM_PIPE_BYPASS are as shown in Table 2-6.

Table 2-5 • Definitions of Bit Combinations for COM_ENVMREMAPSIZE 

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Remap Size

0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 Reserved

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 Kbytes

0 1 1 1 0 32 Kbytes

0 1 1 1 1 64 Kbytes

1 0 0 0 0 128 Kbytes

1 0 0 0 1 256 Kbytes

1 0 0 1 0 512 Kbytes, reset value

Table 2-6 • Bit Combination Definitions for ENVM_PIPE_BYPASS and ENVM_SIX_CYCLE

Bit 7 Bit 6 eNVM Access FCLK Cycles*

0 0 Reserved 

0 1 5:1:1:1 

1 0 Reserved

1 1 6:1:1:1

Note: *Refer to the "Embedded Nonvolatile Memory Block (eNVM)" section in the SmartFusion
Customizable System-on-Chip (cSoC) datasheet for useful information in determining speed.
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eNVM Remap Base Address Register

Bits [19:N] of this bus indicate the base address of the remapped segment. The value of N depends on
the eNVM remap section size, so that the base address is aligned according to an even multiple of
segment size. The power of 2 size specified by COM_ENVMREMAPSIZE defines how many bits of base
address are used. For example, if the COM_ENVMREMAPSIZE is 0x0f, this corresponds to a segment
size of 64 Kbytes, which is 216. Therefore, the value of N in this case is 16. The base address of the
region, in this case, is specified by COM_ ENVMREMAPBASE [19:16]. For example:

1. COM_ENVMREMAPBASE[19:16] = 0x0. The 64 Kbytes segment located at the physical memory
address of 0x60000000 is mapped into address 0x00000000.

2. COM_ENVMREMAPBASE[19:16] = 0x1. The 64 Kbytes segment located at the physical memory
address of 0x60010000 is mapped into address 0x00000000.

3. COM_ENVMREMAPBASE[19:16] = 0x2. The 64 Kbytes segment located at the physical memory
address of 0x60020000 is mapped into address 0x00000000.

If the user attempts to remap a segment of eNVM that does not exist, unpredictable results will occur.

Table 2-7 • ENVM_REMAP_SYS_CR

Bit 
Number Name R/W

Reset 
Value Description

31:20 Reserved R/W 0x0000 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value
of a reserved bit should be preserved across a read-
modify-write operation.

19:1 COM_ENVMREMAPBASE R/W 0x40000 Offset address of eNVM for remapping.
COM_ENVMREMAPBASE indicates the offset within 
eNVM address space of the base address of the 
segment in eNVM, which is to be remapped to location 
0x00000000. The base address of the remapped 
segment of eNVM is determined by the value of this bus. 
Bit 0 of this bus is defined as 
COM_ENVMREMAPENABLE.

0 COM_ENVMREMAPENABLE R/W 0b1 0 = eNVM remap not enabled. Bottom of eNVM is
mapped to address 0x00000000.
1 = eNVM remap enabled. eNVM visible at 0x00000000
is a remapped segment of the eNVM.
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eNVM FPGA Fabric Remap Base Address Register

Bits [19:N] of this bus indicate the base address of the remapped segment. The value of N depends on
the eNVM remap section size, so that the base address is aligned according to an even multiple of
segment size. The power of 2 size specified by COM_ENVMREMAPSIZE defines how many bits of base
address are used. For example, if the COM_ENVMREMAPSIZE is 0x0f, this corresponds to a segment
size of 64 Kbytes, which is 216. Therefore the value of N in this case is 16. The base address of the
region, in this case, is specified by COM_ ENVMFABREMAPBASE [19:16]. For example:

1. COM_ ENVMFABREMAPBASE [19:16] = 0x0. The 64 Kbytes segment located at the physical
memory address of 0x60000000 is mapped into address 0x00000000.

2. COM_ ENVMFABREMAPBASE [19:16] = 0x1. The 64 Kbytes segment located at the physical
memory address of 0x60010000 is mapped into address 0x00000000.

3. COM_ ENVMFABREMAPBASE [19:16] = 0x2. The 64 Kbytes segment located at the physical
memory address of 0x60020000 is mapped into address 0x00000000.

If the user attempts to remap a segment of eNVM that does not exist, unpredictable results will occur.

FPGA Fabric Protect Size Register

Table 2-8 • ENVM_REMAP_FAB_CR

Bit 
Number Name R/W

Reset 
Value Description

31:20 Reserved R/W 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the
value of a reserved bit should be preserved across a
read-modify-write operation.

19:1 COM_ENVMFABREMAPBASE R/W 0 Offset address of eNVM for remapping. 
COM_ ENVMFABREMAPBASE indicates the offset 
within eNVM address space of the base address of 
the segment in eNVM, which is to be remapped to 
location 0x00000000 for use by a soft processor in 
the FPGA fabric. The base address of the remapped 
segment of eNVM is determined by the value of this 
bus. Bit 0 of this bus is defined as 
COM_ENVMFABREMAPENABLE.

0 COM_ENVMFABREMAPENABLE R/W 0 0 = eNVM remap not enabled. Bottom of eNVM is
mapped to address 0x00000000.
1 = eNVM remap enabled. eNVM visible at
0x00000000 is a remapped segment of the eNVM.

Table 2-9 • FAB_PROT_SIZE_CR

Bit 
Number Name R/W

Reset 
Value Description

31:5 Reserved R/W 0x00000 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

4:0 COM_PROTREGIONSIZE R/W 0x1E Size of the memory region inaccessible to the FPGA fabric
master.
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Table 2-10 • Definitions of Bit Combinations for COM_PROTREGIONSIZE

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Remap Size

0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 128 Bytes

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 2 Kbytes

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 Kbytes

0 1 1 1 0 32 Kbytes

0 1 1 1 1 64 Kbytes

1 0 0 0 0 128 Kbytes

1 0 0 0 1 256 Kbytes

1 0 0 1 0 512 Kbytes

1 0 0 1 1 Reserved

1 0 1 0 0 Reserved

1 0 1 0 1 Reserved

1 0 1 1 0 8 Mbytes

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 128 Mbytes

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 2 Gbytes

1 1 1 1 1 Reserved
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FPGA Fabric Protect Base Register

For example, if the COM_PROTREGIONSIZE is 0x0F, this corresponds to a segment size of 64 Kbytes,
which is 216. Therefore the value of N in this case is 16. So the base address of the region, in this case,
is specified by COM_PROTREGIONBASE [31:16]. Likewise, if COM_PROTREGIONSIZE is 0x10, this
corresponds to a segment size of 128 Kbytes, which is 217. Therefore the value of N in this case is 17. So
the absolute base address of the region is specified by COM_PROTREGIONBASE [31:17]. For example:

1. COM_PROTREGIONBASE [31:17] = 0x0000. The 128 Kbytes segment located at the physical
memory address of 0x60000000 is protected from FPGA fabric master access.

2. COM_PROTREGIONBASE [31:17] = 0x0001. The 128 Kbytes segment located at the physical
memory address of 0x60020000 is protected from FPGA fabric master access.

3. COM_PROTREGIONBASE [31:17] = 0x0002. The 128 Kbytes segment located at the physical
memory address of 0x60040000 is protected from FPGA fabric master access.

4. COM_PROTREGIONBASE [31:17] = 0x0003. The 128 Kbytes segment located at the physical
memory address of 0x60060000 is protected from FPGA fabric master access.

5. COM_PROTREGIONBASE [31:17] = 0x0004. The 128 Kbytes segment located at the physical
memory address of 0x60080000 is protected from FPGA fabric master access.

Table 2-11 • FAB_PROT_BASE_CR

Bit 
Number Name R/W

Reset 
Value Description

31:N COM_PROTREGIONBASE R/W 0 Bits [31:N] of this bus indicate the absolute base
address of the protected segment. The value of N
depends on the protected region size, so that the base
address is aligned according to an even multiple of
segment size. The power of 2 size specified by
COM_PROTREGIONSIZE defines how many bits of
base address are used. See examples below. 

0 COM_PROTREGIONENABLE R/W 0 0 = Protection region disabled. A fabric master can
access any location in the memory map as long as the
fabric master port is enabled in the AHB bus matrix.
1 = Protection region enabled. Any access by a fabric
master to this region of memory returns an error in the
bus transaction. 
The COM_ERRORSTATUS field of the MSS_SR 
register is updated appropriately. The 
ABM_ERROR_IRQ signal is also asserted and a trap 
can be made if IRQ24 is enabled in the NVIC.
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AHB Bus Matrix Configuration Register
Table 2-12 • AHB_MATRIX_CR

Bit 
Number Name R/W Reset Value Description

31:4 Reserved R/W 0x0000000 Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the
value of a reserved bit should be preserved across a
read-modify-write operation.

3 COM_WEIGHTEDMODE R/W 0 0 = Round robin slave arbitration (reset default).
1 = Weighted round robin slave arbitration.

2:0 COM_MASTERENABLE R/W 0 Enable control for each of the non-Cortex-M3
masters connected to the AHB bus matrix. For each
of these masters, if the corresponding bit is 0, then
the master cannot access any of the slave ports
connected to the matrix. If the bit is 1, the master
can access any of the slaves connected to the
matrix. In the case of the fabric master, access is
further qualified with the protected region
mechanism, described above. 
The bits have the following definitions:
Bit 2: Peripheral DMA
0 = Peripheral DMA cannot access any AHB bus
matrix slaves.
1 = Peripheral DMA has access to the AHB bus
matrix slaves.
Bit 1: Ethernet MAC
0 = Ethernet MAC cannot access any AHB bus
matrix slaves.
1 = Ethernet MAC has access to the AHB bus matrix
slaves.
Bit 0: FPGA fabric master
0 = FPGA master cannot access any AHB bus
matrix slaves.
1 = FPGA master has access to AHB bus matrix
slaves qualified by FAB_PROT_BASE_CR and
FAB_PROT_SIZE_CR values.
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Microcontroller Subsystem Status Register (MSS_SR)
Table 2-13 • MSS_SR

Bit 
Number Name R/W

Reset 
Value Description

31:11 Reserved R 0x00000 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

10 PLLLOCKLOSTINT R 0 This bit indicates that a falling edge event occurred on
PLLLOCK. This signal is also available to the FPGA fabric.
This indicates that the PLL lost lock. This signal corresponds
to IRQ23 in the Cortex-M3 NVIC. IRQ23 corresponds to bit
location 23 in the 32-bit word at address location
0xE000E100. This bit is read-only and can be cleared by
writing a 1 to the CLRPLLLOCKLOSTINT bit in the
CLR_MSS_SR register. 
0 = "Don't care."
1 = PLL lost lock.

9 PLLLOCKINT R 0 This bit indicates that a rising edge event occurred on the
PLLLOCK signal. This indicates that the PLL is locked. This
signal corresponds to IRQ22 in the Cortex-M3 NVIC. IRQ22
corresponds to bit location 22 in the 32-bit word at address
location 0xE000E100. This bit is read-only and can be
cleared by writing a 1 to the CLRPLLLOCKINT bit in the
CLR_MSS_SR register.
0 = "Don't care."
1 = PLL came into lock.

8:4 COM_ERRORSTATUS R 0 Each bit on this bus indicates if any accesses by the
corresponding master on the AHB bus matrix resulted in
either HRESP assertion by the slave to the AHB bus matrix,
HRESP assertion by the AHB bus matrix to that master (in
the case of blocked fabric master) or was decoded by the
AHB bus matrix as being unimplemented address space.
These register bits are sticky and are cleared by writing one
to the corresponding COM_CLEARSTATUS bit in the
CLR_MSS_SR register. 
Bit definitions are as follows:
Bit 8: Peripheral DMA master
Bit 7: Ethernet MAC master
Bit 6: Fabric master
Bit 5: Cortex-M3 system bus master
Bit 4: Cortex-M3 I-Code/D-Code bus master
These signals are not used as interrupts to the Cortex-M3
microcontroller. Instead, they are ORed together in the AHB
bus matrix to create a signal called ABM_ERROR_IRQ,
which is used as an interrupt to the Cortex-M3
microcontroller. This signal corresponds to IRQ24 in the
Cortex-M3 NVIC. IRQ24 corresponds to bit location 24 in the
32-bit word at address location 0xE000E100.
ABM_ERROR_IRQ is not brought into the System
Register’s space as a status bit for user’s firmware to read.
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3 BROWNOUT3_3VINT R 0 Indicates that the 3.3 V supply has dropped below 2.5 V.
This signal corresponds to IRQ 2 in the Cortex-M3 NVIC.
IRQ 2 corresponds to bit location 2 in the 32-bit word at
address location 0xE000E100. 
0 = "Don't care."
1 = 3.3 V has fallen below 2.5 V.

2 BROWNOUT1_5VINT R 0 Indicates that the 1.5 V supply has dropped below 1.3 V.
This signal corresponds to IRQ 1 in the Cortex-M3 NVIC.
IRQ 1 corresponds to bit location 1 in the 32-bit word at
address location 0xE000E100.
0 = "Don't care."
1 = 1.5 V has fallen below 1.3 V.

1 WDOGTIMEOUTEVENT R 0 This signal is a sticky version of the WDOGTIMEOUTINT
signal (which is itself sticky but is cleared by
MSS_SYSTEM_RESET_N). WDOGTIMEOUTEVENT is not
affected by MSS_SYSTEM_RESET_N. This allows
firmware to determine if a system reset occurred due to a
watchdog timeout event. This signal is not used as an
interrupt to the Cortex-M3 microcontroller. This bit is reset to
0 by PORESET_N only and is unaffected by
MSS_SYSTEM_RESET_N.

0 = "Don't care."
1 = Watchdog has timed out.

0 RTCMATCHEVENT R 0 This signal is a sticky version of the MATCH signal from the
RTC. If a rising edge event is seen on MATCH, after
synchronization to FCLK domain, then this bit is asserted. It
stays asserted until cleared by CLRRTCMATCHEVENT.
This signal is used as an interrupt to the Cortex-M3
microcontroller. This signal corresponds to IRQ3 in the
Cortex-M3 NVIC. IRQ3 corresponds to bit location 3 in the
32-bit word at address location 0xE000E100. Reset value =
0.
0 = "Don't care."
1 = RTC has matched an event.

Table 2-13 • MSS_SR (continued)

Bit 
Number Name R/W

Reset 
Value Description
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Clear Microcontroller Subsystem Status Register
Table 2-14 • CLR_MSS_SR

Bit 
Number Name R/W

Reset 
Value Description

31:11 Reserved W 0 To provide compatibility with future products, the value
of a reserved bit should be preserved across a write
operation by writing a zero to those bits. 

10 CLRPLLLOCKLOSTINT W 0 Writing a 1 to this bit clears the interrupt signal
PLLLOCKLOSTINT. Writing a zero has no effect.
0 = No effect.
1 = Clear the PLLLOCKLOSTINT signal.

9 CLRPLLLOCKINT W 0 Writing a 1 to this bit clears the interrupt signal
PLLLOCKTINT. Writing a zero has no effect.
0 = No effect.
1 = Clear the PLLLOCKINT signal.

8:4 COM_CLEARSTATUS W 0 Writing a 1 to any of the bits in COM_CLEARSTATUS
clears the interrupt signal ABM_ERROR_IRQ. Writing a
zero has no effect.
Bit 8: Peripheral DMA master
Bit 7: Ethernet MAC master
Bit 6: Fabric master
Bit 5: Cortex-M3 system bus master
Bit 4: Cortex-M3 I-Code/D-Code bus master

3 CLRBROWNOUT3_3VINT W 0 Writing a 1 to this bit clears the interrupt signal
BROWNOUT3_3VINT. Writing a zero has no effect.
0 = No effect.
1 = Clear the BROWNOUT3_3VINT signal.

2 CLRBROWNOUT1_5VINT W 0 Writing a 1 to this bit clears the interrupt signal
BROWNOUT1_5VINT. Writing a zero has no effect.
0 = No effect.
1 = Clear the BROWNOUT1_5VINT signal.

1 CLRWDOGTIMEOUTEVENT W 0 Writing a 1 to this bit clears the WDOGTIMEOUTEVENT 
bit in the WDOG_EVENT_REG register. Writing a zero 
has no effect.
0 = No effect.
1 = Clear the WDOGTIMEOUTEVENT.

0 CLRRTCMATCHEVENT W 0 Writing a 1 to this bit clears the RTCMATCHEVENT bit
in the RTC_MATCH_EVENT_REG register. Writing a
zero has no effect.
0 = No effect.
1 = Clear the RTCMATCHEVENT.
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3 – Peripheral DMA (PDMA) 

The PDMA offloads the ARM Cortex-M3 processor from data movement tasks from peripherals to
memory, memory to peripherals, and memory to memory. The block diagram of the PDMA is shown in
Figure 3-1.

PDMA Features
• 8 channels
• Ping-pong mode support
• Memory to memory DMA capable
• Channels can be designated as high priority

Functional Description
The PDMA consists of eight instances of a single DMA channel design. Each channel can be configured
to perform 8-bit, 16-bit, or 32-bit transfers from the peripheral to memory, memory to peripheral, or
between memory and memory. Channels can be assigned to peripherals or memory arbitrarily. For
example, if the user is interested in receiving only DMA data from one of the SPI ports, only one channel
is required. In this case, the DIR bit in the CHx_CONTROL_REG would be set to 0 (peripheral to
memory) and the PERIPHERAL_SEL field would be set to 4 (SPI_0 receive to memory). Throughout this
document, a lower case x in register and signal descriptions is used as a place holder for 0 or 1,
indicating PDMA_0 or PDMA_1.

Figure 3-1 • PDMA Block Diagram
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Peripheral DMA (PDMA)
If bidirectional DMA of peripheral to memory (receive) and memory to peripheral (transmit) is desired,
two channels must be programmed appropriately. In particular, the TRANSFER_SIZE fields in both the
CHx_CONTROL_REG registers must be programmed identically.
The PDMA performs the correct byte lane adjustments appropriate to the address being used on the
AHB. Efficient use of memory storage is achieved in this manner, even if only performing byte or 16-bit
accesses to or from a peripheral. 
For accesses by the PDMA to peripherals, the lowest 8 or 16 bits of the data bus are always used for 8-
bit or 16-bit transfers. For 32-bit transfers, the full 32 bits are used.
It is possible to configure the data width of a transfer to be independent of the address increment. The
address increment at both ends of the DMA transfer can be different, which is required when reading
from a peripheral holding register (single address) and writing to memory incrementally (many
addresses).
DMA transfers can be paused by setting the PAUSE bit in the CHx_CONTROL_REG. The DMA will stall
until the user clears this bit.
The PDMA performs single cycle accesses on the AHB interface. No DMA operations occur on the APB
bus interface of the PDMA. This interface is purely an APB slave, used for configuration of the PDMA. 
For each peripheral DMA channel (0 to 7), two sets of registers are maintained in the PDMA. These are
set up by firmware in order to specify the start address of the DMA burst, the destination address of the
DMA burst, and the transfer count of the DMA burst for each of the two buffers.  This is called ping-pong
mode.

Ping-Pong Mode
In order to support continuous DMA operations on each peripheral DMA channel, dual-buffering is
provided, along with two sets of registers per channel. The buffers are referred to as A and B. The
sequence of operations performed by firmware for ping-pong operation on DMA channel 0 is as follows:
(the channel is assumed to be configured properly by writing to CHANNEL_0_CTRL first).

1. Write to CHANNEL_0_BUFFER_A_SRC_ADDR.
2. Write to CHANNEL_0_BUFFER_A_DST_ADDR.
3. Write to CHANNEL_0_BUFFER_B_SRC_ADDR.
4. Write to CHANNEL_0_BUFFER_B_DST_ADDR.
5. Write to CHANNEL_0_BUFFER_A_TRANSFER_COUNT (DMA starts using buffer A).
6. Write to CHANNEL_0_BUFFER_B_TRANSFER_COUNT (DMA will use buffer B when

CHANNEL_0_BUFFER_A_TRANSFER_COUNT is 0).
7. Wait for interrupt on the DMA channel, buffer A.
8. Write to CHANNEL_0_BUFFER_A_SRC_ADDR.
9. Write to CHANNEL_0_BUFFER_A_DST_ADDR.
10. Write to CHANNEL_0_BUFFER_A_TRANSFER_COUNT (DMA will use buffer A when

CHANNEL_0_BUFFER_B_TRANSFER_COUNT is 0).
11. Wait for interrupt on the DMA channel, buffer B.
12. Write to CHANNEL_0_BUFFER_B_SRC_ADDR.
13. Write to CHANNEL_0_BUFFER_B_DST_ADDR.
14. Write to CHANNEL_0_BUFFER_B_TRANSFER_COUNT (DMA will use buffer B when

CHANNEL_0_BUFFER_A_TRANSFER_COUNT is 0).
15. Repeat steps 7 to 14 until finished.

This removes the real-time constraint on the firmware of having to service the DMA channel in real time,
which would exist if there were only one DMA buffer per channel.
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Posted APB Writes
The AHB to APB bridges in SmartFusion cSoCs implement posted writes (also called dump and run) for
write accesses to peripherals. The effect of this is that if the PDMA performs a write operation to a
peripheral, the data is not actually written into the peripheral until sometime after the PDMA block thinks
it is written. Therefore, the PDMA block should not start another DMA on this channel based on the state
of the ready signal from that peripheral until the write is complete. The time window involved is variable,
depending on the ratio of FCLK to the APB clocks (PCLK0, PCLK1, or ACLK). WRITE_ADJ in
CHx_CONTROL_REG is an 8-bit binary coded field used to define, for each DMA channel, how long to
wait (in FCLKs) after each DMA transfer cycle before interpreting the ready signal for that DMA channel
as representing a new request.

Memory to Memory Transfers
For memory to memory transfers, the DMA starts once the BUF_A_COUNT or BUF_B_COUNT is non-
zero. Firmware should initialize the transfer first by writing to the source, destination, and control
registers; then writing to one of the transfer count registers, BUF_A_COUNT or BUF_B_COUNT, to
initiate the DMA. If the PAUSE bit in CHx_CONTROL_REG is set when the user writes a non-zero value
to either BUF_A_COUNT or BUF_B_COUNT, the DMA cycle will wait until PAUSE is cleared.

Channel Priority
The arbitration algorithm used to service the channels assumes all channels are equal priority by default.
However, it is possible to define a channel as being high priority. For example, the user may want to give
higher priority to DMA channels corresponding to SPI peripherals than to those corresponding to UARTs,
as SPI has no built-in flow-control.
As a way of prioritizing traffic within the DMA, the RATIOHILO field in RATIO_HIGH_LOW is used to
indicate the ratio of high priority to low priority DMA access opportunities. This register gives the number
of DMA opportunities provided by the channel arbiter to high priority channels for every one opportunity
provided to a low priority channel. Table 3-1 describes valid values for RATIOHILO. All other values are
reserved; RATIOHILO can only assume a value listed in the Value column of Table 3-1. 

For example, a RATIOHILO value of 3:1 means that if there are continuous high priority requests and low
priority requests, then there will be 3 high priority requests serviced to one low priority request. There is
an internal counter in the PDMA which takes its value from the RATIOHILO value. When this internal
counter reaches 0, low priority requests are allowed. Each time a high priority request is serviced, the
counter is decremented by 1. Each time a low priority request is serviced, the internal counter is reset to
the RATIOHILO value.

Table 3-1 • RATIOHILO Field Definition

Value High:Low Ratio Comments

0 – Round Robin

1 1:1 Ping-pong between high and low priority requests

3 3:1 3 high to 1 low 

7 7:1  7 high to 1 low

15 15:1  15 high to 1 low

31 31:1  31 high to 1 low

63 63:1  63 high to 1 low

127 127:1  127 high to 1 low

255 255:1  255 high to 1 low

All others  Reserved
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When RATIOHILO is a 0, the high requests and the low requests will round robin. This is built into the
arbiter. The arbiter does a high request and then asks if a low request is permitted. Similarly, a value of 1
in RATIOHILO will allow for ping-ponging between high and low requests. This is not to be confused with
ping-pong mode.

System Dependencies

Clocks
The PDMA runs off the system clock, FCLK. Users must be cognizant of the clock speed of the APB bus
over which DMA transfers are being exercised. The field WRITE_ADJ contains a binary value, indicating
the number of FCLK periods the PDMA must wait after completion of a read or write access to a
peripheral before evaluating the out-of-band status signals from that peripheral for another transfer. This
is typically used to ensure that a posted write has fully completed to the peripheral in cases where the
peripheral is running at a lower clock frequency than the PDMA. However, it may also be used to allow
the PDMA to take account of internal latencies in the peripheral, where the ready status of a FIFO may
not be available for a number of clock ticks after a read or write, due to internal synchronization delays,
for example, within the peripheral. This applies particularly in the case of user-designed peripherals in
the FPGA fabric.

Resets
All PDMA registers are reset to zero on power-up. Users have the option under software control to reset
the PDMA by writing to the System Register located on the private peripheral bus of the Cortex-M3
processor. Specifically, this System Register is SOFT_RST_CR, located at address 0xE0042030. The
PDMA_SR control bit is encoded in bit location 5 as follows:
Bit 5: Function
0: PDMA reset released
1: PDMA held in reset (reset value)
In addition to being able to reset the entire PDMA under firmware control, each individual channel can be
reset by user firmware by setting the RESET bit in the CHx_CONTROL_REG to 1.

Interrupts
There is one interrupt (DMAINTERRUPT) from the PDMA to the NVIC on the Cortex-M3 processor (see
Table 1-5 on page 10).
The DMAINTERRUPT signal is mapped to INTISR[9] or IRQ 9 in the Cortex-M3 NVIC controller. The
interrupt enable bit for DMAINTERRUPT within the NVIC is located at address 0xE000E100; IRQ 9
corresponds to bit location 9. Users must also enable specific channel interrupts within the PDMA by
setting the INTEN bit in the CHx_CONTROL_REG to 1. Users can determine which buffer of which
channel caused the interrupt by reading the BUFFER_STATUS.
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Table 3-2 • PDMA Memory Map

Register Name Address R/W
Reset 
Value Description

RATIO_HIGH_LOW 0x40004000 R/W 0 Ratio of high priority transfers
versus low priority transfers

BUFFER_STATUS 0x40004004 R/W 0 Indicates when buffers have
drained

CHANNEL_x_CONTROL (x = 0) 0x40004020 R/W 0 Channel 0 Control Register

CHANNEL_x_STATUS (x = 0) 0x40004024 R 0 Channel 0 Status Register

CHANNEL_x_BUFFER_A_SRC_ADDR (x = 0) 0x40004028 R/W 0 Channel 0 buffer A source address

CHANNEL_x_BUFFER_A_DST_ADDR (x = 0) 0x4000402C R/W 0 Channel 0 buffer A destination
address

CHANNEL_x_BUFFER_A_TRANSFER_COUNT
(x = 0)

0x40004030 R/W 0 Channel 0 buffer A transfer count

CHANNEL_x_BUFFER_B_SRC_ADDR (x = 0) 0x40004034 R/W 0 Channel 0 buffer B source address

CHANNEL_x_BUFFER_B_DST_ADDR (x = 0) 0x40004038 R/W 0 Channel 0 buffer B destination
address

CHANNEL_x_BUFFER_B_TRANSFER_COUNT
(x = 0)

0x4000403C R/W 0 Channel 0 buffer B transfer count

CHANNEL_1_CTRL 0x40004040 R/W 0 Channel 1 Control Register

CHANNEL_1_STATUS 0x40004044 R 0 Channel 1 Status Register

CHANNEL_1_BUFFER_A_SRC_ADDR 0x40004048 R/W 0 Channel 1 buffer A source address

CHANNEL_1_BUFFER_A_DST_ADDR 0x4000404C R/W 0 Channel 1 buffer A destination
address

CHANNEL_1_BUFFER_A_TRANSFER_COUNT 0x40004050 R/W 0 Channel 1 buffer A transfer count

CHANNEL_1_BUFFER_B_SRC_ADDR 0x40004054 R/W 0 Channel 1 buffer B source address

CHANNEL_1_BUFFER_B_DST_ADDR 0x40004058 R/W 0 Channel 1 buffer B destination
address

CHANNEL_1_BUFFER_B_TRANSFER_COUNT 0x4000405C R/W 0 Channel 1 buffer B transfer count

CHANNEL_2_CTRL 0x40004060 R/W 0 Channel 2 Control Register

CHANNEL_2_STATUS 0x40004064 R 0 Channel 2 Status Register

CHANNEL_2_BUFFER_A_SRC_ADDR 0x40004068 R/W 0 Channel 2 buffer A source address

CHANNEL_2_BUFFER_A_DST_ADDR 0x4000406C R/W 0 Channel 2 buffer A destination
address

CHANNEL_2_BUFFER_A_TRANSFER_COUNT 0x40004070 R/W 0 Channel 2 buffer A transfer count

CHANNEL_2_BUFFER_B_SRC_ADDR 0x40004074 R/W 0 Channel 2 buffer B source address

CHANNEL_2_BUFFER_B_DST_ADDR 0x40004078 R/W 0 Channel 2 buffer B destination
address

CHANNEL_2_BUFFER_B_TRANSFER_COUNT 0x4000407C R/W 0 Channel 2 buffer B transfer count

CHANNEL_3_CTRL 0x40004080 R/W 0 Channel 3 Control Register
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CHANNEL_3_STATUS 0x40004084 R 0 Channel 3 Status Register

CHANNEL_3_BUFFER_A_SRC_ADDR 0x40004088 R/W 0 Channel 3 buffer A source address

CHANNEL_3_BUFFER_A_DST_ADDR 0x4000408C R/W 0 Channel 3 buffer A destination
address

CHANNEL_3_BUFFER_A_TRANSFER_COUNT 0x40004090 R/W 0 Channel 3 buffer A transfer count

CHANNEL_3_BUFFER_B_SRC_ADDR 0x40004094 R/W 0 Channel 3 buffer B source address

CHANNEL_3_BUFFER_B_DST_ADDR 0x40004098 R/W 0 Channel 3 buffer B destination
address

CHANNEL_3_BUFFER_B_TRANSFER_COUNT 0x4000409C R/W 0 Channel 3 buffer B transfer count

CHANNEL_4_CTRL 0x400040A0 R/W 0 Channel 4 Control Register

CHANNEL_4_STATUS 0x400040A4 R 0 Channel 4 Status Register

CHANNEL_4_BUFFER_A_SRC_ADDR 0x400040A8 R/W 0 Channel 4 buffer A source address

CHANNEL_4_BUFFER_A_DST_ADDR 0x400040AC R/W 0 Channel 4 buffer A destination
address

CHANNEL_4_BUFFER_A_TRANSFER_COUNT 0x400040B0 R/W 0 Channel 4 buffer A transfer count

CHANNEL_4_BUFFER_B_SRC_ADDR 0x400040B4 R/W 0 Channel 4 buffer B source address

CHANNEL_4_BUFFER_B_DST_ADDR 0x400040B8 R/W 0 Channel 4 buffer B destination
address

CHANNEL_4_BUFFER_B_TRANSFER_COUNT 0x400040BC R/W 0 Channel 4 buffer B transfer count

CHANNEL_5_CTRL 0x400040C0 R/W 0 Channel 5 Control Register

CHANNEL_5_STATUS 0x400040C4 R 0 Channel 5 Status Register

CHANNEL_5_BUFFER_A_SRC_ADDR 0x400040C8 R/W 0 Channel 5 buffer A source address

CHANNEL_5_BUFFER_A_DST_ADDR 0x400040CC R/W 0 Channel 5 buffer A destination
address

CHANNEL_5_BUFFER_A_TRANSFER_COUNT 0x400040D0 R/W 0 Channel 5 buffer A transfer count

CHANNEL_5_BUFFER_B_SRC_ADDR 0x400040D4 R/W 0 Channel 5 buffer B source address

CHANNEL_5_BUFFER_B_DST_ADDR 0x400040D8 R/W 0 Channel 5 buffer B destination
address

CHANNEL_5_BUFFER_B_TRANSFER_COUNT 0x400040DC R/W 0 Channel 5 buffer B transfer count

CHANNEL_6_CTRL 0x400040E0 R/W 0 Channel 6 Control Register

CHANNEL_6_STATUS 0x400040E4 R 0 Channel 6 Status Register

CHANNEL_6_BUFFER_A_SRC_ADDR 0x400040E8 R/W 0 Channel 6 buffer A source address

CHANNEL_6_BUFFER_A_DST_ADDR 0x400040EC R/W 0 Channel 6 buffer A destination
address

CHANNEL_6_BUFFER_A_TRANSFER_COUNT 0x400040F0 R/W 0 Channel 6 buffer A transfer count

CHANNEL_6_BUFFER_B_SRC_ADDR 0x400040F4 R/W 0 Channel 6 buffer B source address

CHANNEL_6_BUFFER_B_DST_ADDR 0x400040F8 R/W 0 Channel 6 buffer B destination
address

Table 3-2 • PDMA Memory Map (continued)

Register Name Address R/W
Reset 
Value Description
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CHANNEL_6_BUFFER_B_TRANSFER_COUNT 0x400040FC R/W 0 Channel 6 buffer B transfer count

CHANNEL_7_CTRL 0x40004100 R/W 0 Channel 7 Control Register

CHANNEL_7_STATUS 0x40004104 R 0 Channel 7 Status Register

CHANNEL_7_BUFFER_A_SRC_ADDR 0x40004108 R/W 0 Channel 7 buffer A source address

CHANNEL_7_BUFFER_A_DST_ADDR 0x4000410C R/W 0 Channel 7 buffer A destination
address

CHANNEL_7_BUFFER_A_TRANSFER_COUNT 0x40004110 R/W 0 Channel 7 buffer A transfer count

CHANNEL_7_BUFFER_B_SRC_ADDR 0x40004114 R/W 0 Channel 7 buffer B source address

CHANNEL_7_BUFFER_B_DST_ADDR 0x40004118 R/W 0 Channel 7 buffer B destination
address

CHANNEL_7_BUFFER_B_TRANSFER_COUNT 0x4000411C R/W 0 Channel 7 buffer B transfer count

Table 3-2 • PDMA Memory Map (continued)

Register Name Address R/W
Reset 
Value Description

Table 3-3 • RATIO_HIGH_LOW

Bit 
Number Name R/W

Reset 
Value Function

31:8 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

7:0 RATIOHILO R/W 0 This field indicates the ratio of high priority to low priority for DMA
access opportunities. Only certain values are allowed, as indicated
in Table 3-1 on page 37.
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BUFFER_STATUS Register 
Table 3-4 • BUFFER_STATUS

Bit 
Number Name R/W

Reset 
Value Function

31:16 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

15 CH7BUFB R/W 0 If CH_COMP_B for channel 7 is set and if BUF_B_SEL for channel
7 is clear, then this bit is asserted = 1.

14 CH7BUFA R/W 0 If CH_COMP_A for channel 7 is set and if BUF_A_SEL for channel
7 is clear, then this bit is asserted = 1.

13 CH6BUFB R/W 0 If CH_COMP_B for channel 6 is set and if BUF_B_SEL for channel
6 is clear, then this bit is asserted = 1.

12 CH6BUFA R/W 0 If CH_COMP_A for channel 6 is set and if BUF_A_SEL for channel
6 is clear, then this bit is asserted = 1.

11 CH5BUFB R/W 0 If CH_COMP_B for channel 5 is set and if BUF_B_SEL for channel
5 is clear, then this bit is asserted = 1.

10 CH5BUFA R/W 0 If CH_COMP_A for channel 5 is set and if BUF_A_SEL for channel
5 is clear, then this bit is asserted = 1.

9 CH4BUFB R/W 0 If CH_COMP_B for channel 4 is set and if BUF_B_SEL for channel
4 is clear, then this bit is asserted = 1.

8 CH4BUFA R/W 0 If CH_COMP_A for channel 4 is set and if BUF_A_SEL for channel
4 is clear, then this bit is asserted = 1.

7 CH3BUFB R/W 0 If CH_COMP_B for channel 3 is set and if BUF_B_SEL for channel
3 is clear, then this bit is asserted = 1.

6 CH3BUFA R/W 0 If CH_COMP_A for channel 3 is set and if BUF_A_SEL for channel
3 is clear, then this bit is asserted = 1.

5 CH2BUFB R/W 0 If CH_COMP_B for channel 2 is set and if BUF_B_SEL for channel
2 is clear, then this bit is asserted = 1.

4 CH2BUFA R/W 0 If CH_COMP_A for channel 2 is set and if BUF_A_SEL for channel
2 is clear, then this bit is asserted = 1.

3 CH1BUFB R/W 0 If CH_COMP_B for channel 1 is set and if BUF_B_SEL for channel
1 is clear, then this bit is asserted = 1.

2 CH1BUFA R/W 0 If CH_COMP_A for channel 1 is set and if BUF_A_SEL for channel
1 is clear, then this bit is asserted = 1.

1 CH0BUFB R/W 0 If CH_COMP_B for channel 0 is set and if BUF_B_SEL for channel
0 is clear, then this bit is asserted = 1.

0 CH0BUFA R/W 0 If CH_COMP_A for channel 0 is set and if BUF_A_SEL for channel
0 is clear, then this bit is asserted = 1.
42 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
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Table 3-5 • CHANNEL_x_CONTROL 

Bit 
Number Name R/W

Reset 
Value Function

31:27 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

26:23 PERIPHERAL_SEL R/W 0 Selects the peripheral assigned to this channel. See Table 3-6
on page 44.

22 Reserved R/W 0 Reserved

21:14 WRITE_ADJ R/W 0 This field contains a binary value, indicating the number of
FCLK periods which the PDMA must wait after completion of a
read or write access to a peripheral before evaluating the out-
of-band status signals from that peripheral for another transfer.
This is typically used to ensure that a posted write has fully
completed to the peripheral in cases where the peripheral is
running at a lower clock frequency than the PDMA. However,
it can also be used to allow the PDMA to take account of
internal latencies in the peripheral, where the ready status of a
FIFO may not be available for a number of clock ticks after a
read or write, due to internal synchronization delays, for
example, within the peripheral. This applies particularly in the
case of user-designed peripherals in the FPGA fabric.

13:12 DSTADDRINC R/W 0 This field controls the destination address increment for the
DMA transfer. The values have the following meanings: 0 = 0
byte, 1 = 1 byte, 2 = 2 bytes, 3 = 4 bytes.

11:10 SRCADDRINC R/W 0 This field controls the source address increment for the DMA
transfer. The values have the following meanings: 0 = 0 byte,
1 = 1 byte, 2 = 2 bytes, 3 = 4 bytes

9 HI_PRIORITY R/W 0 When = 1, this channel is defined to be a high priority channel.

8 CLR_COMP_B R/W 0 When asserted, clears the CH_COMP_B bit in the
CHx_STATUS_REG and the BUFFER_STATUS for this buffer
(B) in this channel x. This causes DMAINTERRUPT to negate
if not being held asserted by another channel. This bit always
reads back as zero.

7 CLR_COMP_A R/W 0 When asserted, clears the CH_COMP_A bit in the
CHx_STATUS_REG and the BUFFER_STATUS for this buffer
(A) in this channel x. This causes DMAINTERRUPT to negate
if not being held asserted by another channel. This bit always
reads back as zero.

6 INTEN R/W 0 When = 1, a DMA completion on this channel causes
DMAINTERRUPT to assert. When = 0, DMA completions for
this channel do not cause assertion of DMAINTERRUPT.

5 RESET R/W 0 When = 1, resets this channel.  Always read backs as 0.

4 PAUSE R/W 0 When = 1, pauses the transfer for this channel until set to 0.

3:2 TRANSFER_SIZE R/W 0 This field determines the data width of each DMA transfer
cycle for this DMA channel. 0b00 = byte, 0b01 = halfword,
0b10 = word, 0b11 = reserved.
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PERIPHERAL_SEL

1 DIR R/W 0 If PERIPHERAL_DMA = 1, then this bit is valid. When = 0,
transfers are from peripheral to memory. When = 1, transfers
are from memory to peripheral.

0 PERIPHERAL_DMA R/W 0 When = 0, this channel is configured for memory to memory
DMA. When = 1, this channel is configured for peripheral
DMA.

Table 3-5 • CHANNEL_x_CONTROL  (continued)

Bit 
Number Name R/W

Reset 
Value Function

Table 3-6 • PERIPHERAL_SEL

Bit 26 Bit 25 Bit 24 Bit 23 Function

0 0 0 0 From UART_0 receive to any MSS memory mapped address

0 0 0 1 From any MSS memory mapped address to UART_0 transmit

0 0 1 0 From UART_1 receive to any MSS memory mapped address

0 0 1 1 From any MSS memory mapped address to UART_1 transmit

0 1 0 0 From SPI_0 receive to any MSS memory mapped address

0 1 0 1 From any MSS memory mapped address to SPI_0 transmit

0 1 1 0 From SPI_1 receive to any MSS memory mapped address

0 1 1 1 From any MSS memory mapped address to SPI_1 transmit.

1 0 0 0 From to/from FPGA fabric peripheral DMAREADY1

1 0 0 1 From to/from FPGA fabric peripheral DMAREADY0

1 0 1 0 From any MSS memory mapped address to the ACE

1 0 1 1 From the ACE to any MSS memory mapped address
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CHANNEL_x_STATUS Register

CHANNEL_x_BUFFER_A_SRC_ADDR Register

CHANNEL_x_BUFFER_A_DST_ADDR Register

Table 3-7 • CHANNEL_x_STATUS

Bit 
Number Name R/W Reset Value Function

31:3 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

2 BUF_SEL R/W 0 When = 0, buffer A is used. When = 1, buffer B is used.

1 CH_COMP_B R/W 0 Asserts when this channel completes its DMA. Cleared by writing
to CLR_COMP_B, bit 8 in CHx_CONTROL_REG for this channel.
If INTEN is set for this channel, then the assertion of
CH_COMP_B causes DMAINTERRUPT to assert.

0 CH_COMP_A R/W 0 Asserts when this channel completes its DMA. Cleared by writing
to CLR_COMP_A, bit 8 in CHx_CONTROL_REG for this channel.
If CHx_INTEN is set for this channel, then the assertion of
CH_COMP_A causes DMAINTERRUPT to assert.

Table 3-8 • CHANNEL_x_BUFFER_A_SRC_ADDR

Bit 
Number Name R/W

Reset 
Value Function

31:0 BUF_A_SRC R/W 0 Start address from which data is to be read during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 0, then this
value is not incremented from one DMA transfer cycle to the next.
Otherwise, it is always incremented by an amount corresponding to
the TRANSFER_SIZE for this channel.

Table 3-9 • CHANNEL_x_BUFFER_A_DST_ADDR

Bit 
Number Name R/W

Reset 
Value Function

31:0 BUF_A_DST R/W 0 Start address from which data is to be read during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 1, then this
value is not incremented from one DMA transfer cycle to the next.
Otherwise, it is always incremented by an amount corresponding to
the TRANSFER_SIZE for this channel.
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CHANNEL_x_BUFFER_A_TRANSFER_COUNT Register

CHANNEL_x_BUFFER_B_SRC_ADDR Register

CHANNEL_x_BUFFER_B_DST_ADDR Register

Table 3-10 • CHANNEL_x_BUFFER_A_TRANSFER_COUNT

Bit 
Number Name R/W Reset Value Function

31:16 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

15:0 BUF_A_COUNT R/W 0 Number of transfers remaining to be completed between
source and destination for buffer A for this channel. This field
is decremented after every DMA transfer cycle. Writing a non-
zero value to this register causes the DMA to start. This must
be the last register to be written by firmware when setting up a
DMA transfer.

Table 3-11 • CHANNEL_x_BUFFER_B_SRC_ADDR

Bit 
Number Name R/W Reset Value Function

31:0 BUF_B_SRC R/W 0 Start address from which data is to be read during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 0, this value
is not incremented from one DMA transfer cycle to the next.
Otherwise, it is always incremented by an amount corresponding
to the TRANSFER_SIZE for this channel.

Table 3-12 • CHANNEL_x_BUFFER_B_DST_ADDR

Bit 
Number Name R/W Reset Value Function

31:0 BUF_B_DST R/W 0 Start address from which data is to be read during the next DMA
transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 1 (peripheral
to memory), then this value is not incremented from one DMA
transfer cycle to the next. Otherwise, it is always incremented by
an amount corresponding to the TRANSFER_SIZE for this
channel.
46 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
CHANNEL_x_BUFFER_B_TRANSFER_COUNT Register
Table 3-13 •  CHANNEL_x_BUFFER_B_TRANSFER_COUNT

Bit 
Number Name R/W Reset Value Function

31:16 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

15:0 BUF_B_COUNT R/W 0 Number of transfers remaining to be completed between
source and destination for buffer B for this channel. This field
is decremented after every DMA transfer cycle. Writing a non-
zero value to this register causes the DMA to start. This must
be the last register to be written by firmware when setting up a
DMA transfer.
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4 – Embedded Nonvolatile Memory (eNVM) 
Controller

The embedded nonvolatile memories (eNVM) controller in SmartFusion devices consists of two
components: the eNVMs and the eNVM controller. The eNVM controller converts logical AHB addresses
to physical eNVM addresses and allows you to command the eNVM to perform specific tasks such as
programming and erasing. The block diagram in Figure 4-1 shows the configuration of the eNVM
controller with two eNVM blocks. Not all SmartFusion devices contain two memory blocks; for the
SmartFusion device with only one eNVM, the controls signals for the nonexistent eNVM are ignored.
Note that x is used as a place holder in register names and field names within registers to indicate a
particular eNVM (for example, ENVM_STATUS_x = ENVM_STATUS_0 or ENVM_STATUS_1).

Figure 4-1 • Block Diagram of eNVM Controller with Two eNVM Blocks
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The eNVM controller consists of the following sub-blocks:
• Flash array

Contains all stored data. The flash array contains 64 sectors, and each sector contains 33 pages
of data.

• Page buffer
A page-wide volatile register. A page contains 8 blocks of data and an AUX block.

• Block buffer
Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC logic
The FB stores error correction information with each block to perform single-bit error correction
and double-bit error detection on all data blocks.

Figure 4-2 illustrates the block diagram of an individual eNVM and its associated control logic.

The eNVM controller uses a simple register-based command structure that allows all eNVM operations
to be performed. All commands are initiated in a single AHB cycle (Address and Data phases) and
perform a single operation to the eNVM. Reads hold the AHB busy (HREADYOUT) until they complete,
but all writes are posted and completed independent of the AHB bus. If a new operation is started when
the addressed eNVM is busy, HREADYOUT is deasserted for the new operation and it starts when the

Figure 4-2 • Block Diagram for eNVM Controller
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eNVM is ready. This can cause the AHB bus to be busy for an extended period of time, especially if the
current operation is a lengthy one, such as program or erase. To avoid this, read the
ENVM_STATUS_REG register and verify that BUSY_x for the desired eNVM is clear before starting a
new operation on that memory block.

Memory Organization
Figure 4-3 depicts the physical organization of a single eNVM. eNVMs are organized by sectors, pages,
blocks, and bytes. Each sector contains 32 pages and 1 spare page. Each page contains 8 data blocks
and 1 auxiliary block. Each data block contains 16 bytes of data, with the auxiliary block containing an
additional 4 bytes of data.

From the programmer’s perspective, as depicted in the memory map in Table 4-1 on page 52, the
eNVMs are logically split into four address spaces: the eNVM array, eNVM spare pages, eNVM Auxiliary
(Aux) block (array), and eNVM Aux block (spare pages). The spare page 63 of the eNVM is not available
to the user and always reads 0. The spare pages in sectors 0 – 16 in the eNVM are used to store factory
boot code and manufacturing parameters. These pages are write protected. For SmartFusion devices
with two eNVM blocks (A2F500), the spare page in sector 63 of the additional eNVM is also unavailable
to the user; however, the spare pages in sectors 0-16 of the additional eNVM are writable.

Figure 4-3 • eNVM Organization
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Table 4-2 lists the contents of a portion of the spare pages.  

The eNVM address bus decodes sectors, pages, blocks, and bytes, as shown in Figure 4-4.

Table 4-1 • eNVM Physical Memory Map

Cortex-M3 Memory Map
Memory Map of FPGA Fabric Master, 

Ethernet MAC, Peripheral DMA Address Range

0xE0043000 – 0xFFFF2FFF

System Registers 0xE0042000 – 0xE0042FFF

0x78000000 – 0xE0041FFF

External Memory Type 1 External Memory Type 1 0x74000000 – 0x77FFFFFF

External Memory Type 0 External Memory Type 0 0x70000000 – 0x73FFFFFF

0x601D0000 – 0x6FFFFFFF

0x60180000 – 0x601CFFFF

0x60100100 – 0x6017FFFF

eNVM Controller eNVM Controller 0x60100000 – 0x601000FF

0x60088200 – 0x600FFFFF

eNVM Aux Block (spare pages) eNVM Aux Block (spare pages) 0x60088000 – 0x600881FF

eNVM Aux Block (array) eNVM Aux Block (array) 0x60084000 – 0x60087FFF

eNVM Spare Pages eNVM Spare Pages 0x60080000 – 0x60083FFF

eNVM Array eNVM Array 0x60000000 – 0x6007FFFF

0x44000000 – 0x5FFFFFFF

Peripherals (bit band view) 0x42000000 – 0x43FFFFFF

0x40100000 – 0x41FFFFFF

Table 4-2 • Spare Page Contents

Description Size (bytes) Size (spare pages) Address Range

Generic initial data blocks and PPE
RAM merge operations

Dependent on user design 0x600816CC – 0x60081F7F

MSS configuration 180 2 0x60081618 – 0x600816CB

Analog block configuration 24 0x60081600 – 0x60081617

System boot 3,072 28 0x60080800 – 0x600815FF

Factory boot 1,024 8 0x60080400 – 0x600807FF

Manufacturing parameters 576 8 0x60080000 – 0x600803FF

ARM Cortex-M3 vector table 16

Figure 4-4 • Sector, Page, Block, and Byte Addressing Scheme

 

Sector Page Block Byte
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Table 4-3 depicts the size of the various eNVM sections in bytes for each SmartFusion family member.
There are two physical eNVM blocks in the A2F500 that are logically mapped into Cortex-M3 memory
space as one eNVM. The eNVM controller manages mapping the two separate memory blocks as one
logical contiguous memory for all sections, eNVM array, spare pages, Aux block array, and Aux block
spare pages. Note, however, when reading from ENVM_0, the spare page in sector 63 returns all zeros.
For those devices with two eNVM blocks, reading from ENVM_1, the spare page in sector 63 also
returns zeros. Register or bit descriptions that follow will indicate which eNVM is affected by a user
operation. For example, BUSY_0 indicates ENVM_0 is busy. In devices with two eNVMs, each memory
section is split logically in two, with the bottom half addressing ENVM_0 and the top half of the memory
section addressing ENVM_1. For example, the main eNVM array for ENVM_0 occupies address space
0x60000000 – 0x6003FFFF and the main eNVM array for ENVM_1 occupies address space
0x60040000 – 0x6007FFFF.
The SmartFusion MSS configurator uses a certain number of user eNVM pages to store the MSS
configuration. These pages are located at the top of the eNVM address space. The number of pages is
variable based on the MSS configuration (ACE, GPIOs, and eNVM Init Clients). Application code should
not write in these user pages as it will most likely cause a runtime failure for your design. Note also that if
these pages have been inadvertently corrupted, the part will not boot again and will need to be
reprogrammed. 
The first reserved address can be computed as follows. After the MSS has been successfully generated,
open the eNVM configurator and record the number of available pages shown in the Usage Statistics
group on the main page. The first reserved address is defined as:

first_reserved_address = 0x60000000 + (available_pages * 128)

Read Control
Read operations for the eNVM can read from the block buffer, the page buffer, or the eNVM array. Sector
and page boundaries are not important when reading from the eNVM because the block address can be
assumed to be contained in address bits 17:4, as shown in Figure 4-5. Read timing depends solely on
block address boundaries. Instructions/data are presented to the AHB bus 32 bits at a time. Depending
on compiler optimizations either one or 2 instructions are fetched at a time.

• If the block addressed by a read operation is the same as that of the previous read or write
operation, the data is read from the block buffer. 

• If the block addressed by a read operation has changed since the previous read or write operation
but the page addressed is the same as that of the previous write operation or unprotect page
operation, the read data originates from the page buffer. 

• If the page addressed by a read operation is not the same as that of the previous write operation,
data is fetched from the eNVM array. The page buffer is not modified.

A read always reads the latest data written to the eNVM, whether the data resides in the block buffer,
page buffer, or eNVM array.

Table 4-3 • eNVM Section Sizes

Device Sectors
eNVM Array 

Bytes
Spare Pages 

Bytes
Aux. Block 

(array) Bytes

Aux. Block 
(spare pages) 

Bytes
Total eNVM 

Bytes

A2F500 128 52,4288 16,384 16,384 512 557,568

A2F200 64 262,144 8,192 8,192 256 278,784

A2F060 – – – – – –

Figure 4-5 •  Address Decoding for eNVM Read Operations

Block Byte

17 12 11 4 37 6 0

Page AddressSector Address
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The ENVM_PIPE_BYPASS and ENVM_SIX_CYCLE registers are used to control read access behavior
to the eNVM. The latency of the initial access to an eNVM block and the subsequent three accesses, if
initiated, to the same eNVM block depends on the state of both ENVM_PIPE_BYPASS and
ENVM_SIX_CYCLE. The latencies (number of FCLK cycles) corresponding to the various combinations
of ENVM_SIX_CYCLE and ENVM_PIPE_BYPASS are shown in Table 4-4. ENVM_SIX_CYCLE (bit 07)
and ENVM_PIPE_BYPASS (bit 06) are controlled by the ENVM_CR located at address 0xE0042004.

In 5:1:1:1 read mode, a newly addressed block is fetched from the eNVM array, and presented to the
output multiplexer and copied into the block buffer simultaneously. In 5:1:1:1 read mode
(ENVM_SIX_CYCLE = 0 and ENVM_PIPE_BYPASS = 1), the first read comes directly from the eNVM
array. The following reads, up to three sequentially, originate from the block buffer and occur in single
cycles. The read data path for this mode is illustrated in Figure 4-6 (the dotted line shows the read data
path). 

Table 4-4 • Latencies Corresponding to ENVM_SIX_CYCLE and ENVM_PIPE_BYPASS

ENVM_SIX_CYCLE ENVM_PIPE_BYPASS eNVM Access FCLK Cycles

0 1 5:1:1:1

1 1 6:1:1:1 (default)

Note: 6:1:1:1 indicates 6 cycles for the first access and 1 each for the next three accesses. 5:1:1:1
indicates 5 cycles for the first access and 1 each for the next three accesses.

Figure 4-6 • Five-Cycle Read Data Path, ENVM_SIX_CYCLE = 0
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The timing diagram for this mode is illustrated in Figure 4-7. 
Note: AHB signals are sampled on the rising edge of FCLK. 

When the ENVM_PIPE_BYPASS bit is cleared to 0, the first read takes 6 cycles and the subsequent
three reads insert a single-cycle AHB pipeline delay in the read data path. Figure 4-8 illustrates timing
when ENVM_PIPE_BYPASS and ENVM_SIX_CYCLE are both 0.

Read Next Operation
The Read Next operation reads the next sequential block in the eNVM array relative to the current block
in the block buffer while the block buffer is being read. The goal is to minimize wait states during
consecutive sequential block read operations.
The Read Next operation is performed in a predetermined manner because it does look-ahead reads.
The general look-ahead function is as follows:

• Within a page, the next block fetched will be the current block address + 1.
• When reading the last data block of a page, it will fetch the first block of the next page. 
• When reading spare pages, it will read the first block of the next sector's spare page. 
• Reads of the last sector will wrap around to sector 0.
• Reads of Auxiliary blocks will read the next linear page's Auxiliary block.

When a block address becomes non-sequential, the current read operation must complete. The time
penalty for this access is anywhere from 9 to 12 cycles, depending on how ENVM_SIX_CYCLE and
ENVM_PIPE_BYPASS are set and whether or not the block buffer has drained completely.
If the next block to be addressed is the current block address + 1 and the block buffer is completely
drained, the delay between block reads is one cycle. For example, if you read only one data/instruction

Figure 4-7 • eNVM Read: ENVM_SIX_CYCLE = 0 and ENVM_PIPE_BYPASS = 1, SEQ or NONSEQ Block 
Address (5:1:1:1)
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Figure 4-8 • eNVM Read: ENVM_SIX_CYCLE = 0 and ENVM_PIPE_BYPASS = 0, SEQ or NONSEQ Block 
Address (6:1:1:1)
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from the block buffer, there are four cycles of busy, as shown in Table 4-5. As the block buffer is being
read, the eNVM controller is simultaneously reading the next block from the eNVM array. Once initiated,
this transfer must complete, hence the extra delay if the block buffer is not completely drained. Read
Next mode allows you access to the entire eNVM array in a high-speed pipelined sequential fashion, as
indicated in Figure 4-9 on page 56 and Figure 4-10 on page 56. The same functionality pertains to the
spare pages section, Aux block (array) section, and Aux block (spare pages) section when READ_NEXT
is set.

Read Next operation is enabled by setting the READ_NEXT bit in the ENVM_x_CR (x = 0 or 1) register.
For SmartFusion devices with two eNVM blocks, it is possible to have one eNVM in Read Next mode and
the other in normal Read mode. Read Next mode can be modified dynamically.

Table 4-5 • Busy Cycles Between Consecutive Block Reads When READ_NEXT = 1 and Block 
Buffer is Not Drained

Number of Reads from Block Buffer

HREADY Low Cycles

ENVM_PIPE_BYPASS = 1 ENVM_PIPE_BYPASS = 0

1 4 4

2 3 2

3 2 1

4 1 1

Figure 4-9 • eNVM Read Next Enabled: ENVM_SIX_CYCLE = 0 and ENVM_PIPE_BYPASS = 0, SEQ Block 
Address 

Figure 4-10 • eNVM Read Next Enabled: ENVM_SIX_CYCLE = 0 and ENVM_PIPE_BYPASS = 1, SEQ Block 
Address 
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Write Operations
All program and erase operations to the eNVM occur from the page buffer. Writes to the page buffer can
be byte, halfword, or words. Writing to the eNVM’s page buffer does not start a program or erase
operation. Specific command sequences in the eNVM controller memory space must be issued to start a
program or erase operation. These commands are listed in Table 4-8 on page 63. The eNVM Controller
will capture the sector address and page address when a write to the eNVM occurs and store those
addresses within the page buffer, as shown in Figure 4-11. The sector address and the page address
stored in the page buffer are then used to confirm that the page being modified is the desired page to
program into the eNVM when a program or erase operation is commanded. 

The page buffer is marked internally as being modified if one of the following conditions is true:
• A successful write operation to the page buffer occurs.
• A successful write operation to the Auxiliary block occurs.
• If the state of protection for the page buffer has been modified.

The internal flag indicating whether a page is modified or not is used by programming and erase
commands to ensure coherency between the page buffer and the eNVM. The page buffer is marked as
unmodified when it is committed to eNVM or discarded.
Programming the eNVM is accomplished using a Read-Modify-Write methodology. The first write causes
the eNVM controller to copy the entire page from the eNVM array, place it into the page buffer, and write
the first word into the block buffer. Figure 4-12 depicts the flow of data from eNVM to the block buffer and
to the page buffer during this operation. 

While the copy takes place, which could be many cycles, BUSY_x is asserted. You should check the
BUSY_x status from the eNVM where the operation is occurring before continuing to write to the block
buffer. Subsequent writes to the same block in the page buffer take no additional BUSY cycles. Once the
block buffer is loaded, you can read from it or write to it at will. Care must be taken that sector and page
addresses do not change during these read or write operations because that will cause the eNVM
controller to fetch the newly addressed page from the eNVM and load the block buffer / page buffer with
it. This could lead to inadvertently programming the wrong page in the eNVM, unless page loss
protection is enabled.

Figure 4-11 • Page Buffer

 Block 0 Sector Address Page Address Block ... Block 15 Aux Block

Figure 4-12 • Copy Page Data Flow
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Writes to a different block in the same page will assert BUSY_x for four cycles, since the current block
buffer is synchronized to the page buffer. The data flow for this operation is shown in Figure 4-13. Once
the page buffer has been updated, either a PROGRAM_PAGE command or PROGRAM_PAGE_PROTECTED
command can be issued to synchronize the eNVM and the page buffer.

There are protection mechanisms to prevent the accidental copy of a page buffer to the wrong page in
eNVM. For example, if the PAGE_LOSS bit is set and the sector or page address is changed after the
first write to the page buffer, and a program command is then issued, the operation will fail.
The PROT_ERROR_x bit is set in the ENVM_STATUS_REG register, indicating a protection fail has
occurred. An interrupt signal, if enabled, will be asserted to the Cortex-M3 NVIC. 

Figure 4-13 • Modify Page Data Flow

Figure 4-14 • Program/Erase Data Flow
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Reading/Writing to the Aux Block section(s)
When reading or writing to either the Aux block or Aux block spare pages section, the individual 4-byte
Auxiliary blocks are mapped contiguously in Cortex-M3 space, as shown in Figure 4-15 and Figure 4-16.
Reading and writing to these sections has the same functionality as reading and writing to the main
eNVM array.

A program of either the Aux block or Aux block spare pages section to eNVM performs a program of the
corresponding eNVM page. The contents of the page are preserved; however, the program does count
against the eNVM’s endurance budget. You can update the eNVM page, then the associated Aux block
(or the eNVM spare page and associated spare page Aux block), before programming the page to
preserve eNVM endurance.

eNVM Block Protection

Page Loss Protection
When the PAGE_LOSS bit is set to logic 1, the eNVM controller prevents writes to any page other than
the current page in the page buffer until that page is either discarded or programmed in the eNVM cell
array. Addressing any other page while the current page is page loss protected will return an
ENVM_STATUS_x of 11, set the appropriate PROT_ERROR_x bit in the ENVM_STATUS_REG, and
assert an interrupt signal to the Cortex-M3 NVIC if the PROT_ERROR_x bit in the
ENVM_ENABLE_REG is set.

Page Protection
Any page that is write protected will result in the ENVM_STATUS_x being set to 01 when an attempt is
made to write, program, or erase it. To write protect a page, use the PROGRAM_PAGE_PROTECTED or
ERASE_PAGE_PROTECTED command. To temporarily clear the protection state for a given page, and
allow modification of the page buffer, issue an UNPROTECT_PAGE command on the desired page.

Figure 4-15 • Aux Block Memory Mapping

Figure 4-16 • Aux Block Spare Pages Memory Mapping

A 32-bit write to 0x60084000 writes 32 bits to Sector 0, Page 0, Aux Block 
A 32-bit write to 0x60084004 writes 32 bits to Sector 0, Page 1, Aux Block 
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A 32-bit write to 0x60088000 writes 32 bits to Sector 0, Aux Block 
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LOCK
The LOCK bit is used to give you control over access to the eNVM from the JTAG interface. When LOCK
is asserted, the JTAG interface will be prevented from any access attempts to the eNVM until LOCK is
deasserted. For example, if a fabric master has access to the eNVM and does not want a JTAG
operation to command or control the eNVM, the fabric master should set the LOCK bit. Likewise, if you
only allow eNVM access via the Cortex-M3 microcontroller and want to prevent the JTAG interface from
accessing the eNVM, you should set the LOCK bit.

eNVM Commands
Table 4-6 lists the various commands available for controlling the behavior of the eNVM. Program and
erase operations on the eNVM occur on a page boundary. 

UNPROTECT_PAGE Command
Writing 0x02 to the COMMAND field of the ENVM_CONTROL_REG will unprotect the page addressed.
The page addressed will be copied from eNVM into the page buffer if the page is not in the page buffer
and the current contents of the page buffer are not marked as modified. The page addressed will also be
copied from eNVM into the page buffer if the page in the page buffer is marked as modified and
PAGE_LOSS = 0. If the contents of the page buffer are marked as modified and PAGE_LOSS = 1, the
copy of the page from eNVM will not occur and a protection violation error will be reported in the
ENVM_STATUS_REG register by setting PROT_ERROR_x to 1. An interrupt signal is asserted to the
Cortex-M3 NVIC if the PROT_ERROR_x bit is set in the ENVM_ENABLE_REG.
If the page addressed is a read protected spare page (0-15) in ENVM_0, the UNPROTECT_PAGE
operation does not occur and a protection violation error will be reported in the ENVM_STATUS_REG
register by setting PROT_ERROR_x to 1.
Table 4-7 on page 61 summarizes information on the UNPROTECT_PAGE command.

Table 4-6 • eNVM Commands

Command

Address/Data Bus

Op. ADDR Data[31:24] Data[23:0]

ARRAY_READ Read eNVM array address eNVM array data

ARRAY_WRITE Write eNVM array address eNVM array data

UNPROTECT_PAGE Write ENVM_CONTROLLER_REG 0x02 Page address

DISCARD_PAGE Write ENVM_CONTROLLER_REG 0x04 Page address

PROGRAM_PAGE Write ENVM_CONTROLLER_REG 0x10 Page address

PROGRAM_PAGE_PROTECTED Write ENVM_CONTROLLER_REG 0x11 Page address

ERASE_PAGE Write ENVM_CONTROLLER_REG 0x20 Page address

ERASE_PAGE_PROTECTED Write ENVM_CONTROLLER_REG 0x21 Page address

OVERWRITE_PAGE Write ENVM_CONTROLLER_REG 0x50 Page address

GET_PAGE_STATUS Write ENVM_CONTROLLER_REG 0x88 Page address

NOP Write ENVM_CONTROLLER_REG 0x00 Page address
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DISCARD_PAGE Command
Writing 0x04 to the COMMAND field of the ENVM_CONTROL_REG discards the data in the current
page buffer. No interrupt is generated. Check the ENVM_STATUS_x field of the ENVM_STATUS_REG to
ensure the operation completed (ENVM_STATUS_x = 00). 

PROGRAM_PAGE Command
Writing 0x10 to the COMMAND field of the ENVM_CONTROL_REG programs the current page buffer to
the page in eNVM addressed by PAGE_ADDRESS and leaves the page unprotected. The page in eNVM
is automatically erased prior to the copy from page buffer to eNVM. The following conditions apply:

• Attempting to program a protected page using the PROGRAM_PAGE command will result in a
protection error. The PROT_ERROR_x bit in the ENVM_STATUS_REG is set to 1.

• Attempting to program a different page in eNVM from the page currently contained in the page
buffer while PAGE_LOSS = 1 will result in a protection error. The PROT_ERROR_x bit in the
ENVM_STATUS_REG set to 1.

• Performing a PROGRAM_PAGE command increments the write count for that page by one.

PROGRAM_PAGE_PROTECTED Command
Writing 0x11 to the COMMAND field of the ENVM_CONTROL_REG programs the current page buffer to
the page in eNVM addressed by PAGE_ADDRESS and leaves the page write protected. This is the
same command as PROGRAM_PAGE, except the page is write protected in the process. Also, if you
attempt to program a different page from the one in the page buffer with PAGE_LOSS = 0, the new page
will be loaded in the page buffer and programmed with its protection bit set.
Performing a PROGRAM_PAGE_PROTECTED command increments the write count for that page by
one.

ERASE_PAGE Command
Writing 0x20 to the COMMAND field of the ENVM_CONTROL_REG erases the eNVM page addressed
by PAGE_ADDRESS. If the page addressed by Page Address does not match the page in the page
buffer and the PAGE_LOSS bit is set, the erase fails. The erase also fails if the page is protected.
Performing an ERASE_PAGE command increments the write count for that page by one.

Table 4-7 • UNPROTECT_PAGE modes

PAGE_LOSS

Page 
Buffer 

Modified
Page Copied from eNVM

to Page Buffer OVERWRITE_PROTECTED PROT_ERROR_x

0 No Yes Set to 0 0

0 Yes Yes; overwrites page 
buffer.

Set to 0 0

1 No Yes Set to 0 0

1 Yes No Unchanged 1
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ERASE_PAGE_PROTECTED Command
Writing 0x21 to the COMMAND field of the ENVM_CONTROL_REG erases the current protected page
addressed by Page Address and leaves the page write protected. The page must be in an unprotected
state prior to issuing this command. Erasing a protected page will flag a protection error. This is the same
command as ERASE_PAGE, except the page is write protected in the process. Performing an
ERASE_PAGE_PROTECTED command increments the write count for that page by one.

OVERWRITE_PAGE Command
Writing 0x50 to the COMMAND field of the ENVM_CONTROL_REG overwrites the page addressed by
Page Address with the contents of the page buffer. If the destination page is protected, no overwriting of
the page occurs and the PROT_ERROR_x bit is set in the ENVM_STATUS_REG register. This
command can be used to move one eNVM page from one location to another. Performing an
OVERWRITE_PAGE command increments the write count for that page by one.

GET_PAGE_STATUS Command
Writing 0x88 to the COMMAND field of the ENVM_CONTROL_REG retrieves the page status of the
page addressed by Page Address and stores the status in the ENVM_PAGE_STATUS_x_REG register.
The status bits remain valid for the page that was just issued until another GET_PAGE_STATUS
command is completed, at which time the status bits reflect the state of the newly addressed page. 

NOP Command
The NOP command does nothing. This command can be used to clear the COMMAND field.

Programming Errors
Program operations that result in an ENVM_STATUS_x value of 01 do not modify the addressed page.
For all other values of ENVM_STATUS_x, the addressed page is modified. 
Program errors include the following:

1. Attempting to program a page that is write protected (ENVM_STATUS_x = 01)
2. Attempting to program a page that is not in the page buffer when the page buffer has entered

page loss protection mode (ENVM_STATUS_x = 01)
3. Attempting to perform a program with the OVERWRITE_PAGE command when the page

addressed has been write protected (ENVM_STATUS_x = 01)
4. The write count of the page programmed exceeding the write threshold defined in the part

specification (ENVM_STATUS_x = 11)
5. The ECC logic determining that there is an uncorrectable error within the programmed page

(ENVM_STATUS_x = 10)
6. Attempting to program a page that is not in the page buffer when the OVERWRITE_PAGE

command has been issued and the page in the page buffer is modified (ENVM_STATUS_x = 01)
7. Attempting to program the page in the page buffer when the page buffer is not modified
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The contents of Table 4-8 indicate which eNVM commands can set the status bits within the
ENVM_STATUS_REG register. For example, if there is a protection violation when issuing a
PROGRAM_PAGE command, the PROT_ERROR bit will be set and the ENVM_STATUS_0 bits will be
equal to 01.

Clocks
The eNVMs are driven from the AHB bus matrix FCLK. On power-up, the default clock sourcing FCLK is
the 100 MHz RC oscillator divided by 4, or 25 MHz. If another clock frequency is desired, you must
configure the PLL accordingly. Refer to the "PLLs, Clock Conditioning Circuitry, and On-Chip Crystal
Oscillators" section on page 109. 

Resets
The eNVM controller resets to zero on power-up and is released as soon as PORRESET_N deasserts.
You have the option under software control to reset the eNVM controller by writing to the System
Registers located on the private peripheral bus of the Cortex-M3 microcontroller. Specifically, System
Register SOFT_RST_CR is located at address 0xE0042030 in the memory map. The
ENVM_SOFTRESET control bit is encoded in bit location 0, as shown in Table 4-9.

Table 4-8 • eNVM Commands that Set the eNVM Status Bits
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ARRAY_READ – – – – – 01 10 –

ARRAY_WRITE 01 11 – – – – – –

UNPROTECT_PAGE – 11 – – – 01 10 –

DISCARD_PAGE – – – – – – – –

PROGRAM_PAGE 01 – 10 – 11 – – 00

PROGRAM_PAGE_PROTECTED 01 – 10 – 11 – – 00

ERASE_PAGE 01 – – 10 11 – – 00

ERASE_PAGE_PROTECTED 01 – – 10 11 – – 00

OVERWRITE_PAGE 01 – 10 – 11 – – 00

GET_PAGE_STATUS – – – – – 01 01 –

NOP – – – – – – – –

Table 4-9 • ENVM_SOFTRESET Control Bit

Bit 6 Function

0 eNVM controller reset released (reset value).

1 eNVM controller held in reset.
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Interrupts
There is one interrupt signal per eNVM block that can be asserted, based on the result of operations on
the eNVM(s). IRQ7 is asserted when ENVM_0’s ENVM0_INT signal is raised and IRQ8 is asserted when
ENVM_1’s (if it exists) ENVM1_INT signal is raised. Interrupts must be enabled for the particular
response you are trying to trap within the eNVM controller by setting the appropriate bits in the
ENVM_ENABLE_REG and also by setting the appropriate bits within the Cortex-M3 NVIC. Both interrupt
enable bits within the NVIC are located at address 0xE000E100; IRQ7 and IRQ8 correspond to bit
locations 7 and 8 respectively. Even if interrupts are disabled and the ECC2_ERROR_x status bit is set,
the HRESP signal on the AHB bus matrix will assert. If the bus master accessing the eNVM is the
Cortex-M3 microcontroller, the hard fault exception vector will execute. 

eNVM Controller Register Map 
The eNVM controller control registers are located in the System Registers address space at 0x60100000
and extend to address 0x601000FF in the Cortex-M3 memory map. Refer to Figure 2-4 on page 25. 

Table 4-10 • eNVM Controller Register Map

Name Address R/W Reset Value Description

ENVM_STATUS_REG 0x60100000 R/W 0x0 Returns the status of the last commanded
operation.

ENVM_CONTROL_REG 0x60100004 R/W 0x0 Control register used for all eNVM
commands

ENVM_ENABLE_REG 0x60100008 R/W 0x0 eNVM interrupt enable register

Reserved 0x6010000C R/W 0x0 Reserved

ENVM_0_CR 0x60100010 R/W 0x0 eNVM_0 configuration register

ENVM_1_CR 0x60100014 R/W 0x0 eNVM_1 configuration register

ENVM_PAGE_STATUS_0_REG 0x60100018 R 0x0 eNVM_0 page status register

ENVM_PAGE_STATUS_1_REG 0x6010001C R 0x0 eNVM_1 page status register
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eNVM Status Register
Table 4-11 • ENVM_STATUS_REG

Bit 
Number Name R/W Reset Description

31 ILLEGAL_CMD_1 R/W 0 0 = "Don't care."
1 = An illegal command has been issued to
ENVM_1.
Write a 1 to this location to clear the bit.

30:26 Reserved R 0 Read as 0.

25:24 ENVM_STATUS_1 R 0 These bits provide status information from
ENVM_1 based upon the command and/or write
that was issued to the eNVM. These are read only
bits; writes have no effect. See Table 4-12 on
page 67.

23 OP_DONE_1 R/W 0 0 = "Don't care."
1 = ENVM_1 has completed the commanded
operation. 
Write a 1 to this location to clear the bit.

22 ECC2_ERROR_1 R/W 0 0 = "Don't care."
1 = ENVM_1 reported an ECC2 error. 
Write a 1 to this location to clear the bit.

21 ECC1_ERROR_1 R/W 0 0 = "Don't care."
1 = ENVM_1 reported an ECC1 error. 
Write a 1 to this location to clear the bit.

20 OVER_THRESH_1 R/W 0 0 = "Don't care."
1 = ENVM_1 accessed page over threshold. Write
a 1 to this location to clear the bit.

19 ERASE_ERROR_1 R/W 0 0 = "Don't care."
1 = ENVM_1 reported an erase error.
Write a 1 to this location to clear the bit.

18 PROG_ERROR_1 R/W 0 0 = "Don't care."
1 = ENVM_1 reported a programming error. 
Write a 1 to this location to clear the bit.

17 PROT_ERROR_1 R/W 0 0 = "Don't care."
1 = ENVM_1 reported a protection error. 
Write a 1 to this location to clear the bit.

16 BUSY_1 R 0 0 = ENVM_1 is ready to read.
1 = ENVM_1 is busy.
This is a read only bit; writes have no effect.

15 ILLEGAL_CMD_0 R/W 0 0 = "Don't care."
1 = An illegal command has been issued to
ENVM_0.
Write a 1 to this location to clear the bit.

14:10 Reserved R 0 Read as 0.
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9:8 ENVM_STATUS_0 R 0 These bits provide status information from the
eNVM based upon the command and/or write that
was issued to the eNVM. These are read only bits;
writes have no effect. See Table 4-12 on page 67.

7 OP_DONE_0 R/W 0 0 = "Don't care."
1 = ENVM_0 has completed the commanded
operation. 
Write a 1 to this location to clear the bit.

6 ECC2_ERROR_0 R/W 0 0 = "Don't care."
1 = ENVM_0 reported an ECC2 error. 
Write a 1 to this location to clear the bit.

5 ECC1_ERROR_0 R/W 0 0 = "Don't care."
1 = ENVM_0 reported an ECC1 error. 
Write a 1 to this location to clear the bit.

4 OVER_THRESH_0 R/W 0 0 = "Don't care."
1 = ENVM_0 accessed page over threshold. Write
a 1 to this location to clear the bit.

3 ERASE_ERROR_0 R/W 0 0 = "Don't care."
1 = ENVM_0 reported an erase error.
Write a 1 to this location to clear the bit.

2 PROG_ERROR_0 R/W 0 0 = "Don't care."
1 = ENVM_0 reported a programming error. 
Write a 1 to this location to clear the bit.

1 PROT_ERROR_0 R/W 0 0 = "Don't care."
1 = ENVM_0 reported a protection error. 
Write a 1 to this location to clear the bit.

0 BUSY_0 R 0 0 = ENVM_0 is ready to read.
1 = ENVM_0 is busy.
This is a read only bit; writes have no effect.

Table 4-11 • ENVM_STATUS_REG (continued)

Bit 
Number Name R/W Reset Description
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Table 4-12 • ENVM_STATUS_x

eNVM Command

ENVM_STATUS_x

DescriptionMSB LSB

Any command 0 0 Command completed successfully.

ARRAY_READ 0 1 Single bit error detected and corrected.

ARRAY_WRITE 0 1 Operation addressed a write protected page.

UNPROTECT_PAGE 0 1 Single bit error detected and corrected during
the copy page operation.

PROGRAM_PAGE 0 1 Page buffer is unmodified or write to a
protected page.

ERASE_PAGE 0 1 Attempt to erase a protected page

OVERWRITE_PAGE 0 1 Attempt to program a protected page

ARRAY_READ 1 0 Two or more errors detected.

UNPROTECT_PAGE 1 0 Two or more errors detected during copy page
operation.

PROGRAM_PAGE 1 0 Programmed eNVM page does not match the
page buffer.

PROGRAM_PAGE_PROTECTED 1 0 Programmed eNVM page does not match the
page buffer.

ERASE_PAGE 1 0 Programmed eNVM page does not match the
page buffer.

ERASE_PAGE_PROTECTED 1 0 Programmed eNVM page does not match the
page buffer.

OVERWRITE_PAGE 1 0 Programmed eNVM page does not match the
page buffer.

ARRAY_WRITE 1 1 Attempt to write another page before
programming current page when
PAGE_LOSS = 1.

UNPROTECT_PAGE 1 1 Attempt to copy unprotected page into page
buffer that contains a modified page and
PAGE_LOSS = 1

PROGRAM_PAGE 1 1 Page write count has exceeded the 10-year
retention threshold.

PROGRAM_PAGE_PROTECTED 1 1 Page write count has exceeded the 10-year
retention threshold.

ERASE_PAGE 1 1 Page write count has exceeded the 10-year
retention threshold.

ERASE_PAGE_PROTECTED 1 1 Page write count has exceeded the 10-year
retention threshold.

OVERWRITE_PAGE 1 1 Page write count has exceeded the 10-year
retention threshold.
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eNVM Control Register

eNVM Interrupt Enable Register

Table 4-13 • ENVM_CONTROL_REG

Bit 
Number Name R/W Reset Description

31:24 COMMAND R/W 0 This field contains the command to be executed
by the eNVM. Commands are listed in Table 4-8
on page 63.

23:20 Reserved R 0 Read as 0. Writes have no effect. Software should
not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a
reserved bit should be preserved across a read-
modify-write operation.

19:0 PAGE_ADDRESS R/W 0 This field contains the page address for the
operation defined in the COMMAND field.

Table 4-14 • ENVM_ENABLE_REG

Bit 
Number Name R/W Reset Description

31 ILLEGAL_CMD_1 R/W 0 0 = Interrupt disabled when an illegal command has
been issued.
1 = Enable interrupts when an illegal command has
been issued.

24:30 Reserved R 0 Read 0. Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

23 OP_DONE_1 R/W 0 0 = Interrupt disabled.
1 = Enable interrupts when ENVM_1 completes an
operation.

22 ECC2_ERROR_1 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_1 ECC2 errors.

21 ECC1_ERROR_1 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_1 ECC1 errors.

20 OVER_THRESH_1 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_1 over threshold
errors.

19 ERASE_ERROR_1 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_1 erasing errors.

18 PROG_ERROR_1 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_1 programming
errors.

17 PROT_ERROR_1 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_1 protection errors.

16 Reserved R 0 Read as 0. Writes have no effect.
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15 ILLEGAL_CMD_0 R/W 0 0 = Interrupt disabled.
1 = Enable interrupts when an illegal command has
been issued.

14:8 Reserved R 0 Read 0. Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation. 

7 OP_DONE_0 R/W 0 0 = Interrupt disabled.
1 = Enable interrupts when ENVM_0 completes an
operation.

6 ECC2_ERROR_0 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_0 ECC2 errors.

5 ECC1_ERROR_0 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_0 ECC1 errors.

4 OVER_THRESH_0 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_0 over threshold
errors.

3  ERASE_ERROR_0 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_0 erasing errors.

2 PROG_ERROR_0 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_0 programming
errors.

1 PROT_ERROR_0 R/W 0 0 = Interrupt disabled.
1 = Interrupt enabled for ENVM_0 protection errors.

0 Reserved R 0 Read as 0. Writes have no effect.

Table 4-14 • ENVM_ENABLE_REG (continued)

Bit 
Number Name R/W Reset Description
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ENVM_0 Configuration Register
Table 4-15 • ENVM_0_CR

Bit 
Number Name R/W Reset Description

31:3 Reserved R 0 Read 0. Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the value
of a reserved bit should be preserved across a read-modify-
write operation.

2 LOCK R/W 0 0 = Disabled.
1 = eNVM disabled from JTAG access.
The LOCK bit is used to give the user control over access to
the eNVM from the JTAG interface. When LOCK is
asserted, the JTAG interface will be prevented from any
access attempts to the eNVM until LOCK is deasserted. For
example, if a fabric master has access to the eNVM and
does not want a JTAG operation to command or control the
eNVM, the fabric master should set the LOCK bit. Likewise,
if you only allow eNVM access via the Cortex-M3
microcontroller and want to prevent the JTAG interface from
accessing the eNVM, you should set the LOCK bit.

1 PAGE_LOSS R/W 0 0 = Disabled.
1 = Page loss protection enabled.
When the PAGE_LOSS bit is set to 1, it prevents writes to
any page other than the current page in the page buffer until
the page is either discarded or programmed. A write to
another page while the current page is Page Loss Protected
will set the BUSY_0 bit and the PROT_ERROR_0 if the
operation was performed on ENVM_0 for example.

0 READ_NEXT R/W 0 0 = Disabled.
1 = Read next command enabled.
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ENVM_1 Configuration Register
Table 4-16 • ENVM_1_CR

Bit 
Number Name R/W Reset Description

31:3 Reserved R 0 Read 0. Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the value
of a reserved bit should be preserved across a read-modify-
write operation.

2 LOCK R/W 0 0 = Disabled
1 = eNVM disabled from JTAG access.
The LOCK bit gives you control over access to the eNVM
from the JTAG interface. When LOCK is asserted, the JTAG
interface will be prevented from any access attempts to the
eNVM until LOCK is deasserted. For example, if a fabric
master has access to the eNVM and does not want a JTAG
operation to command or control the eNVM, the fabric
master should set the LOCK bit. Likewise, if you only allow
eNVM access via the Cortex-M3 microcontroller and want to
prevent the JTAG interface from accessing the eNVM, you
should set the LOCK bit.

1 PAGE_LOSS R/W 0 0 = Disabled.
1 = Page loss protection enabled.

0 READ_NEXT R/W 0 0 = Disabled.
1 = Read next command enabled.
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ENVM_0 Page Status Register
Table 4-17 • ENVM_PAGE_STATUS_0_REG

Bit 
Number Name R/W Reset Description

31:8 WRITE_COUNT R 0 Page write count; the number of times the
page has been written to.

7:4 Reserved R 0 Read 0. Software should not rely on the value
of a reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

3 OVER_THRESHOLD R 0 0 = Page is under threshold.
1 = Page is over threshold.

2 READ_PROTECTED R 0 0 = Page can be read.
1 = Page is user pass key read protected.
JTAG read protect bit for page. This bit
indicates that the page has been read
protected using the user pass key via the
JTAG interface. The user pass key must be
used to change this bit setting. Read
protection returns all zeros when the page is
read.

1 WRITE_PROTECTED R 0 0 = Page write protect bit is not set.
1 = Page is user pass key write protected.
JTAG write protect bit for page. This bit
indicates that the page has been write
protected using the user pass key via the
JTAG interface. The user pass key must be
used to change this bit setting.

0 OVERWRITE_PROTECTED R 0 0 = Page can be written to.
1 = Page is write protected.
This status bit indicates that the page was 
programmed or erased using either the 
PROGRAMMED_PAGE_PROTECTED or 
ERASE_PAGE_PROTECTED command.
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ENVM_1 Page Status Register
Table 4-18 • ENVM_PAGE_STATUS_1_REG

Bit 
Number Name R/W Reset Description

31:8 WRITE_COUNT R 0 Page write count. The number of times the
page has been written to.

7:4 Reserved R 0 Read 0. Software should not rely on the value
of a reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

3 OVER_THRESHOLD R 0 0 = Page is under threshold.
1 = Page is over threshold.

2 READ_PROTECTED R 0 0 = Page can be read.
1 = Page is user pass key read protected.
JTAG read protect bit for page. This bit
indicates that the page has been read
protected using the user pass key via the
JTAG interface. The user pass key must be
used to change this bit setting. Read
protection returns all zeros when the page is
read.

1 WRITE_PROTECTED R 0 0 = Page write protect bit is not set.
1 = Page is user pass key write protected.
JTAG write protect bit for page. This bit
indicates that the page has been write
protected using the user pass key via the
JTAG interface. The user pass key must be
used to change this bit setting.

0 OVERWRITE_PROTECTED R 0 0 = Page can be written to.
1 = Page is write protected.
This status bit indicates that the page was 
programmed or erased using either the 
PROGRAMMED_PAGE_PROTECTED or 
ERASE_PAGE_PROTECTED command. 
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5 – SmartFusion Embedded FlashROM (eFROM)

SmartFusion cSoCs have 1,024 bits of on-chip nonvolatile flash memory called embedded flash read
only memory (embedded FlashROM or eFROM). The eFROM can be read and written via the JTAG
interface when performing external device programming. This embedded flash read only memory is
directly accessible for reading during normal operation from user firmware running on the SmartFusion
microcontroller subsystem (MSS). 

Architecture of the Embedded FlashROM (eFROM)
The eFROM is arranged in eight banks of 128 bits (16 bytes) during programming (eFROM writing). The
16-byte bank is also referred to as a page. Figure 5-1 shows a graphical representation of the 16 bytes in
each of the 8 banks, or pages, which make up the 1,024-bit eFROM. The eFROM has a 7-bit address
and 8-bit data port. The upper 3 bits of the 7-bit address define the page number to be read and the 4
lower bits of the 7-bit address specify the byte number to be read.
The eFROM can be programmed externally via the JTAG port. It cannot be programmed directly from the
MSS or FPGA fabric during normal operation. Each of the eight 128-bit pages of the eFROM can be
selectively programmed. The eFROM can only be reprogrammed on a page boundary. Programming
involves an automatic, on-chip page erase prior to reprogramming the page.
The eFROM supports synchronous reading. The eFROM can be read on byte boundaries. To enable
user access to the eFROM during normal operation, the eFROM is visible to the MSS as an APB
peripheral component which is mapped to the ARM Cortex-M3 memory space.
For detailed eFROM data access timing characteristics, refer to the DC and Switching Characteristics
chapter of the SmartFusion Customizable System-on-Chip (cSoC) datasheet. The eFROM APB
Interface and Configuration Registers are presented later in this section.

Table 5-1 on page 76 summarizes the various eFROM read and write capabilities, sorted by access
mode. For more information regarding in-application programming (IAP), refer to the "SmartFusion
Programming" chapter of the SmartFusion Customizable System-on-Chip (cSoC) datasheet. Similarly,
refer to the appropriate datasheet section to learn more about the external JTAG programming options.
The eFROM content is typically entered in Libero software by using the graphical configuration interface
within the SmartFusion MSS configurator. Refer to the Libero SoC User's Guide or the Libero SoC Online
Help for more information about using the MSS configurator and the Embedded FlashROM Configurator.
The eFROM data content can be entered directly into the FlashROM configuration window, loaded from
a data file (in binary, decimal, hex, or ASCII text format), or serialized when used to specify eFROM
contents for a large number of devices in an incrementing or decrementing series. The FlashROM

Figure 5-1 • Graphical Representation of eFROM Architecture
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configurator produces a UFC file, which must be used when generating the SmartFusion device
programming bitstream in order to write the user eFROM data into the SmartFusion physical eFROM
during device programming.

Reading the eFROM Contents via the MSS
The SmartFusion embedded FlashROM physical memory is interfaced to the SmartFusion
microcontroller subsystem (MSS) via an APB interface controller, as shown in Figure 5-2. This makes the
eFROM accessible to user firmware running on the MSS through simple APB peripheral accesses
between the Cortex-M3 processor and the eFROM. From the firmware programmer's point of view, this is
a memory mapped peripheral access. Physically, the Cortex-M3 microcontroller accesses the eFROM
APB peripheral via the AHB bus matrix and an AHB to APB Bridge. The eFROM resides on APB_1 and
is clocked by the PCLK1. The eFROM occupies address range 0x40015000 - 0x40015FFF in the
Cortex-M3 memory map. For more information, refer to the "AHB Bus Matrix" section on page 15. 

Table 5-1 • eFROM Read/Write Capabilities by Access Mode

Access Mode eFROM Read eFROM Write

JTAG Programming Yes Yes

In-Application Programming (IAP) Yes Yes (A2F060, A2F500); No (A2F200)

Directly from MSS Yes No

Directly from FPGA Fabric No No

Figure 5-2 • eFROM APB Interface Controller
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The ports shown in Figure 5-2 on page 76 are explained in Table 5-2 and Table 5-3.

In Figure 5-2 on page 76, the SYS_TOPT[3:0] input port represents part of the MSS System Register
called the EFROM_CR register. The EFROM_CR register is used to set configurable eFROM APB
interface timing options, as described in Table 5-4 on page 77, through Table 5-7 on page 78. All APB
accesses to the eFROM are read only. Since the user has various MSS_CLK and PCLK1 configuration
options, the eFROM timing options have been preselected to ensure that a successful eFROM data
access is performed regardless of the MSS clocking configuration selected.
APB write transactions are ignored and result in no activity at the eFROM APB controller to eFROM
physical memory interface. When not performing a read access, the FROM_UFIADDR[6:0] bus is forced
to all 1s to limit dynamic dissipation usage in the eFROM.

Table 5-2 • eFROM APB Controller to MSS Interface Port List

Port Type Function

PADDR[8:0] Input APB address bus (PADDR[1:0] are not used)

PCLK Input APB clock

PENABLE Input APB enable

PRDATA[31:0] Output APB read data bus

PWRITE Input APB write

PSEL Input APB select

PREADY Output APB ready

PRESETn Input APB reset (active low)

Table 5-3 • eFROM APB Controller to Physical Memory Port List

Port Type Function

FROM_ASTB_B Output FROM address strobe (active on falling edge) can be
aligned with PCLK rising or falling edge, as described in
Table 5-7 on page 78

FROM_UFIADDR[6:0] Output FROM address bus

FROM_UFIDATA[7:0] Input FROM data output bus

Table 5-4 • EFROM_CR Register Map

Register Name Address R/W Reset Value Description

EFROM_CR 0xE0042024 R/W 0x00000009 Used to set eFROM APB interface
controller timing options
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When reading the eFROM via firmware running on the SmartFusion MSS, each byte is read from the
eFROM by addressing an offset of the eFROM APB peripheral base address. For example, the first byte
of the eFROM is read by addressing the eFROM APB peripheral base address (0x40015000) and
returned via the MSS AHB bus matrix. The next byte of the eFROM is read by incrementing the base
address by 4. Thus to read byte i of the eFROM, the firmware would access the following Cortex-M3
memory space address: (eFROM APB base address) + (4 * i).

Table 5-5 • EFROM_CR

Bit 
Number Name R/W Reset Value Description

31:4 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

3:1 SYS_TOPT[3:1] R/W 100 (binary) Controls the number of wait states inserted by the
eFROM APB interface controller before asserting
PREADY during an APB access. Wait states are
needed since the APB clock (PCLK1) frequency
can be higher than the maximum eFROM clock
frequency. This can result in PCLK cycle times
which are shorter than the expected eFROM data
access timing and result in incorrect eFROM data
being read onto the APB PRDATA bus. Table 5-6
shows the recommended wait state setting.

0 SYS_TOPT[0] R/W 1 0 – Timing Option 1 - Reserved 
1 – Timing Option 2 - Refer to Table 5-7

Table 5-6 • Timing Options Controlled by SYS_TOPT[3:1]

SYS_TOPT[3:1] Wait States Added Notes

000 0 Reserved; do not use

001 1 Reserved; do not use

010 2 Reserved; do not use

011 3 Reserved; do not use

100 4 
–

DEFAULT

This is the default and recommended setting selected to
provide sufficient eFROM memory access time. This
setting ensures that the correct eFROM data is propagated
from the memory back to the MSS through the eFROM
APB controller, regardless of whether the MSS_CLK to
PCLK1 ratio is 1:1, 2:1, or 4:1. 

101 5 Reserved

110 6 Reserved

111 7 Reserved

Table 5-7 • Timing Options Controlled by SYS_TOPT[0]
SYS_TOPT[0] Value Timing Option Description
0 Timing option 1 Reserved; do not use

1 Timing option 2
– 

DEFAULT

Allows one complete PCLK1 cycle for the APB address
to propagate from the APB bus to the eFROM through
the eFROM APB interface controller.  This is the default
and recommended setting.
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6 – Embedded SRAM (eSRAM) Memory 
Controllers

The embedded SRAM (eSRAM) memory controller is an Advanced High-Performance Bus (AHB) slave
that provides access to two equal-sized blocks of eSRAM. The total amount of available eSRAM ranges
from 16 Kbytes to 64 Kbytes, depending on device size. Each individual eSRAM block is therefore
8 Kbytes to 32 Kbytes, organized in a 2Kx32 to 8Kx32 fashion. The eSRAM in these blocks is byte,
halfword, and word addressable. The ARM Cortex-M3 microcontroller and other masters find the
eSRAMs available as one contiguous area of memory. 
The address of eSRAM_0 is 0x20000000 and eSRAM_1 is located at an address which depends on the
total amount of eSRAM present on the device. The location of eSRAM_1 is always directly after
eSRAM_0 in the memory map. Table 6-1 lists the memory locations for eSRAM in SmartFusion devices
and Table 6-2 gives pertinent register definitions. 

Table 6-3 gives bit definitions for the eSRAM Configuration Register.

After power-on reset, both eSRAM blocks are mapped into the SRAM bit-banding area of Cortex-M3
system space, which is located from address 0x20000000 to address 0x20100000. In the Cortex-M3
microcontroller’s view of the memory map, the eSRAM area can be remapped to 0x00000000 within
Cortex-M3 code space. This is done with boot code by setting the COM_ESRAMFWREMAP bit in the
ESRAM_CR register ("eSRAM Configuration Register" section of the "AHB Bus Matrix" section on
page 15, address 0xE0002000) to 1. 

Table 6-1 • eSRAM Address Locations

Device eSRAM_0 eSRAM_1 Total SRAM

A2F060 0x20000000 0x20002000 16 Kbytes

A2F200 0x20000000 0x20008000 64 Kbytes

A2F500 0x20000000 0x20008000 64 Kbytes

Table 6-2 • ESRAM_CR Register Map

Register Name Address R/W Reset Value Description

ESRAM_CR 0xE0042000 R/W 0x00000010 Controls address mapping of 
the eSRAMs

AHB_MATRIX_CR 0xE0042018 R/W 0x00000007 Configures the AHB bus 
matrix

Table 6-3 • ESRAM_CR

Bit 
Number Name R/W

Reset 
Value Description

31:1 Reserved R/W 0x0 Read 0. Software should not rely on the value of 
a reserved bit. To provide compatibility with 
future products, the value of a reserved bit 
should be preserved across a read-modify-write 
operation.

0 COM_ESRAMFWREMAP R/W 0x0 Remap of embedded SRAMs.
0 = no remapping of the eSRAMs occurs
1 = eSRAM0 is mapped to location 0x00000000 
and eSRAM1 is mapped directly above it.
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Note: The eSRAM continues to be available to the Cortex-M3 at address 0x20000000, even when the
eSRAM is remapped to address 0x00000000 in the Cortex-M3 memory map.

The eSRAM is also visible to masters other than the Cortex-M3 microcontroller, although the
corresponding port on the AHB bus matrix must be enabled by boot code before the fabric master can
access eSRAM. See the AHB_MATRIX_CR definition in the "AHB Bus Matrix" section on page 15. The
eSRAM is always located at address 0x20000000 in the memory map seen by each of the masters other
than the Cortex-M3 microcontroller. The COM_ESRAMFWREMAP bit of the ESRAM_CR ("eSRAM
Configuration Register" section of the"AHB Bus Matrix" section on page 15) controls only the memory
map seen by the Cortex-M3 microcontroller.
Figure 6-1 depicts read and write timing for the eSRAMs. All eSRAMs operate with zero wait states.
However, if an eSRAM is busy completing a write transaction, the initiation of a read cycle will incur one
wait state and be initiated in the following cycle.

Misaligned Addresses
Misaligned addresses are not allowed. The Cortex-M3 microcontroller aligns addresses as they exit the
core. However, for a master residing in the FPGA fabric, you must ensure that the correct addressing
(byte, halfword, or word) is applied to the correct address. The eSRAM controller will map misaligned
addresses to the appropriate address by ignoring the appropriate least significant bits (LSBs) of HADDR.
For example, if a fabric master attempts to read a word at address 0x20000001, 0x20000002, or
0x20000003, it will actually read the word at address 0x20000000.

Notes:
1. The Dx numbers on HADDR are simply used to number and track transactions and are not actual addresses.
2. Transactions numbered D0, D4, D8, and D15 are idle transactions.
3. Transactions D1, D2, D3, D9, D11, D13, and D14 are eSRAM read transactions.
4. Transactions D5, D6, D7, D10, and D12 are eSRAM write transactions.
Figure 6-1 • Read and Write Timing
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7 – External Memory Controller

This section describes the external memory controller (EMC), available only on SmartFusion cSoCs
A2F060, A2F200 and A2F500 (not available on A2F500 for the PQ208 package).

Main Features
The EMC provides a glueless interface to external memories. Memory types supported are
asynchronous memories and synchronous SRAMs. The EMC is mapped into system address space
from 0x70000000 to 0x77FFFFFF.
The EMC has the following features:

• 2 chip selects, each addressing 64 MBytes of address space
– Programmable timing for each chip select

• 8-bit or 16-bit shared data bus
• Asynchronous memories supported

– Static random access memory (SRAM)
– NOR flash memory
– PSRAM

• Synchronous memories supported
– Synchronous static random access memory (SSRAM)

• Write enable and byte lane support
• Translates 32-bit AHB transactions into successive halfword and byte transactions.
• Automatic translation of misaligned addresses

Naming Convention
Throughout this section a lower case x is used as a placeholder in a register name or signal to signify
either a 0 or 1, which corresponds to chip select 0 or 1. 
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External Memory Controller
Block Diagram
The EMC primarily exists to interface with off-chip memory devices that can be addressed by the MSS or
user logic in the FPGA fabric. It appears as a slave on the AHB bus matrix, as shown in Figure 7-1. 

Figure 7-1 • External Memory Controller Block Diagram
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Functional Description
The EMC accepts single AHB transactions for reading and writing to external memory devices (EMDs).
The EMC reformats single AHB transactions into the format required by the external EMD. The EMC
may use multiple FCLK cycles to complete an EMD access, depending on the characteristics of the EMD
and on the size of the access (word, halfword, or byte) and the width of the data bus to the EMD. An AHB
access consists of an address phase and a data phase, as shown in Figure 7-2.

The EMC cannot complete EMD read and write transactions in only two FCLK cycles, so the user must
configure the EMC and insert wait states in the data phase of the AHB access to complete the EMD
access. Figure 7-4 shows an AHB read transaction with two wait states inserted into the data phase of
the AHB transaction.

Figure 7-2 • AHB Address/Data Phase for Read Transfer

Figure 7-3 • AHB Address/Data Phase for Write Transfer

Figure 7-4 • AHB Read Access with Two Wait States
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External Memory Controller
The EMC uses the additional clock cycles to complete the EMD transaction. Figure 7-5 illustrates an
AHB transaction with three wait states and shows the EMD interface signals during the AHB data phase
and how they are used to complete the EMD access. Note that the AHB address phase will always be
one FCLK cycle and the wait states are inserted into the data phase. The figure illustrates a pipelined
synchronous SRAM EMD requiring a pipeline clock cycle between EMC_AB valid and EMC_DB output. 
As shown, the EMC requires one FCLK cycle to output the EMD address, EMC_AB. The EMD requires
two FCLK cycles to fetch the data, EMC_DB. One additional FCLK cycle is required to transfer the EMD
data, EMC_DB, to the AHB Bus, HRDATA. Therefore, this read is an AHB read access with a total of
three wait states.
Depending on the type of access, the EMC may need to be configured with up to six wait states to
complete an AHB transaction (a word read from a byte wide EMD requires a total of eight cycles, for
example).

Figure 7-5 • AHB to EMC Transaction
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FCLK Cycles and EMC Phases
For synchronous EMDs and asynchronous EMDs that operate at FCLK speeds, one FCLK cycle is the
same as one EMC phase. If FCLK is 100 MHz, for example, during an EMC address phase where
address is input to the EMD, and if the setup time for the address to be latched in the EMD by EMC_CLK
or a control signal is less than 10 ns, then the EMC address phase can be one FCLK cycle long. For
some asynchronous EMDs the timing required for each phase may be greater than one FCLK cycle.
EMC_CLK is driven by FCLK. Therefore, the EMC is not designed around FCLK cycles but rather around
EMC phases that correspond to EMD phases and are at least one FCLK cycle long. EMC phases are
made greater than an FCLK cycle by programming the latency fields in the configuration registers,
EMC_CS_0_CR and EMC_CS_1_CR.

Back-to-Back AHB Accesses
AHB accesses to EMD may be consecutive, in which case the current access may cause the pending
access to wait until it completes. At the completion of the first access, the second access can start.
The last phase of an EMC access is either the transfer of read data to HRDATA or the write of EMC_DB
to the EMD. Since neither of these actions involves the signals required for an AHB address phase, it is
possible for the last EMC phase to overlap with the address phase of a new AHB transaction, thus saving
one EMC phase per AHB transaction.
In this case, the EMC never transitions back to its 0 phase (idle), but continues to EMC phase 1 for the
second transaction, after completing the first transaction. This also requires that the EMC recognize that
a pending transaction is waiting and generate the EMC control signals during the last phase of the
current transaction (which is also the address phase of the pending transaction). When there is no
pending transaction, the EMC generates the appropriate control signals during its phase 0, which is
coincident with the AHB address phase when a new transaction is received.
When the EMC is not being accessed, it remains in phase 0 (idle). Figure 7-6 shows the AHB and EMC
signals when back-to-back AHB transactions are received by the EMC. 

Figure 7-6 • Back to Back AHB Bus Transactions
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EMC Memory Map
AHB addressing is byte oriented, so although the AHB buses, HRDATA and HWDATA, are 32-bit buses,
individual bytes, half-words (16 bits), or the entire word can be read or written. 
The width of the data bus to the EMD(s) is either 16-bit or 8-bit. Therefore, all AHB accesses must be
broken into halfword or byte EMD accesses, depending on the EMD connected to the EMC. The EMC
configuration bit, EMC_PORTSIZEx, is used to configure the EMC to the width of the connected EMD. 
The EMC memory space is divided into an upper and lower half. Each half can be connected to a
separate EMD. Addresses to the EMDs, EMC_AB, are common. Access to each memory space half is
determined by the assertion of the controls EMC_CS[1:0]_N, where index 1 corresponds to the upper
half and index 0 to the lower half. Each half of the EMC supports up to 64 MBytes of memory if using all
26 memory address bits. Table 7-1 illustrates the starting and ending address for each chip select.

EMC to EMD Memory Maps
Figure 7-7 through Table 7-10 on page 88 show the AHB to EMD memory mapping when various widths
of memories are used.

Table 7-1 • External Memory Controller Memory Regions

Chip Select Starting Address Ending Address

EMC_CS0_N 0x70000000 0x73FFFFFF

EMC_CS1_N 0x74000000 0x77FFFFFF

Figure 7-7 • Halfword Wide External Memory Device Memory Map
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Figure 7-8 • Byte Wide External Memory Device Memory Map

Figure 7-9 • Halfword Wide External Memory Device Memory Map Using x8 EMDs
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Misaligned Access Behavior
All halfword accesses are performed on halfword boundaries and all word accesses are performed on
word boundaries. As shown in Table 7-2 and Table 7-3 on page 89, misaligned accesses are
automatically aligned to an appropriate boundary. In other words, for word accesses, the EMC ignores
the two LSBs of the address bus and for halfword accesses the EMC ignores the LSB of the address. No
error indication is generated during this automatic alignment. The misaligned transactions are
processed, but they are not trapped. Users must be aware of this when implementing masters in the
FPGA fabric.

Figure 7-10 • Halfword and Byte Wide External Memory Device Memory Map
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Table 7-2 • Misaligned Write Transactions

Write Transaction Size AHB Address EMD Location(s) Written

Byte 0x00 0x00

Byte 0x01 0x01

Byte 0x02 0x02

Byte 0x03 0x03

Halfword 0x00 0x01, 0x00

Halfword 0x01 0x01, 0x00

Halfword 0x02 0x03, 0x02

Halfword 0x03 0x03, 0x02

Word 0x00 0x03, 0x02, 0x01, 0x00

Word 0x01 0x03, 0x02, 0x01, 0x00

Word 0x02 0x03, 0x02, 0x01, 0x00

Word 0x03 0x03, 0x02, 0x01, 0x00
88 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
FCLK Cycles Required for Memory Accesses
Based on the memory access (read or write), EMD data width (EMC_PORTSIZEx), and memory access
width, the EMC will require different number of phases to complete a read or write. In the case where the
AHB transaction width (HSIZE) is greater than EMC_PORTSIZEx, the EMC must perform multiple EMD
accesses. Since accesses can have pipelined addresses and data, the number of EMC phases required
depends on the configured programming of the EMC. Table 7-4 shows the number of phases required for
each access as a function of EMC_PORTSIZEx and AHB transaction width (HSIZE) with no pipeline or
latency delays.
The various possible configurations of EMC_PORTSIZEx and AHB transaction width (HSIZE) result in
EMD accesses that will require either one, two, or four addresses and make one, two, or four EMD
accesses (read or write). Table 7-4 identifies the number of accesses required and the maximum number
of phases required for an access when a phase is equal to one FCLK cycle. 

From the perspective of an AHB access, Table 7-5 and Table 7-6 on page 91 can be used to calculate
the number of FCLK cycles required for each type of access. The following assumptions are made:

Table 7-3 • Misaligned Read Transactions

Read Transaction Size AHB Address EMD Addresses Read

Byte 0x00 0x00

Byte 0x01 0x01

Byte 0x02 0x02

Byte 0x03 0x03

Halfword 0x00  0x01, 0x00

Halfword 0x01  0x01, 0x00

Halfword 0x02 0x03, 0x02 

Halfword 0x03 0x03, 0x02 

Word 0x00 0x03, 0x02, 0x01, 0x00

Word 0x01 0x03, 0x02, 0x01, 0x00

Word 0x02 0x03, 0x02, 0x01, 0x00

Word 0x03 0x03, 0x02, 0x01, 0x00

Table 7-4 • Memory Address Generation

Access Type
AHB Transaction Width 

(HSIZE) EMC_PORTSIZEx Number of Phases
Read Byte Byte 1

Read Halfword Byte 2

Read Word Byte 4

Read Byte Halfword 1

Read Halfword Halfword 1

Read Word Halfword 2

Write Byte Byte 1

Write Halfword Byte 2

Write Word Byte 4

Write Byte Halfword 1

Write Halfword Halfword 1

Write Word Halfword 2
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• An access is measured from the AHB address phase to the assertion of HREADY at the end of
the transaction, including the FCLK cycle where HREADYOUT is asserted. Figure 7-11 shows a
transaction that requires four FCLK cycles (address plus data phases).

• Synchronous EMDs will require an additional pipeline delay of one FCLK cycle.
• A read or write to an asynchronous EMD requires two FCLK cycles for each AHB address phase.
• If N consecutive (back-to-back) accesses are done on the same EMD, the total number of FCLK

cycles required is given by EQ 1:

Total FCLK cycles = TFCLK + (N – 1) × (TFCLK – 1)

EQ 1
– This occurs because for back-to-back transactions, the last FCLK cycle can overlap with the

next AHB address cycle. The EMC phase does not return to the idle or 0 state between
transactions, as shown in Figure 7-6.

An additional FCLK cycle is added whenever an access to a synchronous EMD is followed by an access
to an asynchronous or FLASH EMD or vice versa. One additional cycle is inserted at the end of the
access to ensure that PCB delays will not cause a race condition with the EMD control signals and cause
an erroneous write to either memory. 

Table 7-5 • Synchronous SRAM FCLK Cycle Counts 

Access 
Type EMD Data Bus Width

AHB Transaction 
Width (HSIZE) Number of Accesses 

FCLK Cycles 
(TFCLK)

Read Byte Byte 1 4

Read Byte Halfword 2 5

Read Byte Word 4 7

Read Halfword Byte 1 4

Read Halfword Halfword 1 4

Read Halfword Word 2 5

Write Byte Byte 1 3

Write Byte Halfword 2 4

Write Byte Word 4 6

Write Halfword Byte 1 3

Write Halfword Halfword 1 3

Write Halfword Word 2 4
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Table 7-6 • Asynchronous Memory FCLK cycle count

Access 
Type EMD Data Bus Width

AHB Transaction 
Width (HSIZE)

Number of 
Accesses 

FCLK Cycles 
(TFCLK)

Read Byte Byte 1 3

Read Byte Halfword 2 5

Read Byte Word 4 8

Read Halfword Byte 1 3

Read Halfword Halfword 1 3

Read Halfword Word 2 5

Write Byte Byte 1 3

Write Byte Halfword 2 5

Write Byte Word 4 8

Write Halfword Byte 1 3

Write Halfword Halfword 1 3

Write Halfword Word 2 5

Figure 7-11 •  Access Time
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External Memory Device Examples
Figure 7-12 gives an overview of how to connect external memories to the EMC. While not exhaustive,
the examples given are intended to provide the user with a sense of what the EMC is capable of. 
Figure 7-12 shows a typical x16 SRAM connected to the EMC of a SmartFusion cSoC. An eight
megabyte device is shown. The address bus is halfword aligned (A[17:0] = EMC_AB[18:1], since
EMC_AB is a byte address). The halfword synchronous SRAM (16-bit) device uses the byte enable
control pins to affect a single byte write.

The circuit of Figure 7-13 shows a representative configuration of synchronous SRAM for the
SmartFusion EMC. Eight megabyte SSRAMS are shown. The address bus is again halfword aligned
(A[21:0] = EMC_AB[22:1], since EMC_AB is a byte address).

Figure 7-12 •  x16 Synchronous SRAM – 1 EMD
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Figure 7-14 shows a circuit diagram that connects two large byte-mode NOR flash devices to the
SmartFusion device. Here, the byte enables are being used as write enables (usage depends on device
and configuration). Use the EMC_WENBENx bits in the EMC_CS_x_CR register to select this mode. 

Figure 7-15 shows a circuit diagram that connects four asynchronous SRAMs to the SmartFusion device.
This is another case of byte enables being used as write enables (usage depends on device and
configuration).

Figure 7-14 •  x16 NOR Flash – Two EMDs
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The circuit of Figure 7-16 shows a synchronous SRAM (halfword address) alongside and sharing the
data bus with two byte-wide asynchronous SRAM devices. Again, in this case the SmartFusion byte
enable pins are connected to the write enable pins of the asynchronous SRAM external devices. 

The circuit of Figure 7-17 shows a synchronous SRAM alongside and sharing the data bus with a NOR
flash device. This drawing illustrates the connections necessary when the NOR flash device is
configured in halfword (16-bit) mode. The user must not perform AHB byte accesses to the NOR flash
device in this configuration (but can to the SRAM). While predictable, the results will likely be
unsatisfactory.

Figure 7-16 • Synchronous SRAM – 1 x16 EMD and 2 x8 EMDs
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External Memory Controller Configuration
Table 7-7 lists the control registers used in configuring the EMC. Table 7-8 gives the bit definition for
EMC_MUX_CR and Table 7-9 lists the bit definitions for the EMC_CS_x_CR, where x is either 0 or 1,
signifying chip select 0 or chip select 1.

Table 7-10 lists the different types of memory that can be seamlessly connected to the EMC. Users are
free to assign any memory type to one chip select and any other memory type to the other chip select
constrained only by the types listed in Table 7-10.

Table 7-7 • External Memory Controller Register Map

Name Address R/W
Reset 
Value Description 

EMC_MUX_CR 0xE004203C R/W 0x0 External memory controller MUX
configuration

EMC_CS_0_CR 0xE0042040 R/W 0x0 EMC timing parameters for chip select 0

EMC_CS_1_CR 0xE0042044 R/W 0x0 EMC timing parameters for chip select 1

Table 7-8 • EMC_MUX_CR

Bit 
Number Name R/W

Reset 
Value Description 

0 EMC_SEL R/W 0 Multiplexed EMC I/O control

Table 7-9 • EMC_CS_x_CR

Bit 
Number Name R/W

Reset 
Value Description 

21 EMC_CSFEx R/W 0 Chip select falling edge

20 EMC_WENBENx R/W 0 Write enable/byte enable

19 EMC_RWPOLx R/W 0 Read/write polarity

18 EMC_PIPEWRNx R/W 0 Pipelined write

17 EMC_PIPERDNx R/W 0 Pipelined read

16:15 EMC_IDDx R/W 0 Inter device delay

14:11 EMC_WRLATx R/W 0 Write data latency

10:7 EMC_RDLATRESTx R/W 0 Read data latency, next access

6:3 EMC_RDLATFIRSTx R/W 0 Read data latency, first access

2 EMC_PORTSIZEx R/W 0 Port size

1:0 EMC_MEMTYPEx R/W 0 External memory type

Table 7-10 • EMC_MEMTYPEx Field Definition

Bit 1 Bit 0 Function

0 0 No memory assigned to chip select x

0 1 Asynchronous/PSRAM memory assigned to chip select x

1 0 Synchronous memory assigned to chip select x

1 1 NOR flash memory assigned to chip select x
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Valid configurations are illustrated in Table 7-11. If EMC_MEMTYPEx has a value of 0b00 and an AHB
bus matrix master attempts to access that region of memory, the EMC will return an error and the
COM_ERRORINTERRUPT (which maps to IRQ24 in the ARM Cortex-M3 interrupt controller) will be
asserted. The specific master which caused the error can be determined by reading the MSS_SR
located at address 0xE004201C. Specifically, the COMM_ERRORSTATUS field indicates which master
generated the error condition. It should be noted that PSRAMS are only supported in asynchronous
mode.

Table 7-12 defines EMC_PORTSIZEx. EMD data bus width is either 16 bits or 8 bits. AHB transactions
on the AHB bus matrix can be up to 32 bits wide. Therefore, all AHB accesses wider than the configured
EMD data bus width must be converted into halfword or byte EMD accesses, depending on the
configured EMD bus width. 

Table 7-13 illustrates how the EMC converts AHB transactions into various EMC accesses based on
EMD data bus width.

Table 7-11 • Valid Combinations of EMD Types

Chip Select 0 Chip Select 1

None None

None Asynchronous

None Synchronous

None NOR flash

Asynchronous None

Asynchronous Asynchronous

Asynchronous Synchronous

Asynchronous NOR flash

Synchronous None

Synchronous Asynchronous

Synchronous Synchronous

Synchronous NOR flash

NOR flash None

NOR flash Asynchronous

NOR flash Synchronous

NOR flash NOR flash

Table 7-12 • EMC_PORTSIZEx Definition

Bit 2 Function

0 8-bit EMD data bus

1 16-bit EMD data bus
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Table 7-13 • Mapping of AHB Transactions to EMC Accesses
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8 Byte 0 1 0b10 0 [7:0] [7:0] – – – – – – – – –

8 Byte 1 1 0b10 1 [15:8] [7:0] – – – – – – – – –

8 Byte 2 1 0b10 2 [23:16] [7:0] – – – – – – – – –

8 Byte 3 1 0b10 3 [31:24] [7:0] – – – – – – – – –

8 Half 0 2 0b10 0 [7:0] [7:0] 1 [15:8] [7:0] – – – – – –

8 Half  1* 2 0b10 0 [7:0] [7:0] 1 [15:8] [7:0] – – – – – –

8 Half 2 2 0b10 2 [23:16] [7:0] 3 [31:24] [7:0] – – – – – –

8 Half  3* 2 0b10 2 [23:16] [7:0] 3 [31:24] [7:0] – – – – – –

8 Word 0 4 0b10 0 [7:0] [7:0] 1 [15:8] [7:0] 2 [23:16] [7:0] 3 [31:24] [7:0]

8 Word  1* 4 0b10 0 [7:0] [7:0] 1 [15:8] [7:0] 2 [23:16] [7:0] 3 [31:24] [7:0]

8 Word  2* 4 0b10 0 [7:0] [7:0] 1 [15:8] [7:0] 2 [23:16] [7:0] 3 [31:24] [7:0]

8 Word  3* 4 0b10 0 [7:0] [7:0] 1 [15:8] [7:0] 2 [23:16] [7:0] 3 [31:24] [7:0]

16 Byte 0 1 0b10 0 [7:0] [7:0] – – – – – – – – –

16 Byte 1 1 0b01 1 [15:8] [15:8] – – – – – – – – –

16 Byte 2 1 0b10 2 [23:16] [7:0] – – – – – – – – –

16 Byte 3 1 0b01 3 [31:24] [15:8] – – – – – – – – –

16 Half 0 1 0b00 0 [15:0] [15:0] – – – – – – – – –

16 Half  1* 1 0b00 0 [15:0] [15:0] – – – – – – – – –

16 Half 2 1 0b00 2 [31:16] [15:0] – – – – – – – – –

16 Half  3* 1 0b00 2 [31:16] [15:0] – – – – – – – – –

16 Word 0 2 0b00 0 [15:0] [15:0] 2 [31:16] [15:0] – – – – – –

16 Word  1* 2 0b00 0 [15:0] [15:0] 2 [31:16] [15:0] – – – – – –

16 Word  2* 2 0b00 0 [31:16] [15:0] 2 [31:16] [15:0] – – – – – –

16 Word  3* 2 0b00 0 [31:16] [15:0] 2 [31:16] [15:0] – – – – – –

Note: *Misaligned access
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Note:
In the following sections and timing diagrams, W = EMC_WRLATx, X = EMC_RDLATFIRSTx,
Y = EMC_RDLATRESTx, and Z = EMC_IDDx.

Read Latency – Initial Access (EMC_RDLATFIRSTx)
The field EMC_RDLATFIRSTx determines the number of initial latency cycles for the first read access for
the respective chip select, where x defines which chip select is applicable. Each cycle is defined to be 1
FCLK period. Zero to a maximum of 15 latency cycles can be programmed by the user.
For asynchronous and flash memory types, EMC_RDLATFIRSTx read latency cycles are inserted
between clock edges 2 and 2 + X, as shown in Figure 7-18 on page 101, Asynchronous Read Cycle,
where X = the value programmed into EMC_RDLATFIRSTx. Note that for X = 0, the shown latency cycle
is removed from the timing diagram.
For synchronous memory types with EMC_PIPERDNx = 1, initial read latency cycles are inserted
between clock edges 2 and 2 + (X – 1), as shown in Figure 7-19 on page 102, Non-Pipelined
Synchronous Read Cycle. Note that for X = 1, the shown latency cycle is removed from the timing
diagram and for X = 0, the FCLK cycle between edges 2 + (X – 1) and 3 + (X – 1) is coincident with the
FCLK cycle between edges 1 and 2.
For synchronous memory types with EMC_PIPERDNx = 0, initial read latency cycles are inserted
between clock edges 2 and 2 + (X – 1) for rows 0–11 and between clock edges 5 and 5 + (X – 1) for rows
12 – 20, as shown in Figure 7-20 on page 103, Pipelined Synchronous Read Cycle. Note that for X = 1,
the shown latency cycle is removed from the timing diagram.

Read Latency – Remaining Accesses (EMC_RDLATRESTx)
The field EMC_RDLATRESTx determines the number of latency cycles for the remaining read accesses
for the respective chip select, where x defines which chip select is applicable. Each cycle is defined to be
1 FCLK period. Zero to a maximum of 15 latency cycles can be programmed by the user.
For asynchronous and flash memory types, the EMC_RDLATRESTx latency cycles are inserted between
clock edges 4 + X and 4 + X + Y, as shown in Figure 7-18 on page 101, Asynchronous Read Cycle,
where Y is the value programmed into EMC_RDLATRESTx. Read latency cycles for access 3 are
inserted between edges 6 + X + Y and 6 + X + 2Y. Read latency cycles for access 4 are inserted
between edges 8 + X + 2Y and 8 + X + 3Y. Note that for Y = 0, the shown latency cycle(s) are removed
from the timing diagram.
For synchronous memory types with EMC_PIPERDNx = 1, EMC_RDLATRESTx latency cycles are
inserted between clock edges 4 + (X – 1) and 4 + (X – 1) + (Y – 1), as shown in Figure 7-19 on
page 102, Non-Pipelined Synchronous Read Cycle. 
EMC_RDLATRESTx latency cycles for access 3 are inserted between edges 6 + (X – 1) + (Y – 1) and
6 + (X – 1) + 2(Y – 1). 
EMC_RDLATRESTx latency cycles for access 4 are inserted between edges 8 + (X – 1)X + 2(Y – 1) and
8 + (X – 1) + 3(Y – 1). Note that for Y = 1, the shown latency cycle is removed from the timing diagram.
For synchronous memory types with EMC_PIPERDNx = 0, EMC_RDLATRESTx is ignored.

Write Latency (EMC_WRLATx)
The field EMC_WRLATx determines the number of write latency cycles for the respective chip select,
where x defines which chip select is applicable. Each cycle is defined to be 1 FCLK period. From 0 to a
maximum of 15 latency cycles can be programmed by the user.
For asynchronous and flash memory types, write latency cycles are inserted between clock edges that
are shaded in Figure 7-21 on page 104, where W is the value programmed into EMC_WRLATx. Note
that for W = 0, the shown latency cycle is removed from the timing diagram.
For synchronous memory types with EMC_PIPEWRNx = 1, write latency cycles are inserted between
clock edges 2 and 2 + (W – 1), 4 + (W – 1) and 4 + 2(W – 1), 6 + 2(W – 1) and 6 + 3(W – 1), and
8 + 3(W – 1) and 8 + 4(W – 1), as shown in Figure 7-23 on page 106, Non-Pipelined Synchronous Write
Cycle. Note that for X = 1, the shown latency cycle is removed from the timing diagram. For W = 0, the
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FCLK cycle between edges 2 + (W – 1) and 3 + (W – 1) is coincident with the FCLK cycle between
edges 1 and 2, and similarly for the other accesses.
For synchronous memory types with EMC_PIPEWRNx = 0, write latency cycles are inserted between
clock edges 5 and 5 + (W – 1) for rows 0-11 and between clock edges 2 and 2 + (W – 1) for rows 12-20,
as shown in Figure 7-22 on page 105, Pipelined Synchronous Write Cycle. Note that for W = 1, the
shown latency cycle is removed from the timing diagram.

Pipelined Read Enable (EMC_PIPERDNx)
This bit enables pipelining of memory reads. 
Note: For pipelined reads the address is incremented on each FCLK cycle. For non-pipelined reads, the

address is only incremented after the AHB has latched the read data.
When EMC_PIPERDNx is asserted (Low), reads of synchronous SRAMs in the region controlled by chip
select x (where x can be 0 or 1) are pipelined with timing per Figure 7-20 on page 103, Pipelined
Synchronous Read Cycle. 
When EMC_PIPERDNx is deasserted (High), reads of synchronous SRAMs in the region controlled by
chip select x (where x can be 0 or 1) are not pipelined, with timing illustrated per Figure 7-19 on
page 102, Non-Pipelined Synchronous Read Cycle.
EMC_PIPERDNx has no effect for asynchronous SRAMs and NOR flash devices.

Pipelined Write Enable (EMC_PIPEWRNx)
This bit enables pipelining of memory writes. 
Note: For pipelined writes, the address is incremented on each FCLK cycle. For non-pipelined writes, the

address is only incremented after the EMD has latched the write data.
When EMC_PIPEWRNx is asserted (Low), writes to synchronous SRAMs in the region controlled by
chip select x (where x can be 0 or 1) are pipelined with timing per Figure 7-22 on page 105, Pipelined
Synchronous Write Cycle. 
When EMC_PIPEWRNx is deasserted (High), writes to synchronous SRAMs in the region controlled by
chip select x (where x can be 0 or 1) are not pipelined, with timing illustrated per Figure 7-23 on
page 106, Non-Pipelined Synchronous Write Cycle.
EMC_PIPEWRNx has no effect for asynchronous SRAMs and NOR flash devices.

Inter Device Delay (EMC_IDDx)
The field EMC_IDDx determines the number of latency cycles inserted between consecutive memory
accesses and also defines the number of latencies when switching from synchronous to asynchronous
memories and vice versa. Each cycle is defined to be 1 FCLK period. Zero to a maximum of 3 latency
cycles can be programmed by the user.
The first IDD cycle occurs in the FCLK period following HREADYOUT assertion at the end of an EMC
access for asynchronous reads and writes, flash reads and writes, and synchronous writes.
For synchronous reads, the first IDD cycle occurs in the FCLK period of HREADYOUT assertion at the
end of an EMC access. Note that in practice this limits the IDD delay for synchronous reads to two FCLK
periods, with EMC_IDDx = 0 having the same effect as EMC_IDDx = 1.
One IDD cycle is always inserted when the memory type changes from synchronous to flash or
asynchronous, and one IDD cycle is also inserted when the memory type changes from flash or
asynchronous to synchronous.

Alternate Chip Select Falling Edge (EMC_CSFEx)
When EMC_CSFEx = 0, EMC_CSx_N is asserted on the rising edge of FCLK. When EMC_CSFEx = 1,
EMC_CSx_N is asserted on the falling edge of FCLK.
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When EMC_CSFEx for the selected region is low, EMC_CSx_N is driven per the waveform shown on
row 11 of Figure 7-18 on page 101 through Figure 7-22 on page 105 (using the figure appropriate to the
access type).
When EMC_CSFEx for the selected region is high, EMC_CSx_N is driven per the waveform shown on
row 12 of Figure 7-18 on page 101 through Figure 7-22 on page 105 (using the figure appropriate to the
access type).

Read/Write Polarity (EMC_RWPOLx)
When EMC_RWPOLx = 0, the polarity of the EMC_RW_N is non-inverted. That is, reads are a high,
writes are a low. When EMC_RWPOLx = 1, the polarity of the EMC_RW_N is inverted. That is, reads are
a low and writes are a high.
When EMC_RWPOLx for the selected region is low, EMC_RW_N is driven per the waveform shown on
row 13 of Figure 7-18 on page 101 through Figure 7-22 on page 105 (using the figure appropriate to the
access type).
When EMC_RWPOLx for the selected region is high, EMC_RW_N is driven per the waveform shown on
row 14 of Figure 7-18 on page 101 through Figure 7-22 on page 105 (using the figure appropriate to the
access type).

Write Enable/Byte Enable (EMC_WENBENx)
EMC_WENBENx controls whether the byte lane enable signals (EMC_BYTE_ENx) serve as write
enables (only asserted for writes) or byte enables (asserted for reads and writes.) When
EMC_WENBENx = 0, EMC_BYTE_ENx is active for both reads and writes. When EMC_WENBENx = 1,
EMC_BYTE_ENx is active for only writes.
When EMC_WENBENx for the selected region is low, EMC_BYTE_ENx is driven per the waveform
shown on row 17 of Figure 7-18 on page 101 through Figure 7-22 on page 105 (using the figure
appropriate to the access type).
When EMC_WENBENx for the selected region is high, EMC_BYTE_ENx is driven per the waveform
shown on row 18 of Figure 7-18 on page 101 through Figure 7-22 on page 105 (using the figure
appropriate to the access type).

Timing
The following timing diagrams in Figure 7-18 on page 101 through Figure 7-23 on page 106 show the
operation of the EMC for each of the possible memory types. Note that the pipeline configuration for
reads and writes is independent. A single memory can be configured to do pipelined reads and non-
pipelined writes or vice versa.
100 Revision 3



101

ion Microcontroller Subsystem User’s Guide

Figu

FCLK

HADD

HSEL 
HSEL 
HTRA
HWRI
HWDA

HRDA
HREA

EMC_C

EMC_A

EMC_

EMC_

EMC_

EMC_

EMC_
EMC_

EMC_

EMC_

EMC_

EMC_

y IDD

 EMC here. 

MEMTYPEx = 01 or EMC_MEMTYPEx = 11
PIPERDNx is ignored for these memory types.
PIPEWRNx is ignored for these memory types.
shaded latency cycle is EMC_RDLATFIRST FCLK cycles wide.
C_RDLATFIRST value of 0 will remove this cycle.
d latency cycles are EMC_RDLATREST FCLK cycles wide.
C_RDLATREST value of 0 will remove these cycles.

ngle access reads:

o access reads:

ADDR[1:0] = 00, DATA = --- --- --- D0
ADDR[1:0] = 01, DATA = --- --- D0 ---
ADDR[1:0] = 10, DATA = --- D0 --- ---
ADDR[1:0] = 11, DATA = D0 --- --- ---

ADDR[1] = 0, DATA = --- --- D1 D0
ADDR[1:0] = 01, DATA = D1 D0 --- ---    

ur access reads:
TA = D3  D2  D1  D0

e EMC_BYTE_ENx  is shown low, only EMC_BYTE_ENx
 active byte lane(s) will go low.  EMC_BYTE_ENx for 

ve byte lanes will remain high.
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MTYPE = 10
PERDNx is high for non-pipelined reads.
PEWRNx is ignored for reads.
ded latency cycle is EMC_RDLATFIRSTx FCLK cycles wide.

_RDLATFIRSTx value of 0 will remove this cycle.

e access writes:

DR[1:0] = 00, DATA = --- --- --- D0
DR[1:0] = 01, DATA = --- --- D0 ---
DR[1:0] = 10, DATA = --- D0 --- ---
DR[1:0] = 11, DATA = D0 --- --- --- 

ccess writes:
DR[1] = 0, DATA = --- --- D1 D0
DR[1:0] = 01, DATA = D1 D0 --- ---    

access writes:access writes:
 = D3  D2  D1  D0

latency cycles are EMC_RDLATRESTx – 1 FCLK cycles wide.  
_RDLATRESTx value of 1 will remove these latency cycles.
_RDLATRESTx value of 0 causes address to be presented and
e sampled in the same FCLK cycle.  

initial latency cycle is EMC_RDLATFIRSTx – 1 FCLK cycles wide.  
_RDLATFIRSTx value of 1 will remove this initial latency cycle.
_RDLATFIRSTx value of 0 causes address to be presented and
pled in the same FCLK cycle.

 by IDD
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es:

EMC_MEMTYPEx = 10.
EMC_PIPERDNx is low for pipelined accesses.
EMC_PIPEWRNx is ignored for reads.
The second address for a 2 access read is A0 + 2.

For single access reads:
If HADDR[1:0] = 00, DATA = --- --- --- D0
If HADDR[1:0] = 01, DATA = --- --- D0 ---
If HADDR[1:0] = 10, DATA = --- D0 --- ---
If HADDR[1:0] = 11, DATA = D0 --- --- ---
  

For two access reads:
If HADDR[1] = 0, DATA = --- --- D1 D0
If HADDR[1:0] = 01, DATA = D1 D0 --- ---    

For four access reads:
DATA = D3  D2  D1  D0

Where EMC_BYTE_ENx is shown low, only 
EMC_BYTE_ENx for the active byte lane(s) will go 
low. EMC_BYTE_ENx for inactive byte lanes will 
remain high.

EMC_RDLATREST is ignored for pipelined accesses.

Shaded latency cycle is EMC_RDLATFIRSTx – 1 FCLK
cycles wide.  An EMC_RDLATFIRSTx value of 1 will
remove this latency cycle. An EMC_RDLATFIRSTx value 
of 0 causes address to be presented and data to be
latched on the same FCLK cycle. 
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FCLK
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EMC_

EMC_

EMC_

EMC_

EMC_

EMC_
EMC_

EMC_

EMC_

EMC_

EMC_

es:

MC_MEMTYPEx = 01 or EMC_MEMTYPEx = 11
MC_PIPERDN is ignored for these memory types.
MC_PIPEWRN is ignored for these memory types.
he second address for a 2 access read is A0 + 2.
haded latency cycles are EMC_WRLATx FCLK cycles wide.
n EMC_WRLATx value of 0 will remove these cycles.
or single access writes:

or two access writes:

If HADDR[1:0] = 00, DATA = --- --- --- D0
If HADDR[1:0] = 01, DATA = --- --- D0 ---
If HADDR[1:0] = 10, DATA = --- D0 --- ---
If HADDR[1:0] = 11, DATA = D0 --- --- ---
 

If HADDR[1] = 0, DATA = --- --- D1 D0
If HADDR[1:0] = 01, DATA = D1 D0 --- ---    

or four access reads:
DATA = D3  D2  D1  D0

Where EMC_BYTE_ENx is shown low, only EMC_BYTE_ENx
for the active byte lane(s) will go low.  EMC_BYTE_ENx for 
inactive byte lanes will remain high.

s delayed by IDD
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FCL
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HSE
HTR
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HR

EM
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EMC`
EMC

EMC

EMC

EMC

EMC

MTYPEx =10
ERDNx is ignored for writes.
EWRNx is low for pipelined writes.
nd address for a 2 access read is A0+2.

 access writes:
DR[1:0] = 00, DATA = --- --- --- D0 
DR[1:0] = 01, DATA = --- --- D0 ---
DR[1:0] = 10, DATA = --- D0 --- ---
DR[1:0] = 11, DATA = D0 --- --- ---
ccess writes:
DR[1] = 0, DATA = --- --- D1  D0
DR[1:0] = 0,1, DATA = D1  D0 --- ---    
ccess writes:
 = D3  D2  D1  D0

C_BYTE_ENx is shown low, only EMC_BYTE_ENx for
 byte lane(s) will go low. EMC_BYTE_ENx for inactive byte
 remain high.

atency cycles are EMC_WRLAT – 1 FCLK cycles wide. 
WRLAT value of 1 will remove these latency cycles.  An
LAT value of 0 causes address and data to be presented
e FCLK cycle. 

EMC

EMC
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EMC
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EMC
EMC

YPE = 10
DN is ignored for writes.
RNx is high.

ncy cycles are EMC_WRLATx – 1 FCLK cycles wide.
RLATx value of 1 will remove these latency cycles.

eat writes:

_BYTE_ENx is shown low, only EMC_BYE_ENx for the
ane(s) will go low. EMC_BYTE_ENx for inactive byte
main high.

[1:0] = 00, DATA = --- --- --- D0
[1:0] = 01, DATA = --- --- D0 ---
[1:0] = 10, DATA = --- D0 --- ---
[1:0] = 11, DATA = D0 --- --- --- 

t writes:
[1] = 0, DATA = --- --- D1 D0
[1:0] = 01, DATA = D1 D0 --- ---    

t writes:
3  D2  D1  D0

RLATx value of 0 causes address and data to be 
 the same FCLK cycle.
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External Memory Controller I/Os
I/Os used for the EMC are found on the north side and west side of the FPGA device. These I/Os are
shared with user logic. That is, if the user does not need the EMC, I/Os are available for FPGA logic
resources. If, however, the EMC is used, those FPGA I/Os are dedicated to the EMC. The EMC _SEL bit
in the EMC_MUX_CR register is used to select either FPGA I/O or EMC I/O, as defined in Table 7-14.
EMC_MUX_CR is located at address 0xE004203C in the system memory map. If the user sets the
EMC_PORTSIZEx bit to 0 (8-bit memory) for both chip selects, the upper 8 bits of the data bus FPGA I/O
are available to user logic.

Table 7-14 • EMC I/O Configuration Control (EMC_MUX_CR)

Bit 0 Function

0 The multiplexed I/Os are allocated to the FPGA logic.

1 The multiplexed I/Os are allocated to the EMC.

Table 7-15 • EMC Pins

Pin Name Input/Output Function Count

EMC_AB[25:0] Out Address bus 26

EMC_DB[15:0] Bidir Bidirectional data bus 16 

EMC_BYTE_EN[1:0] Out Byte lane signals 2

EMC_CS[1:0]_N Out Chip selects 2

EMC_OE[1:0]_N Out Output enables 2

EMC_RW_N Out Read/write 1

EMC_CLK Out Clock 1

50
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8 – PLLs, Clock Conditioning Circuitry, and On-
Chip Crystal Oscillators

This section describes the oscillators, phase-locked loops (PLLs), and clock conditioning circuitry (CCC)
that exist in SmartFusion devices. 

Functional Description
Figure 8-1 depicts the top-level SmartFusion clocking scheme. All SmartFusion devices have six CCC
circuits and at least one PLL embedded in one of the CCCs, except for the A2F500 device, which has
two PLLs (MSS_CCC and Fabric_CCC). The PLL in single-PLL devices is used to provide a flexible
clocking scheme to the microcontroller subsystem (MSS) and the FPGA fabric. The additional PLL in
other SmartFusion devices is dedicated to FPGA fabric usage. In all devices the MSS has been
designed to operate at up to 100 MHz. 

There are three internal oscillators that can be used to drive the MSS_CCC block: the 32 KHz low-power
crystal oscillator, the main crystal oscillator, and the on-chip RC oscillator. The CCC blocks with an
integrated PLL can only divide the input clock frequency; there are no minimum input frequency
requirements when using the CCC block by itself without the PLL. Each PLL can divide/multiply its input
clock to create a VCO frequency. Each PLL/CCC has three global outputs called GLA, GLB, and GLC.
Each output includes a 5-bit divider that can be individually set to divide the VCO or input clock rate and
create the output frequency for that connection. 
In all devices, MSS_CCC drives the MSS. Once the ARM Cortex-M3 microcontroller is up and running,
the firmware can choose to reconfigure the MSS_CCC to supply the MSS clock via the GLA0 output of

Figure 8-1 • Top-Level SmartFusion Clock Hierarchy

 

32 KHz
Osc. 

Main
Osc.

RC
Osc.

MSS_CCC FPGA Fabric

CCCPads

CCCPads

CCC Pads

CCC Pads

CCC Pads

GLA0

GLB

GLC

Microcontroller Subsystem
(MSS)

FCLK

10/100 CLK
External
10/100 Clock 

SYSREG

GLA1
Revision 3 109



PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators
MSS_CCC. Within the MSS, FCLK can be further divided down via APB clock dividers and within those
peripherals that will further divide down the APB clock.
The GLA0 output of the MSS_CCC block drives the input clock to the microcontroller subsystem (MSS).
The clock source for the 10/100 Ethernet MAC can be sourced from an external pin or the GLC output of
the MSS_CCC block, and the GLA1 and GLB outputs are dedicated to the FPGA fabric.
As depicted in Figure 8-2, the MSS_CCC block consists of the following main components: input clock
multiplexers, PLL, dividers, and delays. There are three main paths through the MSS_CCC block: the
CLKA, CLKB, and the CLKC paths, which output clocks onto the global buffers GLA, GLB, and GLC. As
can be seen in more detail in Figure 8-3, there are actually two more outputs from the PLL/CCC block.
The YB and YC outputs can drive additional local routing resources in the FPGA fabric. Figure 8-6
depicts a simplified view of the CCC blocks without a PLL.

Figure 8-2 • Simplified View of MSS_CCC Block

Figure 8-3 • SmartFusion MSS_CCC Block
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SmartFusion Microcontroller Subsystem User’s Guide
Input Clock Selection
Each clock path has its own input multiplexer, allowing the user flexibility in choosing the clock source for
that path. The input clock source can be changed dynamically by setting the appropriate control bits for
the MSS_CCC_MUX_CR register. The control bits for CLKA are shown in Table 8-1 and the multiplexer
arrangement is shown in Figure 8-5 on page 112. The input clock pads feeding the input clock
multiplexers are shown in Figure 8-4. The Libero MSS Configurator configures the instantiation of the
input buffer macros (depicted in Figure 8-5 on page 112) based on drop-down menu selections. 

Table 8-1 • CLKA Selection

RXASEL DYNASEL STATASEL CLKA

0 0 0 AUIN

0 1 0 AUIP

0 0 1 ADIP

0 1 1 GLAINT

1 0 X RC oscillator

1 1 X Main oscillator

Note: *Represents the global input pins. Refer to the “User Pins” section of "Pin Descriptions" chapter in
the SmartFusion Customizable System-on-Chip (cSoC) datasheet.

Figure 8-4 • Clock Input Sources for CLKA Multiplexer
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PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators
CLKA can be driven from one of the following:
• 3 dedicated single-ended I/Os using a hardwired connection

– AUIN, AUIP, ADIP
• Two dedicated differential I/Os using a hardwired connection

– AUIN + AUIP pair, ADIN + ADIP pair
• The FPGA fabric

– GLAINT
• The RC oscillator
• The Main oscillator

Similar to configuring CLKA, CLKB and CLKC have their own set of control bits to allow dynamic
configuration of their clock sources. 

Figure 8-5 • CLKA Multiplexers

Table 8-2 • CLKB and CLKC Input Clock Sources

RXBSEL DYNBSEL STATBSEL CLKB RXCSEL DYNCSEL STATCSEL CLKC

0 0 0 BUIN 0 0 0 CUIN

0 1 0 BUIP 0 1 0 CUIP

0 0 1 BDIP 0 0 1 CDIP

0 1 1 GLBINT 0 1 1 GLCINT

1 0 X RC oscillator 1 0 X RC oscillator

1 1 X Main oscillator 1 1 X 32 KHz oscillator

0

1

0

1

0

1

0

1
0

1

AUIN

AUIP

GLAINT

ADIP

RC Osc.

Main Osc.

DYNASEL

STATASEL

RXASEL

CLKA
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Figure 8-6 • Simplified View of CCCs Without a PLL
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PLL Configuration

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO).
Figure 8-7 illustrates a basic single-phase PLL core with a divider and delay in the feedback path.

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase
difference between the input and feedback signals. The first element is the PD, which produces a voltage
proportional to the phase difference between its inputs. A simple example of a digital phase detector is an
exclusive OR (XOR) gate. The second element, the LPF, extracts the average voltage from the phase
detector and applies it to the VCO. This applied voltage alters the resonant frequency of the VCO, thus
adjusting its output frequency.
Consider Figure 8-7 with the feedback path bypassing the divider and delay elements. If the LPF steadily
applies a voltage to the VCO such that the output frequency is identical to the input frequency, this
steady-state condition is known as lock. Note that the input and output phases are also identical. The
PLL core sets a LOCK output signal High to indicate this condition. Should the input frequency increase
slightly, the PD detects the frequency/phase difference between its reference and feedback input signals.
Since the PD output is proportional to the phase difference, the change causes the output from the LPF
to increase. This voltage change increases the resonant frequency of the VCO and increases the
feedback frequency as a result. The PLL dynamically adjusts in this manner until the PD senses two
phase-identical signals and steady-state lock is achieved. The opposite (decreasing PD output signal)
occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M is increased,
the average phase difference increases. The average phase difference will cause the VCO to increase its
frequency until the output signal is phase-identical to the input after undergoing division. In other words,
lock in both frequency and phase is achieved when the output frequency is M times the input. Thus, clock
division in the feedback path results in multiplication at the output. A similar argument can be made when
the delay element is inserted into the feedback path. To achieve steady-state lock, the VCO output signal
will be delayed by the input period less the feedback delay. For periodic signals, this is equivalent to time-
advancing the output clock by the feedback delay. Another key parameter of a PLL system is the
acquisition time. Acquisition time is the amount of time it takes for the PLL to achieve lock (phase-align
the feedback signal with the input reference clock). For example, suppose there is no voltage applied to
the VCO, allowing it to operate at its free-running frequency. If an input reference clock suddenly
appears, a lock would be established within the maximum acquisition time.

Figure 8-7 • Simplified PLL with Feedback Divider and Delay
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DelayDivide by M
Counter 

FIN FOUT = FIN × M 
114 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
Phase Selectors
The output from the PLL core can be phase-adjusted with respect to the reference input clock, CLKA.
The user can select a 0°, 90°, 180°, or 270° phase shift independently for each of the outputs GLA,
GLB/YB, and GLC/YC. Note that each of these phase-adjusted signals might also undergo further
frequency division and/or time delay adjustment via the remaining dividers and delays located at the
outputs of the CCC. Selecting the desired phase for each output is accomplished by writing to the
OAMUX, OBMUX, and OXMUX fields of the MSS_CCC_MUX_CR control register.

Programmable Dividers
The PLL block contains five programmable dividers. Dividers n and m (the input divider and feedback
divider, respectively) provide integer frequency division factors from 1 to 128. Dividers n and m
correspond to the fields FINDIV and FBDIV in the MSS_CCC_PLL_CR control register.
The output dividers u, v, and w provide integer division factors from 1 to 32. Frequency scaling of the
reference clock CLKA is performed according to the EQ 1 through EQ 3. 

fGLA = fCLKA × m / (n × u) 

EQ 1

fGLB = fYB = fCLKA × m / (n × v) 

EQ 2

fGLC = fYC = fCLKA × m / (n × w)

EQ 3
Dividers u, v, and w correspond to the fields OADIV, OBDIV, and OCDIV in the MSS_CCC_DIV_CR
control register. The Libero MSS Configurator provides a user-friendly method of generating the PLL
settings, which includes automatically setting the division factors to achieve the closest possible match to
the requested frequencies. The settings are used by the system startup code to initialize the MSS to a
known state.
Since the five output clocks share the n and m dividers, the achievable output frequencies are
interdependent and related according to EQ 4.

fGLA = fGLB × (v / u) = fGLC × (w / u)

EQ 4

Programmable Delay Elements
There are a total of seven configurable delay elements implemented in the CCC architecture. Two of the
delays are located in the feedback path: System Delay and Feedback Delay. System Delay, enabled by
the XDLY control bit, provides a fixed delay of 2 ns (typical), and Feedback Delay, set by the FBDLY field
in MSS_CCC_DLY_CR, provides selectable delay values from 0.535 ns to 5.56 ns in 200 ps increments
(typical). For PLLs, delays in the feedback path will effectively advance the output signal from the PLL
core with respect to the reference clock. Thus, the System (XDLY) and Feedback (FBDLY) delays
generate negative delay on the output clock. Additionally, each of these delays can be independently
bypassed if necessary.
At each global multiplexer output (GLA, GLB, and GLC) a delay element is available which is user-
selectable from 0.735 ps in the first step; then to 5.56 ns with 200 ps increments after the first two steps.
Setting these delays is done by writing to the DLYA, DLYB, and DLYC fields of the MSS_CCC_DLY_CR.
In addition to the above three delays there are two additional delays in series with GLA. GLA0 is a
programmable delay element driving the microcontroller subsystem clock network and GLA1 is a
programmable delay element driving the FPGA fabric GLA clock network. These two delay elements
(DLYA0 and DLYA1) are used to allow edge alignment for hold time correction between the
microcontroller subsystem and the fabric interface if GLA1 is used to clock the fabric interface controller
(FIC). Setting these delays is done by writing to the DLYA0 and the DLYA1 fields of the
MSS_CCC_DLY_CR. On power-up, DLYA0 and DLYA1 are set to their maximum value. System boot
code provided by Microsemi, in concert with the Libero MSS Configurator, will initialize the delay values
to factory-calibrated data. 
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Glitchless MUX (NGMUX)
The NGMUX is a 2:1 multiplexer that switches glitch-free between two different clock sources and
outputs the new clock to the global network, as shown in Figure 8-8. Before switching the NGMUX, the
clock source being switched to must be stable to avoid unstable clock propagation through the NGMUX.
If not, the NGMUX can propagate those glitches. Table 8-3 shows the various clock sources available to
the NGMUX. Switching from one clock source to another must complete before another clock source is
selected. In other words, the NGMUX must propagate the clock switching before it can switch again. The
output of the glitchless MUX will be undefined if the glitchless MUX is not allowed to complete the switch.

Figure 8-8 • Glitchless Multiplexer

Table 8-3 • NGMUX Clock Sources

GLMUXCFG GLMUXSEL

Selected Input SignalBit 27 Bit 26 Bit 25 Bit 24

0 0 X 0 GLA

X 1 GLC

0 1 X 0 GLA

X 1 Reserved

1 0 X 0 GLC

X 1 Reserved

1 1 0 0 GLA

0 1 GLC

1 0 Reserved

1 1 GND

Glitchless
MUX

GLMUXSEL[1:0]

GLA

GLC

CLKOUTPLL/CCC

GLMUXCFG[1:0]
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Glitchless MUX Switching
Most users will find it is only necessary to leave GLMUXCFG at 0x03 (power-up default setting) and
control the clock source by changing only GLMUXSEL. Figure 8-9 through Figure 8-11 on page 119
show the constraints that exist when switching between two clocks.

Case 1: Both Current Clock and Desired Clock Active
When both the current clock and desired clock inputs to the NGMUX are active, the switching sequence
between the two clock sources (from current clock to desired clock) is as below. An example is shown in
Figure 8-9.

1. A transition on S initiates the clock source switch.
2. GL drives one last complete current clock positive pulse (i.e., one rising edge followed by one

falling edge).
3. GL stays Low until the second rising edge of desired clock occurs.

At the second desired clock rising edge, GL continuously delivers desired clock.

Figure 8-9 • NGMUX Switching When Both Clocks Active
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Case 2: Current Clock Stopped or at Very Low Frequency
If the current clock stops or runs at a very low frequency after S transition, internal timeout circuitry will be
used to complete the transition. The sequence of switching between the two clock sources (from current
clock to desired clock) is described and illustrated below.

Case 2A: No Rising Current Clock Edge
If the current clock does not have a rising edge before the seventh desired clock rising edge, the
switching sequence between the two clock sources (from current clock to desired clock) is as shown in
Figure 8-10.
At the seventh desired clock rising edge, GL will go Low until the ninth desired clock rising edge.
At the ninth desired clock rising edge, GL will continuously deliver the desired clock signal.

Note: Min. tsw = 0.05 ns at 25°C (typical conditions).
Figure 8-10 • NGMUX Switching when No Rising Edge on Current Clock During Switching 
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Case 2B: No Falling Current Clock Edge
If a current clock rising edge occurs before the seventh desired clock rising edge but a current clock
falling edge does not occur before the fifteenth desired clock rising edge, the sequence of switching
between the two clock sources (from current clock to desired clock) is as shown in Figure 8-11.
At the fifteenth desired clock rising edge, GL will go Low until the seventeenth desired clock rising edge.
At the seventeenth desired clock rising edge, GL will continuously deliver the desired clock signal.

Safe Clock Switching Methods
On power-up, the clock for the MSS is sourced by the CLKC path. Specifically, the RC oscillator is
selected, the w divider divides the 100 MHz RC by 4, and the glitchless MUX is set to select the global
MUX GLC with the programmable delays feeding the GLA0 and GLA1 outputs set to their maximum. So,
on power-up, GLC = GLA0 = GLA1 = 25 MHz. Microsemi-provided system boot code, in concert with the
Libero MSS Configurator, provides for a safe switching methodology from power-on reset to the desired
output clock frequency and source. The delay values, DLYA0 and DLYA1, are set to a factory calibration
setting. It is strongly recommended that the user does not modify these delay values.
After power-up, if the user wishes to use a different clock source or change the clock frequency driving
GLA0 or GLA1, the user must wait for the desired clock source to stabilize before switching the glitchless
MUX from the old clock source to the new clock source. 
For example, after power-up, change the clock frequency driving the MSS from a 25 MHz RC oscillator
source to a 100 MHz RC oscillator source.

Step 1:
Write to MSS_CCC_MUX_CR to select the RC oscillator and bypass the PLL:

1. Set RXASEL bit to 0x1.
2. Clear DYNASEL to 0x0.
3. Set BYPASSA to 0x1.

Figure 8-11 • NGMUX Switching When No Falling Edge on Current Clock During Switching 
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Step 2:
Write to MSS_CCC_MUX_CR to select the GLA path:

Set GLMUXSEL bits to 0x0.
In the above example, it is not acceptable to change the divider value in OCDIV from 4 to 1 to effect the
desired change from 25 MHz to 100 MHz. It is not acceptable to effect all changes targeted to the
MSS_CCC_MUX_CR in one single write. The divider circuitry is not glitchless and would have passed a
glitch along to the MSS. The switching of the glitchless MUX must occur last. Also, it was assumed that
switching the CLKA path (input to the PLL) had no unintended consequences for the GLB output driving
the FPGA fabric, if it is being used by the fabric.
In general, the frequency of the GLB, YB, GLC, and YC outputs to the FPGA fabric can be changed by
the Cortex-M3 microcontroller. User logic in the FPGA fabric must be able to handle glitches from these
potential changing clocks. A simple solution would be to have the Cortex-M3 microcontroller set a bit in
FPGA fabric that user logic can use as a reset when the Cortex-M3 microcontroller is changing the clock
sources to user logic.

On-Chip RC Oscillator
The on-chip RC oscillator (Figure 8-12) runs at a nominal frequency of 100 MHz. On power-up, the RC is
used as the input clock to the microcontroller subsystem. At that time, the RC is divided by 4 through the
w divider (OCDIV) and presented to GLA0 and GLA1 through the glitchless MUX. The RC oscillator is
always turned on.
Note: The accuracy of the on-chip RC oscillator makes it unsuitable as a clock source for the

Ethernet MAC.

Figure 8-12 • On-Chip RC Oscillator
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Main Crystal Oscillator
The on-chip crystal oscillator circuit works with an off-chip crystal to generate a high-precision clock and
is capable of providing system clocks for peripherals and other system clock networks, both on-chip and
off-chip. 
The on-chip circuitry is designed to work with an external crystal, a ceramic resonator, or an RC network.
It can only support one of these configurations at a time. The crystal oscillator supports four modes of
operation, defined in Table 8-4. In RC Network mode, the oscillator is configured to work with an external
RC network. The RC components are connected to the MAINXIN pin, with MAINXOUT left floating, as
shown in Figure 8-13. The frequency generated by the circuit in RC Network mode is determined by the
RC time constant of the selected components, as shown in Figure 8-15 on page 122.
In all other modes, the crystal oscillator is configured to support an external crystal or ceramic resonator.
These modes correspond to low, medium, and high gain. They differ in the crystal or resonator frequency
supported. The crystal or resonator is connected to the MAINXIN and MAINXOUT pins. Additionally, a
capacitor is required on both MAINXIN and MAINXOUT pins to ground, as shown in Figure 8-14 on
page 122. The recommended input capacitance is 22 pF. 
The main crystal oscillator can be enabled and disabled by the Cortex-M3 microcontroller via the
MSS_CCC_MUX_CR, bit 29 MAINOSCEN. When the main crystal oscillator is not being used, MAINXIN
and MAINXOUT pins can be left floating.

Table 8-4 • Main Oscillator Operational Modes

MAINOSCMODE

Clock Mode FunctionBit 31 Bit 30

0 0 RC network RC oscillation mode. Connect the RC network to the MAINXIN
pad. The MAINXOUT pad should be disconnected.

0 1 Low gain 32 to 200 KHz low-power/-frequency mode. Oscillator consumes
the least current of the three crystal modes.

1 0 Medium gain 0.20 to 2.0 MHz Standard crystal/resonator frequency

1 1 High gain 2.0 to 20.0 MHz high-frequency mode. Oscillator consumes the
most current of the three modes.

Figure 8-13 • Main Crystal Oscillator in RC Network Mode
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Figure 8-14 • Main Crystal Oscillator in Ceramic Resonator or Crystal Mode

Figure 8-15 • Main Crystal Oscillator RC Time Constant Versus Frequency
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Low-Power 32 KHz Crystal Oscillator
This oscillator is designed to work with a low-power 32 KHz watch crystal (for example, a CM519) and
can be enabled and disabled by setting and clearing bit 0 of the CTRL_STAT_REG in the RTC section. If
not being used in the end user application, the LPXIN and LPXOUT pins can be left floating. Additionally,
a capacitor is required on both LPXIN and LPXOUT pins to ground, as shown in Figure 8-17 on
page 124. The recommended input capacitance is 30 pF.

Battery Backup Circuitry
The 32 KHz low-power crystal oscillator and the real-time counter (RTC) can be powered externally by a
CR2032 type of lithium coin cell. Integrated into a SmartFusion device is a battery switch-over circuit
(Figure 8-16) which allows the user’s application to use main power for powering the oscillator and RTC
circuitry when main power is applied instead of battery power, enabling extended battery life and
operation. The built-in battery switch-over circuit switches power to the RTC and low power 32 KHz
oscillator between VCCLPXTAL and VDDBAT, depending on which voltage is higher (Figure 8-17 on
page 124). EQ  is used to determine which rail powers the low-power 32 KHz oscillator and the RTC.
There is approximately 200 mV of hysteresis built into the switching from one rail to another. 

If (VCCLPXTAL < (VDDBAT – 0.4 V)), then 

VOUT = VDDBAT

Else

Vout = VCCLPXTAL

EQ 5

Figure 8-16 • Battery Switch-Over Circuitry
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PLL/CCC Register Map
The PLL/CCC control registers are located in the System Registers address space at 0xE0042000 and
extend to address 0xE0042FFF in the Cortex-M3 memory map.

Figure 8-17 • Low-Power 32 KHz Oscillator with Battery Switch and RTC
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Table 8-5 • PLL/CCC Register Map

Register Name Address R/W Reset Value Description

MSS_CLK_CR 0xE0042048 R/W 0x00028A8 Clock Configuration for APB buses

MSS_CCC_DIV_CR 0xE004204C R/W 0x00030000 Control bits for the CCC dividers

MSS_CCC_MUX_CR 0xE0042050 R/W 0x0D800000 Control bits for the CCC multiplexers

MSS_CCC_PLL_CR 0xE0042054 R/W 0x00000000 Control bits for the PLL

MSS_CCC_DLY_CR 0xE0042058 R/W 0x01FF8000 Control bits for the CCC delay elements

MSS_CCC_SR 0xE004205C R 0x00000000 PLL Lock indication
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Clock Control Register

GLBDIVISOR
The user has the option of selecting the clock ratio between the MSS and FPGA fabric interface. Valid
clock ratios are 1:1, 2:1, and 4:1. If the MSS to FPGA fabric interface clock ratio is selected as 1:1
(whether in synchronous or fabric bypass mode), the AMBA interface logic in the FPGA fabric may use
GLA1 instead of GLB as its clock. This leaves GLB free for use and it may be set at any value. However,
if the MSS to FPGA fabric interface clock ratio is selected as either 2:1 or 4:1, GLB must be used as the
clock source of the AMBA interface logic in the FPGA fabric and the GLB clock must be programmed to
have the corresponding ratio to GLA that exists in the MSS to FPGA fabric interface. GLBDIVISOR is
programmed by firmware to indicate to the fabric interface logic the actual GLA to GLB ratio.
In other words, if the clock ratio between the MSS and the FPGA fabric is anything other than 1:1, the
GLB clock path must be programmed to have the same ratio to GLA that exists in the MSS to FPGA
fabric interface. GLBDIVISOR is used internally to generate the appropriate timing signals in the FPGA

Table 8-6 • MSS_CLK_CR

Bit 
Number Name R/W

Reset 
Value Description

31:14 Reserved R/W 0x00028A8 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

13:12 GLBDIVISOR R/W b10 Selects the clock ratio between the MSS and
FPGA fabric interface. See the "GLBDIVISOR"
section.

11:8 RTCIF_ACMDIVISOR R/W 0b1000 This bit determines the divisor value to be used
by the RTCIF block in the generation of
ACMCLK from PCLK1. The ACMCLK must
have a value of 10 MHz or less. See Table 8-8
on page 127 for allowed values.

7:6 ACLKDIVISOR R/W 0b10 This bit determines the divisor value to be used
to generate clock (ACLK) for APB bus APB_2.
The Analog Compute Engine resides on this
bus. A multiple of 40 MHz is required for optimal
ADC conversion rates. See Table 8-9 on
page 127.

5:4 PCLK1DIVISOR R/W 0b10 This bit determines the divisor value to be used
to generate the clock (PCLK1) for APB bus
APB_1. See Table 8-10 on page 127.

3:2 PCLK0DIVISOR R/W 0b10 This bit determines the divisor value to be used
to generate the clock (PCLK0) for APB bus
APB_0. See Table 8-11 on page 127.

1 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0 RMIICLKSEL R/W 0 0 = RMII clock is sourced from an external pad.
1 = RMII clock is sourced from the GLC output
of the SmartFusion Clock Control block.
The source of the RMII clock for the 10/100
Ethernet MAC is determined by this bit.
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fabric interface logic, between the MSS and the FPGA fabric interface, when the ratio between the two is
not 1:1.
For example, the MSS clock is set to 100 MHz from RC through GLA and the ratio between the MSS and
the FPGA fabric interface is 4:1.

Step 1:
Write to MSS_CCC_MUX_CR to select the RC oscillator and bypass the PLL:

1. Set RXASEL bit to 0x1.
2. Clear DYNASEL to 0x0.
3. Set BYPASSA to a 0x1.

Step 2:
Write to MSS_CCC_MUX_CR to select the GLA path:

Set GLMUXSEL bits to 0x00.

Step 3:
Write to MSS_CCC_MUX_CR to select the GLB path:

1. Set RXBSEL bit to 0x1 (select RC).
2. Clear DYNBSEL to 0x0 (select RC).
3. Set BYPASSB to 0x0 (do not bypass MUX and divider).
4. Set OBMUX to 0x01 (select CLKB).

Write to MSS_CCC_DIV_CR to program the GLB path:
Set OBDIV to 0x03 (divide by 4).
Write to CLK_CONTROL_REG to program the GLA to GLB ratio:
Set GLBDIVISOR to 0x02.

An alternative is Step 3A.

Step 3A:
Write to MSS_CCC_MUX_CR to select the GLB path:

1. Set BYPASSB to 0x0 (do not bypass MUX and divider).
2. Set OBMUX to 0x03 (select GLA output).

Write to MSS_CCC_DIV_CR to program the GLB path:
Set OBDIV to 0x03 (divide by 4, divide GLA by 4 = divide 100 MHz RC / 4).

Write to CLK_CONTROL_REG to program the GLA to GLB ratio:
Set GLBDIVISOR to 0x02.

Table 8-7 • GLBDIVISOR Bit Definitions

GLBDIVISOR

GLB =Bit 13 Bit 12

0 0 FCLK

0 1 FCLK / 2

1 0 FCLK / 4

1 1 Reserved
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RTCIF_ACMDIVISOR
The allowed values of RTCIF_ACMDIVISOR are shown in Table 8-8.

ACLKDIVISOR
ACLK is derived from FCLK, as shown in Table 8-9.

PCLK1DIVISOR
PCLK1 is derived from FCLK, as shown in Table 8-10.

PCLK0DIVISOR
PCLK0 is derived from FCLK, as shown in Table 8-11. 

Table 8-8 • RTCIF_ACMDIVISOR Bit Definitions

RTCIF_ACMDIVISOR

ACMCLK =Bit 11 Bit 10  Bit 9 Bit 8

0 0 0 1 PCLK1

0 0 1 0 PCLK1 / 2

0 1 0 0 PCLK1 / 4

1 0 0 0 PCLK1 / 8

0 0 0 0 PCLK1 / 16

Table 8-9 • ACKLDIVISOR Bit Definitions

ACLKDIVISOR

ACLK =Bit 7 Bit 6

0 0 FCLK

0 1 FCLK / 2

1 0 FCLK / 4

1 1 Reserved

Table 8-10 • PCLK1DIVISOR Bit Definitions

PCLK1DIVISOR

PCLK1 =Bit 5 Bit 4

0 0 FCLK

0 1 FCLK / 2

1 0 FCLK / 4

1 1 Reserved

Table 8-11 • PCLK0DIVISOR Bit Definitions

PCLK0DIVISOR

PCLK0 =Bit 3 Bit 2

0 0 FCLK

0 1 FCLK / 2

1 0 FCLK / 4

1 1 Reserved
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CCC Divider Configuration Register
Table 8-12 • MSS_CCC_DIV_CR

Bit 
Number Name R/W

Reset 
Value Description

31:23 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

22 OCDIVRST R/W 0 0 = "Don't care."
1 = Reset the counter used to divide the GLC/YC output
frequency.
The rising edge of this bit will trigger a reset of the
GLC/YC output divider. This bit is a "don't care" if the PLL
is being used to drive the GLC or YC output.

21 OCDIVHALF R/W 0 0 = OCDIV defines the GLC/YC output frequency divider.
1 = Use Table 8-13 on page 129 to determine GLC or YC
output frequency divider.

20:16 OCDIV R/W 0b00011 These bits divide the output of the global buffer GLB or YB
by the contents of OBDIV + 1. See Table 8-14 on
page 130.

15 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

14 OBDIVRST R/W 0 0 = "Don't care."
1 = Reset the counter used to divide the GLB/YB output
frequency.
The rising edge of this bit will trigger a reset of the GLB/YB
output divider. This bit is "don't care" if the PLL is being
used to drive the GLB or YB output.

13 OBDIVHALF R/W 0 0 = OBDIV defines the GLB/YB output frequency divider.
1 = Use Table 8-15 on page 130 to determine GLB or YB
output frequency divider.

12:8 OBDIV R/W 0 These bits divide the output of the global buffer GLB or YB
by the contents of OBDIV + 1. See Table 8-16 on
page 131.

7 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

6 OADIVRST R/W 0 0 = "Don't care."
1 = Reset the counter used to divide the GLA output
frequency.
The rising edge of this bit will trigger a reset of the GLA
output divider. This bit is a "don't care" if the PLL is being
used to drive the GLA output.
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OCDIVHALF
This bit, if set to 1, divides the output frequency of the output divider defined by OCDIV by 0.5 when the
PLL is bypassed with the 100 MHz RC or 32 KHz low-power oscillator. If OCDIVHALF = 1 and OCDIV =
2, the OCDIV divisor is 3, so 3 ÷ 2 = 1.5. If the GLC/YC input is sourced from the 100 MHz RC, the output
of GLC/YC will be 100 ÷ 1.5 = 66.67 MHz. This bit is only valid if the input to the GLC/YC divider is not
being sourced by the PLL. Table 8-13 lists the only supported values for OCDIVHALF and OCDIV. Other
combinations of OCDIVHALF and OCDIV can lead to unpredictable results.

5 OADIVHALF R/W 0 0 = OADIV defines the GLA output frequency divider.
1 = Use Table 8-17 on page 131 to determine GLA output
frequency divider.

4:0 OADIV R/W 0 These bits divide the output of the global buffer GLA by
the contents of OADIV + 1. See Table 8-18 on page 132.

Table 8-13 • OCDIVHALF

OCDIVHALF OCDIV Divisor Input Clock Source Output Clock

1 0 1 100 MHz RC 100.00

1 2 1.5 100 MHz RC 66.67

1 4 2.5 100 MHz RC 40.00

1 6 3.5 100 MHz RC 28.57

1 8 4.5 100 MHz RC 22.22

1 10 5.5 100 MHz RC 18.18

1 12 6.5 100 MHz RC 15.38

1 14 7.5 100 MHz RC 13.33

1 16 8.5 100 MHz RC 11.76

1 18 9.5 100 MHz RC 10.53

1 20 10.5 100 MHz RC 9.52

1 22 11.5 100 MHz RC 8.70

1 24 12.5 100 MHz RC 8.00

1 26 13.5 100 MHz RC 7.41

1 28 14.5 100 MHz RC 6.90

Table 8-12 • MSS_CCC_DIV_CR (continued)
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OCDIV
Table 8-14 gives bit definitions for OCDIV.

OBDIVHALF
This bit, if set to 1, divides the output frequency of the output divider defined by OBDIV by 0.5 when the
PLL is bypassed with the 100 MHz RC or 32 KHz low-power oscillator. If OBDIVHALF = 1 and OBDIV =
2, the OBDIV divisor is 3, so 3 ÷ 2 = 1.5. If the GLB/YB input is sourced from the 100 MHz RC, the output
of GLB/YB will be 100 ÷ 1.5 = 66.67 MHz. This bit is only valid if the input to the GLB/YB divider is not
being sourced by the PLL. Table 8-15 lists the only supported values for OBDIVHALF and OBDIV. Other
combinations of OBDIVHALF and OBDIV can lead to unpredictable results.

Table 8-14 • OCDIV Bit Definitions

OCDIV

DIVISORBit 20  Bit 19 Bit 18 Bit 17 Bit 16

0 0 0 0 0 1

0 0 0 0 1 2

. . . . . .

. . . . . .

. . . . . .

1 1 1 1 0 31

1 1 1 1 1 32

Table 8-15 • OBDIVHALF Bit Definitions

OBDIVHALF OBDIV Divisor Input Clock Source Output Clock

1 0 1 100 MHz RC 100.00

1 2 1.5 100 MHz RC 66.67

1 4 2.5 100 MHz RC 40.00

1 6 3.5 100 MHz RC 28.57

1 8 4.5 100 MHz RC 22.22

1 10 5.5 100 MHz RC 18.18

1 12 6.5 100 MHz RC 15.38

1 14 7.5 100 MHz RC 13.33

1 16 8.5 100 MHz RC 11.76

1 18 9.5 100 MHz RC 10.53

1 20 10.5 100 MHz RC 9.52

1 22 11.5 100 MHz RC 8.70

1 24 12.5 100 MHz RC 8.00

1 26 13.5 100 MHz RC 7.41

1 28 14.5 100 MHz RC 6.90
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OBDIV
Table 8-16 gives bit definitions for OBDIV.

OADIVHALF
This bit, if set to 1, divides the output frequency of the output divider defined by OADIV by 0.5 when the
PLL is bypassed with the 100 MHz RC or 32 KHz low-power oscillator. If OADIVHALF = 1 and OADIV =
2, OADIV Divisor is 3, so 3 ÷ 2 = 1.5. If the PLL is bypassed with the 100 MHz RC, the output of GLA will
be 100 ÷ 1.5 = 66.67 MHz. This bit is only valid if the PLL is bypassed and the internal 100 MHz RC
oscillator is used. Table 8-17 lists the only supported values for OADIVHALF and OADIV. Other
combinations of OADIVHALF and OADIV can lead to unpredictable results.

Table 8-16 • OBDIV Bit Definitions

OBDIV

DIVISORBit 12 Bit 11 Bit 10 Bit 9 Bit 8

0 0 0 0 0 1

0 0 0 0 1 2

. . . . . .

. . . . . .

. . . . . .

1 1 1 1 0 31

1 1 1 1 1 32

Table 8-17 • OADIVHALF Bit Definitions

OADIVHALF OADIV Divisor Input Clock Source Output Clock

1 0 1 100 MHz RC 100.00

1 2 1.5 100 MHz RC 66.67

1 4 2.5 100 MHz RC 40.00

1 6 3.5 100 MHz RC 28.57

1 8 4.5 100 MHz RC 22.22

1 10 5.5 100 MHz RC 18.18

1 12 6.5 100 MHz RC 15.38

1 14 7.5 100 MHz RC 13.33

1 16 8.5 100 MHz RC 11.76

1 18 9.5 100 MHz RC 10.53

1 20 10.5 100 MHz RC 9.52

1 22 11.5 100 MHz RC 8.70

1 24 12.5 100 MHz RC 8.00

1 26 13.5 100 MHz RC 7.41

1 28 14.5 100 MHz RC 6.90
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OADIV
Table 8-18 gives bit definitions for OADIV. 

Table 8-18 • OADIV Bit Definitions

OADIV

DIVISORBit 4  Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 1

0 0 0 0 1 2

. . . . . .

. . . . . .

. . . . . .

1 1 1 1 0 31

1 1 1 1 1 32
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CCC Multiplexer Configuration Register
Table 8-19 • MSS_CCC_MUX_CR

Bit 
Number Name R/W

Reset 
Value Description

31:30 MAINOSCMODE R/W 0 Sets the main RC oscillator mode.

29 MAINOSCEN R/W 0 0 = Main crystal oscillator disabled (default).
1 = Main crystal oscillator enabled.

28 Reserved R/W 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value of
a reserved bit should be preserved across a read-
modify-write operation.

27:26 GLMUXCFG R/W 0b10 With GLMUXSEL, configures the glitchless multiplexer.
See Table 8-21 on page 135.

25:24 GLMUXSEL R/W 0 With GLMUXCFG, configures the glitchless multiplexer.
See Table 8-21 on page 135.

23 Reserved R/W 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value of
a reserved bit should be preserved across a read-
modify-write operation.

22 BYPASSC R/W 0 0 = GLC = Output of PLL divider w.
1 = GLC = Global MUX C Path.

21:19 OCMUX R/W 0 Clock path C output multiplexer. See Table 8-22 on
page 135.

18 DYNCSEL R/W 0 With RXCSEL and STATCSEL, selects the input clock
source for clock path C. See Table 8-23 on page 136.

17 RXCSEL R/W 0 With DYNCSEL and STATCSEL, selects the input clock
source for clock path C. See Table 8-23 on page 136.

16 STATCSEL R/W 0 With DYNCSEL and RXCSEL, selects the input clock
source for clock path C. See Table 8-23 on page 136.

15 Reserved R/W 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value of
a reserved bit should be preserved across a read-
modify-write operation.

14 BYPASSB R/W 0 0 = GLB = Output of PLL divider v.
1 = GLB = Global MUX B Path.

13:11 OBMUX R/W 0 Clock Path B output multiplexer. See Table 8-24 on
page 136.

10 DYNBSEL R/W 0 With RXBSEL and STATBSEL, selects the input clock
source for clock path B. See Table 8-25 on page 136.

9 RXBSEL R/W 0 With DYNBSEL and STABSEL, configures the input
clock source for clock path B. See Table 8-25 on
page 136.

8 STATBSEL R/W 0 With DYNBSEL and RXBSEL, selects the input clock
source for clock path B. See Table 8-25 on page 136.
Revision 3 133



PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators
MAINOSCMODE
Table 8-20 gives bit definitions for MAINOSCMODE.

7 Reserved R/W 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value of
a reserved bit should be preserved across a read-
modify-write operation.

6 BYPASSA R/W 0 0 = GLA = Output of PLL divider u.
1 = GLA = Global MUX A path.

5:3 OAMUX R/W 0 Clock Path A output multiplexer. See Table 8-26 on
page 137.

2 DYNASEL R/W 0 With RXASEL and STATASEL, selects the input clock
source for clock path A. See Table 8-27 on page 137.

1 RXASEL R/W 0 With DYNASEL and STATASEL, selects the input clock
source for clock path A. See Table 8-27 on page 137.

0 STATASEL R/W 0 With DYNASEL and RXASEL, selects the input clock
source for clock path A. See Table 8-27 on page 137.

Table 8-20 • MAINOSCMODE Bit Definitions

MAINOSCMODE

Clock Mode FunctionBit 31 Bit 30

0 0 RC network RC oscillation mode. Connects the RC network to the MAINXIN
pad. The MAINXOUT pad should be disconnected.

0 1 Low gain 0.32 to 0.20 MHz low-power/-frequency mode. Oscillator
consumes the least current of the three crystal modes.

1 0 Medium gain 0.20 to 2.0 MHz standard crystal/resonator frequency

1 1 High gain 2.0 to 20.0 MHz high-frequency mode. Oscillator consumes the
most current of the three modes.

Table 8-19 • MSS_CCC_MUX_CR (continued)
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GLMUXCFG[27:26] and GLMUXSEL[25:24]
Table 8-21 gives bit definitions for GLMUXCFG and GLMUXSEL.

OCMUX
Table 8-22 gives bit definitions for OCMUX.

Table 8-21 • GLMUXCFG and GLMUXSEL Bit Definitions

GLMUXCFG GLMUXSEL

Selected Input SignalBit 27 Bit 26 Bit 25 Bit 24

0 0 X 0 GLA

X 1 GLC

0 1 X 0 GLA

X 1 GLINT

1 0 X 0 GLC

X 1 GLINT

1 1 0 0 GLA

0 1 GLC

1 0 GLINT

1 1 GND

Table 8-22 • OCMUX Bit Definitions

OCMUX

FunctionBit 21 Bit 20 Bit 19

0 0 0 MUX and PLL are bypassed

0 0 1 CLKC

0 1 0 PLL VCO 0° feedback delay line output (from FBDLY)

0 1 1 GLA clock source

1 0 0 PLL VCO 0° phase shift

1 0 1 PLL VCO 90° phase shift

1 1 0 PLL VCO 180° phase shift

1 1 1 PLL VCO 270° phase shift
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DYNCSEL, RXCSEL, and STATCSEL 
Table 8-23 gives bit definitions for DYNCSEL, RXCSEL, and STATCSEL.

OBMUX
Table 8-24 gives bit definitions for OBMUX.

DYNBSEL, RXBSEL, and STATBSEL 
Table 8-25 gives bit definitions for RXBSEL, DYNBSEL, and STATBSEL.

Table 8-23 • DYNCSEL, RXCSEL, and STATCSEL Bit Definitions

RXBSEL DYNBSEL STATBSEL CLKC

0 0 0 CUIN

0 1 0 CUIP

0 0 1 CDIP

0 1 1 GLCINT

1 0 X RC oscillator

1 1 X 32 KHz oscillator

Table 8-24 • OBMUX Bit Definitions

OBMUX

FunctionBit 13 Bit 12 Bit 11

0 0 0 MUX and PLL are bypassed

0 0 1 CLKB

0 1 0 PLL VCO 0° feedback delay line output (from FBDLY)

0 1 1 GLA clock source

1 0 0 PLL VCO 0° phase shift

1 0 1 PLL VCO 90° phase shift

1 1 0 PLL VCO 180° phase shift

1 1 1 PLL VCO 270° phase shift

Table 8-25 • DYNBSEL, RXBSEL, and STATBSEL Bit Definitions

RXBSEL DYNBSEL STATBSEL CLKB

0 0 0 BUIN

0 1 0 BUIP

0 0 1 BDIP

0 1 1 GLBINT

1 0 X RC oscillator

1 1 X Main oscillator
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OAMUX
Table 8-26 gives bit definitions for OAMUX.

DYNASEL, RXASEL, and STATASEL 
Table 8-27 gives bit definitions for DYNASEL, RXASEL, and STATASEL.

Table 8-26 • OAMUX Bit Definitions

OAMUX

FunctionBit 5 Bit 4 Bit 3

0 0 0 MUX and PLL are bypassed.

0 0 1 CLKA

0 1 0 PLL VCO 0° feedback delay line output (from FBDLY)

0 1 1 Not available

1 0 0 PLL VCO 0° phase shift

1 0 1 PLL VCO 90° phase shift

1 1 0 PLL VCO 180° phase shift

1 1 1 PLL VCO 270° phase shift

Table 8-27 • DYNASEL, RXASEL, and STATSEL Bit Definitions

RXASEL DYNASEL STATASEL CLKA

0 0 0 AUIN

0 1 0 AUIP

0 0 1 ADIP

0 1 1 GLAINT

1 0 X RC oscillator

1 1 X Main oscillator
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CCC PLL Configuration Register

VCOSEL[2:1]
Table 8-29 gives bit definitions for VCOSEL.

Table 8-28 • MSS_CCC_PLL_CR

Bit 
Number Name R/W

Reset 
Value Description

31 PLLEN R/W 0 0 = PLL in power-down mode
1 = PLL enabled

30:25 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

24:23 VCOSEL[2:1] R/W 0 Specifies the PLL lock acquisition time and tracking jitter.
See Table 8-29. 

22 VCOSEL[0] R/W 0 0 = Fast PLL lock acquisition time with high tracking jitter.
1 = Slow PLL lock acquisition time with low tracking jitter.

21 XDLYSEL R/W 0 Setting this bit to a 1 adds an additional 2 ns (typical) delay
to the output of the PLL feedback selected by the FBSEL
control bits.

20:16 FBDLY R/W 0 FBDLY sets the delay from the PLL VCO 0° phase shift
output to the feedback input of the PLL. A value of 0 has a
typical delay of 535 ps, every time FBDLY is incremented;
200 ps is added to the base delay. See Table 8-30 on
page 139. 

15:14 FBSEL R/W 0 Selects the multiplexer input. See Table 8-31 on page 139.

13:7 FBDIV R/W 0 FBDIV defines the feedback clock divider /m value. Divides
the PLL feedback clock frequency by the value stored in
FBDIV[6:0] + 1.

6:0 FINDIV R/W 0 FINDIV defines the input clock divider /n value. Divides the
input clock frequency to the PLL by the value stored in
FINDIV[6:0] + 1.

Table 8-29 • VCOSEL[2:1] Bit Definitions

VCOSEL[2:1] VCO Output Range in MHz

00 22 – 43.75

01 43.75 – 87.5

10 87.5 – 175

11 175 – 350
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FBDLY
Table 8-30 gives bit definitions for FBDLY.

FBSEL
Table 8-31 gives bit definitions for FBSEL.

Table 8-30 • FBDLY Bit Definitions

FBDLY

Delay ValueBit 20 Bit 19 Bit 18 Bit 17 Bit 16

0 0 0 0 0 535 ps typical

0 0 0 0 1 735 ps typical

0 0 0 1 0 935 ps typical

. . . . . .

. . . . . .

. . . . . .

1 1 1 1 1 5.56 ns typical

Table 8-31 • FBSEL Bit Definitions

FBSEL

Multiplexer Input SelectedBit 15 Bit 14

0 0 GLBINT from FPGA fabric

0 1 PLL VCO 0 degree phase shift

1 0 PLL delayed (by FBDLY) VCO 0 degree phase shift

1 1 BUIP direct input clock
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CCC Delay Configuration Register

DLYA1
Table 8-33 gives bit definitions for DLYA1.

Table 8-32 • MSS_CCC_DLY_CR

Bit 
Number Name R/W

Reset 
Value Description

31:25 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

24:20 DLYA1 R/W 0b11111 DLYA1 sets the delay from the output of the glitchless MUX
to the FPGA fabric. A value of 0 has a typical delay of 535
ps. Every time DLYA1 is incremented, 200 ps is added to
the base delay. The default value of DLYA1 is 0x1f. See
Table 8-33.

19:15 DLYA0 R/W 0b11111 DLYA0 sets the delay from the output of the glitchless MUX
to the microcontroller subsystem. A value of 0 has a typical
delay of 735 ps, every time DLYA0 is incremented; 200ps is
added to the base delay. The default value of DLYA0 is 0x1f.
See Table 8-34 on page 141.

14:10 DLYC R/W 0 Same bit definitions as DLYA. See Table 8-35 on page 141.

9:5 DLYB R/W 0 Same bit definitions as DLYA. See Table 8-35 on page 141. 

4:0 DLYA R/W 0 DLYA sets the delay for the Global MUX A path output prior
to the glitchless MUX. A value of 0 has a typical delay of
535 ps, then every time DLYA is incremented; 200 ps is
added to the previous delay value. See Table 8-35 on
page 141.

Table 8-33 • DYLA1 Bit Definitions

DLYA1

Delay ValueBit 24 Bit 23 Bit 22 Bit 21 Bit 20

0 0 0 0 0 735 ps typical

0 0 0 0 1 935 ps typical

0 0 0 1 0 1135 ps typical

. . . . . .

. . . . . .

. . . . . .

1 1 1 1 1 5.56 ns typical
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DLYA0
Table 8-34 gives bit definitions for DYLA0.

DLYA
Table 8-35 gives bit definitions for DLYA.

CCC Status Register

Table 8-34 • DYLA0 Bit Definitions

DLYA0

Delay ValueBit 19 Bit 18 Bit 17 Bit 16 Bit 15

0 0 0 0 0 735 ps typical

0 0 0 0 1 935 ps typical

0 0 0 1 0 1135 ps typical

. . . . . .

. . . . . .

. . . . . .

1 1 1 1 1 5.56 ns typical

Table 8-35 • DYLA Bit Definitions

DLYA

Delay ValueBit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 535 ps typical

0 0 0 0 1 735 ps typical

0 0 0 1 0 935 ps typical

. . . . . .

. . . . . .

. . . . . .

1 1 1 1 1 5.56 ns typical

Table 8-36 • MSS_CCC_SR

Bit 
Number Name R/W Reset Value Description

31:1 Reserved R 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0 PLL_LOCK_SYNC R 0 This bit indicates whether the SmartFusion PLL is
in a locked condition. This bit must be asserted
before firmware switches the MSS clock source
to the PLL. 
0 = PLL is not locked (default).
1 = PLL is locked.
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9 – Reset Controller

The reset controller manages the SmartFusion on-chip reset resources. On power-up, the signal
PORESET_N is used to bring the SmartFusion device to a known power-up state. PORESET_N is
sourced by the voltage regulator and power supply monitor (VR/PSM) block. A block diagram is shown in
Figure 9-1. There are two external pads that interface to the reset controller: MSS_RESET_N and
TRSTB. MSS_RESET_N can be used as an external reset and can also be used as a system level reset
under control of the Cortex-M3 processor. TRSTB is used to reset the SWJ-DP logic within the
Cortex-M3 processor and to reset the main JTAG TAP controller. All other inputs to and outputs from the
reset controller originate on-chip. Note that the SOFT_RESETS signals sourced from Figure 9-1 place
the respective peripheral in a low-power state. For example, if the user asserts I2C_0_SR (logic 1) in the
SOFT_RST_CR register, all flip-flops in that block are automatically clock gated. MSS_RESET_REQ
from the Cortex-M3 microcontroller is controlled by the SYSRESETREQ bit in the Application Interrupt
and Reset Control register located at address 0XE000ED0C. For more information, refer to the
Cortex-M3 Technical Reference Manual from ARM.

Functional Description
PORESET_N is a hard (cold) reset signal. Its assertion causes everything in the MSS except for the
SWJ-DP in the Cortex-M3 microcontroller to be reset. All the other functional reset sources (those other
than NTRST) are soft (warm) resets. The signals BROWNOUT3_3VINT and BROWNOUT1_5VINT are
sourced from the VR/PSM block and provide interrupt capability when these supplies fall below 2.5 V and
1.3 V, respectively. These signals are also readable as status bits from the MSS_SR, located at address
0xE004201C. Note that INTISR[1] and INTISR[2] must be enabled after the analog block is turned on.
The analog block can be turned on by setting the ABPOWERON bit in the ANA_COMM_CTRL register
to a 1. The ANA_COMM_CTRL register is located at address 0x4002000C in the memory map.

Figure 9-1 • Reset Controller Block Diagram

Reset Controller
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Reset Controller
The reset controller outputs are listed and described in Table 9-1.

Table 9-1 • Reset Controller Outputs 

Signal Description

M3_PORESET_N This is a synchronized version of PORESET_N from the VR/PSM block.
This signal resets all logic within the Cortex-M3 microcontroller, with the
exception of the SWJ-DP block.

MSS_SYSTEM_RESET_N This drives the SYS_RESET_N input to the Cortex-M3 microcontroller and
is also the reset signal for the entire MSS. When SYS_RESET_N asserts
low, the entire Cortex-M3 microcontroller is reset except for the debug
logic that exists in the following blocks:
• Nested vectored interrupt controller (NVIC)
• Flash patch and breakpoint (FPB)
• Data watchpoint and trace (DWT)
• Instrumentation trace macrocell (ITM) 
• AHB-AP
MSS_SYSTEM_RESET_N asserts asynchronously and negates
synchronously to FCLK. This guarantees that it is synchronous to rising
edges of FCLK, ACLK, PCLK0, and PCLK1. MSS_RESET_N is asserted if
any of the following conditions is true:
• PORESET_N asserted by the power supply monitor (PSM) 
• MSS_RESET_REQ asserted by Cortex-M3 microcontroller
• F2M_RESET_N asserted from FPGA fabric, if F2MRESETENABLE

asserted in SOFT_RST_CR
• WDOG_TIMEOUT asserted by watchdog
• LOCKUP asserted by Cortex-M3 microcontroller
• MSS_RESET_N_I asserted (during allowed window, controlled by

reset controller state machine)

NTRST This drives the NTRST (debug reset) input of the Cortex-M3
microcontroller and is used to reset the SWJ-DP sub-block within the
Cortex-M3 microcontroller. 

M2F_RESET_N* This reset signal is fed to the FPGA fabric. M2F_RESET_N asserts
asynchronously and negates synchronously to FCLK. This guarantees that
it is synchronous to rising edges of FCLK, ACLK, PCLK0, and PCLK1.
M2F_RESET_N is asserted if any of the following conditions is true:
• PORESET_N asserted by analog block
• MSS_RESET_REQ asserted by Cortex-M3 microcontroller
• WDOG_TIMEOUT asserted by watchdog 
• LOCKUP asserted by Cortex-M3 microcontroller
• MSS_RESET_N_I asserted (during allowed window, controlled by

reset controller state machine).

Note: *M2F_RESET_N is asserted by F2M_RESET_N. Care must be taken by the user NOT to connect
M2F_RESET_N to the reset input of the fabric master which, in the user's design, asserts
F2M_RESET_N to reset the MSS.
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RCOSC_RESET_N Asserts asynchronously and negates synchronously to RCOSCCLK. This
signal is used to reset parts of the Watchdog block which are clocked by
the RC oscillator. RCOSC_RESET_N is asserted if any of the following
conditions is true:
• PORESET_N asserted by analog block
• MSS_RESET_REQ asserted by Cortex-M3 microcontroller
• F2M_RESET_N asserted from FPGA fabric, if F2MRESETENABLE

asserted in SOFT_RST_CR
• LOCKUP asserted by Cortex-M3 microcontroller
• MSS_RESET_N_I asserted (during allowed window, controlled by

Reset Controller State Machine)

MSS_RESET_N_O This signal is used to drive the external output enable of the I/O Buffer
MSS_RESET_N, as shown in Figure 9-2 on page 146.
When asserted, it causes a zero to be driven onto the MSS_RESET_N
pad. This signal is asserted by the reset controller during PORESET_N
assertion. When MSS_RESET_N negates, MSS_RESET_N_O remains
asserted until firmware clears the EXT_SR bit in SOFT_RST_CR. This
allows a SmartFusion cSoC to control the behavior of the system level
reset, if the user so desires. From this point on, this signal is driven
whenever one of the following reset sources asserts:
• PORESET_N asserted by analog block
• MSS_RESET_REQ asserted by Cortex-M3 microcontroller
• F2M_RESET_N asserted from FPGA fabric, if F2MRESETENABLE

asserted in SOFT_RST_CR
• WDOG_TIMEOUT asserted by watchdog
• LOCKUP asserted by Cortex-M3 microcontroller
• MSS_RESET_N_I asserted
MSS_RESET_N_O is asserted asynchronously and negates
synchronously to FCLK. After a period of time, defined by user firmware,
the PADRESETENABLE bit in the SOFT_RST_CR can be set. Once this
bit is set, the reset controller moves to a state where it monitors the state of
the MSS_RESET_N_I signal, from the MSS_RESET_N pad. From this
point on, any external assertion of MSS_RESET_N_I also causes
MSS_RESET_N_O to assert (as the pad is open-drain, it is okay for two
sources to be driving MSS_RESET_N low together). The external signal
will remain low until both sources stop driving it. See Figure 9-3 on
page 147.

SOFT_RESETS Soft resets are described in Table 9-4 on page 149.

Table 9-1 • Reset Controller Outputs  (continued)

Signal Description

Note: *M2F_RESET_N is asserted by F2M_RESET_N. Care must be taken by the user NOT to connect
M2F_RESET_N to the reset input of the fabric master which, in the user's design, asserts
F2M_RESET_N to reset the MSS.
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Reset Controller
The MSS_RESET_N Pin
The configuration of the MSS_RESET_N pin is controlled by the SYSREG bits BTWEST[1:0].
The MSS_RESET_N pin can be configured as any single-ended I/O (bidirectional). The output buffer is
set to high slew and the drive strength depends on the I/O standard. It can be one of the following, based
on user configuration: 

• LVTTL – 8 mA 
• LVCMOS 2.5 – 8 mA 
• LVCMOS 1.8 – 4 mA 
• LVCMOS 1.5 – 2 mA 

Reset Controller State Machine
The reset controller state machine (Figure 9-3 on page 147) guarantees that the resets it issues are
asserted for eight FCLK periods. The reset which asynchronously resets this state machine is called
ASYNCRESETMAIN, which is generated if any of the following reset conditions occur:

• PORESET_N asserted
• MSS_RESET_REQ asserted (by firmware)
• LOCKUP asserted (by Cortex-M3 microcontroller)
• F2M_RESET_N asserted from FPGA fabric, provided F2MRESETENABLE is asserted in

SOFT_RST_CR
• WDOG_TIMEOUT asserted

The state machine ensures that the MSS_RESET_N pad may be dual-purpose—driven out by the MSS
and driven into the MSS from off-chip. The windows in which each occur are controlled by the reset
controller state machine, under control of firmware writes to SOFT_RST_CR bits EXT_SR and
PADRESETENABLE.
Once the state machine comes out of reset, it asserts resets for eight FCLK periods and then releases
them all except for MSS_RESET_N_OE, which it continues to assert. When firmware turns off EXT_SR,
the state machine negates MSS_RESET_N_OE and moves to the next state, where it waits for firmware
to set PADRESETENABLE. Firmware can tune this delay by moving to the next state, to allow for any de-
bouncing of MSS_RESET_N to occur. Finally, when firmware sets PADRESETENABLE, the state
machine moves on to the IDLE state, where it now monitors (for the first time) the state of
MSS_RESET_N_I. If it sees MSS_RESET_N_I assert, it goes to the PRESTART state, where the full
reset sequencing starts again. The only time that the assertion of MSS_RESET_N by an off-chip source
causes the MSS resets to assert is during this IDLE state. This avoids any asynchronous loops in
situations where the reset controller state machine itself is causing the assertion of MSS_RESET_N.

Figure 9-2 • MSS_RESET_N Output Buffer Configuration
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The reset controller state machine is shown in Figure 9-3.

A requirement on the off-chip source is that it must assert MSS_RESET_N for at least eight FCLK clock
periods and during the correct time window to guarantee correct operation. It must not assert
MSS_RESET_N until it sees MSS_RESET_N negated. Assertion outside of the correct window could be
masked (not impacting the logic). When MSS_RESET_N is asserted by the off-chip source during the
correct window, the MSS_RESET_N signal remains asserted even after the off-chip source stops driving
it low. This is because the MSS has taken over the pad via the EXT_SR bit in SOFT_RST_CR.

Figure 9-3 • Reset Controller State Machine
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Reset Controller
Analog Reset
An MSS reset of the analog block will force it back to its default state. The default configuration for each
analog I/O depends on its type—temperature monitor (TM), current monitor (CM), direct analog-to-digital
converter (ADC). Refer to the SmartFusion Programmable Analog User’s Guide for details.
When analog inputs are reset to their default configuration, they must be redefined in the MSS system
boot code. These inputs will propagate to the fabric when the analog block reset has been completed
and system boot code has been executed. 
If analog inputs are configured as digital LVTTL inputs, there is no impact upon system boot code
execution because configuration is done in the generated netlist and stored in flash bits. 

Reset Controller Register Map
Table 9-4 gives the register map for the reset controller and other registers mentioned in this document.

ANA_COMM_CTRL

Table 9-2 • Reset Controller Memory Map

Register Name Address R/W Reset Value Description

ANA_COMM_CTRL 0x4002000C R/W 1 The analog block can be turned on by setting the
ABPOWERON bit in the ANA_COMM_CTRL register
to a 1.

MSS_SR 0xE004201C R/W 0 Signals BROWNOUT3_3VINT and
BROWNOUT1_5VINT are readable as status bits
from MSS_SR.

SOFT_RST_CR 0xE0042030 R/W 0x00003FFF8 Controls soft resets.

Table 9-3 • ANA_COMM_CTRL

Bit 
Number Name R/W

Reset 
Value Function

7:5 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

4 ACB_RESETN W 0 1 – Reset analog control block
0 – No effect. This bit self clears after one ACLK cycle.

3 ABPOWERON R/W 0 1 – Power on the entire analog block
0 – Power-down the entire analog block

2 ADCSPWRDWN R/W 0 1 – Power-down ADC0, ADC1, and ADC2, 
0 – Power-up ADC0, ADC1, and ADC2. This bit is logically ORed with
the individual ADC PWRDWN bits found in the ADCx_MISC_CTRL
registers.

1 ADCSRESET R/W 0 1 – Reset ADC0, ADC1, and ADC2
0 – No effect. This bit self clears after one ACLK cycle. Note that this bit
is logically ORed with bit 4 (ADCRESET) of the ADCx_MISC_CTRL
registers to allow common control or individual reset control of the
ADC.

0 VAREFSEL R/W 1 1 – Select external reference voltage for ADC0, ADC1, and ADC2 
0 – Select internal reference voltage for ADC0, ADC1, and ADC2
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Reset Controller Register Bit Definitions
The bit definitions for SOFT_RST_CR are given in Table 9-4.

Table 9-4 • SOFT_RST_CR 

Bit 
Number Name R/W

Reset 
Value Function

31:20 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

19 PADRESETENABLE R/W 0 0 = No effect.
1 = Allow reset controller to monitor MSS_RESET_N for an external
reset command. This bit must be set to 1 if the user wants to allow an
external reset from the MSS_RESET_N pad. Users can de-bounce
the MSS_RESET_N pin by delaying the assertion of this bit from the
assertion of EXT_SR.

18 F2MRESETENABLE R/W 0 0 = F2M_RESET_N cannot reset MSS. 
1 = Allow F2M_RESET_N to reset the MSS via the reset controller.

17 FPGA_SR R/W 1 0 = Allow the M2F_RESET_N signal to be released.
1 = M2F_RESET_N is asserted. M2F_RESET_N can be used by
user logic as a reset input controlled by the Cortex-M3
microcontroller. This bit can also be used as a general purpose output
to the FPGA Fabric controlled by the M3.

16 EXT_SR R/W 1 0 = Release MSS_RESET_N from reset.
1 = Keep MSS_RESET_N asserted (low). At power-up, this signal is
asserted 1. This causes the MSS_RESET_N signal to remain
asserted after power up. The user must set this bit to 0 to allow the
MSS_RESET_N pad to deassert and release external logic from its
reset state.

15 IAP_SR R/W 1 0 = Release the IAP controller from reset. 
1 = Keep the IAP controller in reset.

14 GPIO_SR R/W 1 0 = Release the GPIOs from reset. 
1 = Keep the GPIOs in reset.

13 ACE_SR R/W 1 0 = Release the ACE from reset. 
1= Keep the ACE in reset.

12 I2C_1_SR R/W 1 0 = Release I2C_1 from reset. 
1 = Keep I2C_1 in reset.

11 I2C_0_SR R/W 1 0 = Release I2C_0 from reset. 
1 = Keep I2C_0 in reset.

10 SPI_1_SR R/W 1 0 = Release SPI_1 from reset. 
1 = Keep SPI_1 in reset.

9 SPI_0_SR R/W 1 0 = Release SPI_0 from reset. 
1 = Keep SPI_0 in reset.

8 UART_1_SR R/W 1 0 = Release UART_1 from reset. 
1 = Keep UART_1 in reset.

7 UART_0_SR R/W 1 0 = Release UART_0 from reset.
1 = Keep UART_0 in reset.
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6 TIMER_SR R/W 1 0 = Release the system timer from reset.
1 = Keep the system timer in reset.

5 PDMA_SR R/W 1 0 = Release the PDMA from reset. 
1 = Keep the PDMA in reset.

4 MAC_SR R/W 1 0 = Release the Ethernet MAC from reset.
1 = Keep the Ethernet MAC in reset.

3 EMC_SR R/W 1 0 = Release the external memory controller from reset. 
1 = Keep the external memory controller in reset.

2 ESRAM_1_SR R/W 0 0 = Release the ESRAM_1 memory controller from reset.
1 = Keep the ESRAM_1 memory controller in reset.

1 ESRAM_0_SR R/W 0 0 = Release the ESRAM_0 memory controller from reset.
1 = Keep the ESRAM_0 memory controller in reset.

0 ENVM_SR R/W 0 0 = Release the ENVM memory controller from reset.
1 = Keep the ENVM memory controller in reset.

Table 9-4 • SOFT_RST_CR  (continued)

Bit 
Number Name R/W

Reset 
Value Function



10 – Voltage Regulator (VR), Power Supply Monitor 
(PSM), and Power Modes

The VR and PSM provide the user with various ways to define how SmartFusion devices power up and
power down. This section describes the functionality of these blocks and how they can be configured to
achieve various power profiles. A high-level block diagram is shown in Figure 10-1.

1.5 V Voltage Detector (VCC15UP)
This block (see Figure 10-4 on page 154) has a single input (VCC) and a single active high output
(VCC15UP). When the VCC supply is below a threshold (approximately 0.8 V, depending on process
and temperature variables), the output is low. When VCC is above this threshold the output is high. A
small amount of hysteresis is included in the voltage detector to reduce the possibility of oscillation.
VCC15UP is routed to the power supply monitor where it is compared against the precision band gap to
create the VCC15GOOD signal. The VCC15GOOD signal becomes high at approximately 1.3 V. During
a brownout condition, VCC15GOOD will deassert around 1.3 V. When the VCC15 supply drops below
the specified 1.425 V minimum, the SmartFusion MSS will continue to work up until the time
VCC15GOOD deasserts. When VCC15GOOD is approximately 1.3 V, the eNVM will stop functioning
and assert a busy signal to hold off the AHB bus matrix. If VCC15GOOD reasserts, the eNVM will
release the AHB bus matrix and normal operation will resume. The user can then trap this event with
INTISR[1]: BROWNOUT1_5V_IRQ. This interrupt service routine must be executing out of internal
eSRAM. Alternatively the user can monitor the VCC supply with the ADC. When it starts to drop below
1.425 V (1.5 V – (1.5 × 5%)), issue a soft reset.

Figure 10-1 • VR and PSM Block Diagram
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Voltage Regulator (VR), Power Supply Monitor (PSM), and Power Modes
3.3 V Voltage Detector (VCC33UP)
This block (see Figure 10-4 on page 154) has a single input (VCC33A) and a single active High output
(VCC33UP). When the VCC33A supply is below threshold (2 to 2.5 V, depending on process and
temperature variables), the output is Low (a reliable Low if VCC33A is above approximately 0.5 V). When
VCC33A is above this threshold the output is High. A small amount of hysteresis is included in the
voltage detector to reduce the possibility of oscillation. VCC33UP is routed to the power supply monitor
(PSM), where it is compared against the precision band gap to create the VCC33GOOD signal. The
VCC33GOOD signal becomes High at approximately 2.5 V. If the VCC33GOOD signal deasserts, the
functionality of the analog front-end is in question. To detect a brownout condition on the VCC33A
supply, the user should enable the INT[ISR2] : BROWNOUT3_3V_IRQ and place the interrupt service
routine in eSRAM. Use the ADC to monitor the VCC33A supply voltage; when it drops below 2.95 V,
issue a soft reset to the reset controller. 

VR Init
During initial power-up, VCC33 is below the VCC33UP detection level. During this time current sources
supply current to the two flash bits, as shown in Figure 10-2. Normally one of these flash bits will be
programmed and the other will be erased. The resulting voltage difference is applied to a comparator
whose output drives the power-up power-on signal (PUPO). When VCC33UP goes high, the PUPO
logical output is held latched to its evaluated state and the current sources disabled (to conserve power).
PUPO will not be reevaluated again until VCC33UP is again in a low state. The PUPO signal determines
whether or not the VR is enabled when 3.3 V is first applied to the SmartFusion device. The configuration
of the flash bits is done through the MSS configurator.
Note: Changing the programmed state of the PUPO flash bits results in a change in behavior

only if VCC33 and VBAT are both off (removed) following programming.

1.5 V Voltage Regulator
The VR consists of a high gain amplifier, resistor voltage divider sense circuit, and an external pass
transistor. The regulator is powered from the 3.3 V supply and produces a 1.5 V regulated output which
the user can connect to the VCC pin (which powers the FPGA and the MSS) on their PCBs. If an existing
1.5 V rail is already available in the system, the user can use it instead of the functionality provided by the
internal VR. The output of the VR is the PTBASE pin and supplies the drive signal for the external NPN
pass transistor. This output can source up to 20 mA in to the transistor's base. The output current of the
circuit depends on the current gain of the NPN pass transistor connected externally. The PTEM pin is the
sense input for the regulator and consists of a resistive voltage divider between the sense input and
GND. Microsemi recommends using PN2222A or 2N2222A transistors with the VR.
The logic diagram for the VR is shown in Figure 10-3 on page 153. The VR can be enabled from several
sources: the PU_N pin, RTM_MATCH signal from the RTC block, TRSTB = 1, or triggered by the PUPO
signal from the VR Init block. Once triggered, the VR will remain on because of the latching functions of

Figure 10-2 • VR Init Block Diagram
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RS flip-flops Q0 or Q1. Only the MSS or the FPGA fabric can reset these flip-flops and turn off the VR.
The VR may also be turned off if VCC33 supply falls below the VCC33UP threshold and a reset occurs. 
In summary, the VR can be turned on by the following sources:

• On power-up by the PUPO signal, which is defined by the MSS configurator
• By JTAG being active TRSTB = 1
• A low signal on the PU_N pin
• A high on RTC_MATCH

Flip-flop Q2 turns on the VR only if the VCC33UP signal is in transition from logic 0 to logic 1 and PUPO
has been configured, by the MSS configurator, to turn on the VR on power-up. Once the FPGAGOOD
signal is established, this particular VR enable mechanism is no longer active.
The VR may be powered off under firmware control by the ARM Cortex-M3 processor using the
MSSVRON bit in the VRPSM_CR, located at address 0xE0042064, or the FPGAVRON signal sourced
from the FPGA fabric. The FPGAVRON signal from the FPGA fabric is qualified by the
FPGAVRONENABLE bit (must be equal to 1) in the VRPSM_CR. In either case, a low-to-high-to-low
transition commands the VR to turn off. Note that the RTC_MATCH signal must be low in order to turn off
the VR.

Power Supply Monitor (PSM)
The power supply monitor provides reference voltages for the analog-to-digital converter (ADC) and the
eNVM. The PSM also provides separate logic outputs to indicate that certain voltage sources are valid.
These sources include the band gap reference, the 1.5 V supply from the VR, and the 3.3 V supplies
(VCC33A and VCC33AP).
PORESET_N is the hard power-on reset to the SmartFusion device. This signal is held low by VCC15UP
until VCC15GOOD passes 1.3 V. PORESET_N is fed into the reset controller (see the "Reset Controller"
section on page 143), where it is distributed to various parts of a SmartFusion device. The signals
VCC15GOOD and VCC33GOOD can be used as brownout signals. When they fall below their
respective thresholds (1.3 V and 2.5 V), the signals BROWNOUT3_3VINT and BROWNOUT1_5VINT
assert and can cause an interrupt to the Cortex-M3 processor if they have been previously enabled.
These signals are also readable as status bits in the MSS_SR.
The user can disable the PSM and VR to save power. It is assumed that the user's firmware is executing
out of internal or external SRAM in this mode. When the PSM is disabled, the eNVM is also disabled. As
can be seen in Figure 10-4 on page 154, the PSM_EN must be set to a 0 to turn off the PSM. The
PSM_EN can be set to 0 by doing all of the following:

• Setting ENVM_SR to a 1 in the SOFT_RST_CR register
• Turning the Analog block off by clearing the ABPOWERON bit in the ANA_COMM_CTRL register

Figure 10-3 • VR Block Diagram
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Voltage Regulator (VR), Power Supply Monitor (PSM), and Power Modes
• Clearing the bit BGPSMENABLE in the VRPSM_CR

PSM Block Diagram

Power-Up Sequence
1. No power applied to chip
2. Regardless of which supply comes up first, all digital logic will be held in reset state until the VCC

detect circuit (VCC15UP signal) reaches the trip point (approximately 0.8 V). 
 In the reset state (VCC < 0.8V):
a. All registers are forced to their default state.
b. The RC-Osc begins oscillating.
c. The MSS_CCC drives RC-Osc / 4 into the MSS clock pin FCLK.
d. PORESET_N into the MSS is held low

3. Once VCC15GOOD is high (from the PSM) at around 1.3 V, the MSS reset is removed
(PORESET_N goes high). The MSS will then initiate a read from eNVM at logical address zero.
The eNVM will hold off response (by deasserting HREADY) until the eNVM is functional
(approximately 20 µS). The MSS starts executing factory boot code then jumps to the system
boot code to continue with low-level device initialization. 

Power-Down Sequence
If VCC33A drops first: 
If VCC33A (3.3 V supply to PSM) falls below  approximately 2 V, the BGGOOD signal will go to logic 0
and the eNVM will be reset.  The MSS will stop operating, since any eNVM access will not complete.
If VCC drops first:
PORESET_N into MSS remains high until VCC15UP goes low (when VCC < ~ 0.65 V). PORESET_N
goes high based on the VCC15GOOD signal (VCC > ~1.3 V) but goes low based on the VCC15UP
signal (VCC < ~0.65 V). This helps prevent transient supply noise from resetting the MSS. If desired, an
interrupt can be generated to the Cortex-M3 processor when the VCC15GOOD signal falls below 1.3 V.
This interrupt is called BROWNOUT1_5VINT and is connected to INTISR[1] of the Cortex-M3 NVIC.

Figure 10-4 • Power Supply Monitor
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VR and PSM Interrupts
Table 10-1 lists the interrupts associated with the VR and PSM. These interrupts must be enabled in the
NVIC of the Cortex-M3 processor by setting the appropriate bit to a 1.

SmartFusion Power Modes
SmartFusion devices provide various methods to control power consumption. For specific power
contribution numbers, refer to the DC and Switching Characteristics section of the SmartFusion
Customizable System-on-Chip (cSoC) datasheet.

SoC
This is the normal mode of operation where both the MSS and the FPGA fabric are operational.
FCLK is running and the Cortex-M3 processor is active. All memory controllers are enabled. This is the
default mode of operation after a power-on reset when the device is configured for the 1.5 V regulator to
be active on power-up (PUPO = 1). If the device is not configured for the 1.5 V regulator to be active on
power-up (PUPO = 0), this state can be entered when PU_N = 0. Refer to Figure 10-5 on page 156 for
entry and exit transition requirements.

Standby Mode
This mode is for applications that intend to put the device into a low-power state but be ready to respond
to an interrupt that is sourced from the MSS, the FPGA, or the analog front-end. Firmware transitions into
this mode after reset by executing a "wait for interrupt" (WFI) instruction in the Cortex-M3, causing FCLK
to be gated off to the Cortex-M3 processor. This disables the majority of the Cortex-M3 logic. In Standby
mode, the SmartFusion device is active, but running off of a lower frequency clock than what is used for
normal system operation. For example, the 32 KHz oscillator can be used to clock the MSS. Peripherals
not being used can be put into a low-power state by asserting their individual resets in the
SOFT_RST_CR. In addition, if the analog front-end is not needed during this state, the user can turn off
portions or the entire analog block. The ABPOWERDOWN bit in the ANA_COMM_CTRL register will
disable the entire analog front-end. Specifically ABPOWERDOWN does the following:

• When asserted it sends the 3.3 V supply to the ADC, SCB, and SDD.
• When asserted it generates the 2.56 V voltage reference for ADC and SDD.
• When deasserted, 3.3 V is not applied to ADC, SCB, and SDD to save power and the OPAMP

which generates the 2.56 V reference is disabled.
Users also have the option of turning off all the ADCs at once by setting ADCSPWRDWN in
ANA_COMM_CTRL or turning them off individually by setting the PWRDWN bit in the
ADCx_MISC_CTRL, where x equals 0, 1, or 2, indicating which ADC to power down. 

Table 10-1 • VR and PSM Related Interrupts

Name Cortex-M3 Interrupt NVIC Address NVIC Bit at Address Function

BROWNOUT1_5VINT INTISR[1] 0xE000E100 1 1.5 V below threshold

BROWNOUT3_3VINT INTISR[2] 0xE000E100 2 3.3 V below threshold

PU_NINT INTISR[4] 0xE000E100 4 PU_N pin asserted low.
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Time Keeping Mode
In Time keeping Mode, the only supplies to the SmartFusion device that are enabled are the VBAT rails.
Users can transition to Time Keeping mode from Standby mode by having all the supplies turned off
except for VBAT. Typically a lithium ion coin cell is connected to VBAT. The RTC in this mode will keep
track of time while the lithium coin cell is still charged. Typical current consumption in this mode is 10 µa.
When VCC33A and the VCCIO supplies are again turned on to the SmartFusion device, the device will
wake up on an RTC_MATCH or assertion of PU_N. This mode can be used to keep track of elapsed time
in the event of a power outage or in portable devices when users swap out the main battery.

Control and Status Registers
Table 10-2 through Table 10-6 on page 161 list the various control and status registers associated with
the VR and PSM.

Figure 10-5 • Power State Diagram
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Table 10-2 •  VR and PSM Control Registers

Register Name Address R/W Reset Value Description

CLR_MSS_SR 0xE0042020 R 0 CLR MSS status information

DEVICE_SR 0xE0042034 R 0 Provides device level status information

MSS_SR 0xE004201C R/W 0 Provides MSS status information

VRPSM_CR 0xE0042064 R/W 0x10 Control on chip VR
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Table 10-3 • MSS_SR 
Bit Number Name R/W Reset Value Function
31:11 Reserved R 0 Software should not rely on the value of a reserved

bit. To provide compatibility with future products,
the value of a reserved bit should be preserved
across a read-modify-write operation.

10 PLLLOCKLOSTINT R 0 This bit indicates that a falling edge event occurred
on PLLLOCK. This signal is also available to the
FPGA fabric. This indicates that the PLL lost lock.
This signal corresponds to IRQ23 in the Cortex-M3
NVIC. IRQ23 corresponds to bit location 23 in the
32-bit word at address location 0xE000E100. This
bit is read only and can be cleared by writing a 1 to
the CLRPLLLOCKLOSTINT bit in the
CLR_MSS_SR register. 
0 = "Don't care."
1 = PLL lost lock.

9 PLLLOCKINT R 0 This bit indicates that a rising edge event occurred
on PLLLOCK. This signal is also available to the
FPGA fabric, indicating the PLL is locked. This
signal corresponds to IRQ22 in the Cortex-M3
NVIC. IRQ22 corresponds to bit location 22 in the
32-bit word at address location 0xE000E100. This
bit is read-only and can be cleared by writing a 1 to
the CLRPLLLOCKLOSTINT bit in the
CLR_MSS_SR register. 
0 = "Don't care."
1 = PLL locked.

8:4 COM_ERROR_STATUS R 0 Each bit on this bus indicates whether any
accesses by the corresponding master on the AHB
bus matrix resulted in HRESP assertion by the
slave to the AHB bus matrix, HRESP assertion by
the AHB bus matrix to that master (in the case of
blocked fabric master), or was decoded by the AHB
bus matrix as being an unimplemented address
space. These register bits are sticky and are
cleared by writing a 1 to the COM_CLEARSTATUS
bit in the CLR_MSS_SR register.
These signals are not used as interrupts to the
Cortex-M3 processor Instead, they are ORed
together in the AHB bus matrix to create a signal
called COM_ERRORINTERRUPT, which is used
as an interrupt to the Cortex-M3 processor. This
signal corresponds to IRQ 24 in the Cortex-M3
NVIC. IRQ 24 corresponds to bit location 24 in the
32-bit word at address location 0xE000E100.
COM_ERRORINTERRUPT is not brought into the
system registers space as a status bit for the user's
firmware to read. Bit definitions are as follows: Bit
8: Peripheral DMA master, Bit 7: Ethernet MAC
master, Bit 6: Fabric master, Bit 5: Cortex-M3
system bus master, Bit 4: Cortex-M3
ICODE/DCODE bus master.
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3 BROWNOUT3_3VINT R 0 Indicates that the 3.3 V supply has dropped below
2.5 V. This signal corresponds to IRQ 2 in the
Cortex-M3 NVIC. IRQ 2 corresponds to bit location
2 in the 32-bit word at address location
0xE000E100. 
0 = "Don't care."
1 = 3.3 V has fallen below 2.5 V.

2 BROWNOUT1_5VINT R 0 Indicates that the 1.5 V supply has dropped below
1.3 V. This signal corresponds to IRQ 1 in the
Cortex-M3 NVIC. IRQ 1 corresponds to bit location
1 in the 32-bit word at address location
0xE000E100.
0 = "Don't care."
1 = 1.5 V has fallen below 1.3 V.

1 WDOGTIMEOUTEVENT R 0 This signal is a sticky version of the
WDOGTIMEOUTINT signal (which is itself sticky
but is cleared by MSS_SYSTEM_RESET_N).
WDOGTIMEOUTEVENT is not affected by
MSS_SYSTEM_RESET_N. This allows firmware to
determine if a system reset occurred due to a
watchdog timeout event. This signal is not used as
an interrupt to the Cortex-M3 processor This bit is
reset to 0 by PORESET_N only and is unaffected
by MSS_SYSTEM_RESET_N.
0 = "Don't care."
1 = Watchdog has timed out.

0 RTCMATCHEVENT R 0 This signal is a sticky version of the MATCH_SYNC
signal from the RTC. If a rising edge event is seen
on MATCH_SYNC, after synchronization to FCLK
domain, this bit is asserted. It stays asserted until
cleared by CLRRTCMATCHEVENT. This signal is
used as an interrupt to the Cortex-M3 processor.
This signal corresponds to IRQ 3 in the Cortex-M3
NVIC. IRQ 3 corresponds to bit location 3 in the 32-
bit word at address location 0xE000E100. 
0 = "Don't care."
1 = RTC has matched event.

Table 10-3 • MSS_SR  (continued)
Bit Number Name R/W Reset Value Function
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Table 10-4 • CLR_MSS_SR

Bit Number Name R/W Reset Value Function

31:11 Reserved R 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the
value of a reserved bit should be preserved across
a read-modify-write operation.

10 CLRPLLLOCKLOSTINT R 0 Writing a 1 to this bit clears the interrupt signal
PLLLOCKLOSTINT. Writing a zero has no effect. 
0 = No effect. 
1 = Clear the PLLLOCKLOSTINT signal.

9 CLRPLLLOCKINT R 0 Writing a 1 to this bit clears the interrupt signal
PLLLOCKINT. Writing a zero has no effect. 
0 = No effect. 
1 = Clear the PLLLOCKINT signal.

8:4 COM_CLEARSTATUS R 0 Writing a 1 to any bits in COM_CLEARSTATUS 
clears the interrupt signal 
COM_ERRORINTERRUPT. Writing a zero has no 
effect. 
Bit 8: Peripheral DMA master
Bit 7: Ethernet MAC master
Bit 6: Fabric master
Bit 5: Cortex-M3 system bus master
Bit 4: Cortex-M3 ICODE/DCODE bus master

3 CLRBROWNOUT3_3VINT R 0 Writing a 1 to this bit clears the interrupt signal
BROWNOUT3_3VINT. Writing a zero has no effect. 
0 = No effect. 
1 = Clear the BROWNOUT3_3VINT signal.

2 CLRBROWNOUT1_5VINT R 0 Writing a 1 to this bit clears the interrupt signal
BROWNOUT1_5VINT. Writing a zero has no effect. 
0 = No effect. 
1 = Clear the BROWNOUT1_5VINT signal.

1 CLRWDOGTIMEOUTEVENT R 0 Writing a 1 to this bit clears the interrupt signal
WDOGTIMEOUTEVENT. Writing a zero has no
effect. 
0 = No effect. 
1 = Clear the WDOGTIMEOUTEVENT signal.

0 CLRRTCMATCHEVENT R 0 Writing a 1 to this bit clears the interrupt signal
RTCMATCHEVENT. Writing a zero has no effect. 
0 = No effect. 
1 = Clear the RTCMATCHEVENT signal.
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Table 10-5 • DEVICE_SR

Bit Number Name R/W Reset Value Function

31:7 Reserved R 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products,
the value of a reserved bit should be preserved
across a read-modify-write operation.

6 FPGAGOOD R x When 0, FPGA fabric is not programmed. In this
state, all inputs from the FPGA fabric to the MSS
are guaranteed to be low and outputs from MSS to
FPGA fabric can be driven to any value. When 1,
FPGA fabric is programmed. In this case, outputs
from the MSS to the fabric may be driven normally
and inputs from the fabric to the MSS may be
interpreted as valid. This bit also indicates the
FPGA fabric is powered up. 
0 = Powered down or not programmed. 
1 = Powered up and programmed. The reset value
of this bit depends on whether or not the FPGA has
been programmed.

5 FPGAPROGRAMMING R 0 0 = Indicates the FPGA fabric is not in programming
mode.
1 = Indicates the FPGA fabric is in programming
mode. 

4:3 Reserved R 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products,
the value of a reserved bit should be preserved
across a read-modify-write operation.

2 Reserved R – Reserved

1 BROWNOUT3_3VN R x 0 = 3.3 V supply has fallen below 2.5 V.
1 = 3.3 V supply okay. 
The reset state depends on the state of the 3.3 V
power supply.

0 BROWNOUT1_5VN R x 0 = 1.5 V supply has fallen below 1.3 V. The reset
state depends on the state of the 1.5 V power
supply.
1 = 1.5 V supply okay. 
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Table 10-6 • VRPSM_CR

Bit 
Number Name R/W

Reset 
Value Function

31:5 Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

4 BGPSMENABLE R/W 1 0 = Allow the BG and PSM to be turned off (BG and PSM will
then be controlled by the ABPOWERON bit in
ANA_COMM_CTRL or the ENVM_SR bit in SOFT_RST_CR). 
1 = Turn on the BG and PSM. 

3 Reserved R/W 0 Reserved

2 CLR_PU_NINT W 0 Writing a one generates a pulse which clears the PU_NINT
interrupt.

1 FPGAVRONENABLE R/W 0 Fabric VR On (FPGAVRON) signal qualifier. When
FPGAVRONENABLE = 1, FPGAVRON from the fabric is
allowed to shut down the VR. When FPGAVRONENABLE = 0,
FPGAVRON from the fabric cannot cause the VR to shut down.

0 MSSVRON R/W 0 By pulsing this signal from low to high to low, firmware will cause
the VR to turn off. This has the effect of switching off the power
to the MSS and the FPGA fabric.
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11 – Watchdog Timer

The Watchdog timer is an advanced peripheral bus (APB) slave that guards against system crashes by
requiring that it is regularly serviced by the ARM Cortex-M3 processor or by a processor in the FPGA
fabric. It is likely that the most common use model will be one where the Watchdog is serviced by the
Cortex-M3 processor.

Watchdog Block Diagram
Figure 11-1 shows the block diagram for the Watchdog timer.

Functional Description
The operation of the Watchdog is based on a 32-bit down counter that must be refreshed at regular
intervals by the Cortex-M3 processor or by a fabric-based processor. If the counter is not refreshed, it will
timeout and either cause a system reset or generate an interrupt to the processor, depending on the
value of a control bit. In normal operation, the generation of a reset or timeout interrupt by the Watchdog
does not occur because the Watchdog counter is refreshed on a regular basis.
The 32-bit counter in the Watchdog is clocked with the 100 MHz RC oscillator output.
On power-up of the device, the Watchdog is enabled with the timeout period set to approximately 5.37
seconds. 

Figure 11-1 • Watchdog Block Diagram
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Watchdog Timer
The Watchdog has an APB interface through which the processor can access various control and status
registers to control and monitor the operation of the Watchdog. The APB interface is clocked by PCLK0
on APB Bus 0.

Watchdog Timeout: Reset/Interrupt
The MODE control bit in WDOGCONTROL is used to determine whether the Watchdog generates a
reset or an interrupt if counter timeout occurs. The default setting is reset generation on timeout. When
interrupt generation is selected, the WDOGTIMEOUTINT output is asserted on timeout and remains
asserted until the interrupt is cleared. When reset generation is selected, the Watchdog does not directly
generate the system reset signal. Instead, when the counter reaches zero, the Watchdog generates a
pulse on the WDOGTIMEOUT output and this is routed to the reset controller to cause it to assert the
necessary reset signals.
The pulse on the WDOGTIMEOUT output is generated in the RCOSCCLK domain and has a duration of
16 RCOSCCLK clock cycles.
When the counter value reaches zero, it is reloaded with the value stored in the WDOGLOAD register.
This will enforce repeated interrupts should the interrupt or pulse not be serviced.

Loading and Refreshing the Watchdog
The WDOGLOAD register is used to store the value which is loaded into the counter each time the
Watchdog is refreshed. When the WDOGLOAD register is updated, the least significant six bits are
always set to 0x3F, or 64 clock cycles, regardless of the value written to it. In effect, this means there is a
lower limit on the value that can be written to the counter. After refreshing, at least 64 RCOSCCLK clock
cycles are required before the counter times out. The purpose of this feature is to prevent a Watchdog
reset/interrupt from occurring immediately after or during refresh in the case where a very low value has
been written to the WDOGLOAD register.
The Watchdog counter is refreshed by writing the value 0xAC15DE42 to the WDOGREFRESH register.
This causes the counter to be loaded with the value in the WDOGLOAD register. An appropriate value
must be written to the WDOGLOAD register before writing to the WDOGREFRESH register.
Forbidden and permitted windows in time regulate when refreshing can occur. The size of these windows
is controlled by the value programmed in the WDOGMVRP control register. 
When the counter value is greater than the value in WDOGMVRP, refreshing the Watchdog is forbidden.
If a refresh is executed in these circumstances, the refresh is successful but a reset or interrupt
(depending on the operation mode selected) is also generated. This is illustrated in Figure 11-2 on
page 165.
When the counter value falls below the level programmed in WDOGMVRP, refreshing of the Watchdog is
permitted. The REFRESHSTATUS status bit in the WDOGSTATUS register is set when in the permitted
window and cleared when in the forbidden window.
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It is possible to avoid having forbidden and permitted windows by ensuring that the value in
WDOGMVRP is greater than the value in WDOGLOAD.

Watchdog Behavior with Processor Modes and Device 
Programming 

This section describes the behavior of the Watchdog in Cortex-M3 processor modes and when the
device is being programmed.

Cortex-M3 Processor in Debug State
The Watchdog counter is halted when the Cortex-M3 processor enters the Debug state. This ensures
that Watchdog timeout related resets or interrupts do not occur when a system debug session is in
progress.

Cortex-M3 Processor in Sleep Mode
The Cortex-M3 processor can be put into a low-power state by entering into a sleep mode. The
processor exits sleep mode when an interrupt occurs. The Watchdog can be configured to generate an
interrupt if its counter value moves from the forbidden to the permitted window (at the WDOGMVRP
level) when the Cortex-M3 processor is in sleep mode. The processor will wake up and refresh the
Watchdog and then go back into sleep mode. The WDOGWAKEUPINT output from the Watchdog is
used for this interrupt. The WAKEUPINTEN control bit in the WDOGCONTROL register is used to
enable/disable generation of the WDOGWAKEUPINT interrupt, with the default setting being disabled.

eNVM Being Programmed
The Watchdog is disabled when the external JTAG interface is used to program the embedded NVM on
the device. When the programming cycle has finished, the Watchdog behaves as if it has just come out
of reset.

Figure 11-2 • Watchdog Timer Windowing Example
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Watchdog Interrupts 
There are two interrupt outputs from the Watchdog: WDOGTIMEOUTINT and WDOGWAKUPINT.
WDOGTIMEOUTINT – This is asserted (if enabled) when a counter timeout occurs and interrupt rather
than reset generation has been selected. This interrupt is connected to the Non Maskable Interrupt (NMI)
input of the Cortex-M3 processor and also drives the WDINT interrupt to the FPGA fabric.
WDOGWAKEUPINT – This is asserted (if enabled) on crossing the WDOGMVRP level when the
SLEEPING input is asserted. This interrupt is mapped to interrupt request 0 (IRQ 0) in the Cortex-M3
interrupt controller. The FPGA fabric also has visibility of the WDOGWAKEUPINT interrupt, but not as a
single, independent signal. See the "Fabric Interface and IOMUX" section on page 343 for information on
how WDOGWAKEUPINT is combined with a number of other MSS interrupts.

Watchdog Register Interface Summary 
Table 11-1 summarizes the Watchdog register interface. Detailed descriptions of the registers are given
in the "Watchdog Register Interface Details" section.

Watchdog Register Interface Details
This section describes each of the Watchdog registers in detail.

Watchdog Value Register (WDOGVALUE)

Table 11-1 • Watchdog Register Interface

Register Name Address R/W Reset Value Description

WDOGVALUE 0x40006000 R 0x20000000 Current value of counter

WDOGLOAD 0x40006004 R/W 0x20000000 Load value for counter

WDOGMVRP 0x40006008 R/W 0xFFFFFFFF Maximum value for which refreshing is
permitted

WDOGREFRESH 0x4000600C W N/A Writing the value 0xAC15DE42 to this
register causes the counter to be
updated with the value in WDOGLOAD
register.

WDOGENABLE 0x40006010 R/W 0x1 Watchdog enable register

WDOGCONTROL 0x40006014 R/W 0x0 Control register

WDOGSTATUS 0x40006018 R 0x1 Status register

WDOGRIS 0x4000601C R/W 0x0 Raw interrupt status

WDOGMIS 0x40006020 R 0x0 Masked interrupt status

MSS_SR 0xE004201C R 0x0 MSS Status register

Table 11-2 • WDOGVALUE

Bit Number Name R/W Reset Value Description

31:0 CURRENT_COUNT R 0x20000000 This read only register contains the current value of the
Watchdog's 32-bit counter.
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Watchdog Load Register (WDOGLOAD)

Watchdog Maximum Value Refresh Permitted Register 
(WDOGMVRP)

Watchdog Refresh Register (WDOGREFRESH)

Table 11-3 • WDOGLOAD

Bit Number Name R/W Reset Value Description

31:0 COUNT_UPDATE_VALUE R/W 0x20000000 The value stored in this register is used to update the
counter whenever the value 0xAC15DE42 is written
to the WDOGREFRESH register. 
When the WDOGLOAD register is written to, the
lower 6 bits of the register are always set to 1. This
sets a lower limit of 0x3F on the value written to the
counter during a refresh.

Table 11-4 • WDOGMVRP

Bit Number Name R/W Reset Value Description

31:0 MVRP R/W 0xFFFFFFFF The value stored in this register is the maximum counter value for
which a refresh is permitted. If the Watchdog is refreshed (by
writing 0xAC15DE42 to the WDOGREFRESH register) when the
counter value is crossing the value stored in the WDOGMVRP
register, then the refresh does succeed but an interrupt or reset is
also generated. The Watchdog should only be refreshed when the
counter value is less than the value stored in the WDOGMVRP
register.
If the value stored in the WDOGMVRP register is greater than the
value held in the WDOGLOAD register (and also greater than the
current value of the counter), then a refresh of the Watchdog can
be carried out at any time without generating an interrupt or reset.

Table 11-5 • WDOGREFRESH

Bit Number Name R/W
Reset 
Value Description

31:0 REFRESH_KEY W N/A This is a write only register which reads as zero. Writing the value
0xAC15DE42 to this register causes the counter to be refreshed
with the value in the WDOGLOAD register.
If this register is written to while the current value of the counter is
greater than the value in the WDOGMVRP register, the counter will
be refreshed and a reset or timeout interrupt will be generated
(depending on the MODE bit of WDOGCONTROL). While the
counter value is greater than WDOGMVRP, there is effectively a
time window in which it is forbidden to refresh the Watchdog. When
the counter is between the WDOGMVRP level and zero, the
Watchdog is in a time window which permits it to be refreshed.
It is possible to avoid having forbidden and permitted time windows
for refreshing the Watchdog by setting the value of the WDOGMVRP
register to a value greater than that stored in the WDOGLOAD
register.
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Watchdog Enable Register (WDOGENABLE)

Watchdog Control Register (WDOGCONTROL)

Watchdog Status Register (WDOGSTATUS)

Table 11-6 • WDOGENABLE

Bit Number Name R/W Reset Value Description

31:0 DISABLE_KEY R/W 0x1 The Watchdog is enabled at power-up. After power-
up, the ENABLE bit can be cleared by writing the
value 0x4C6E55FA to the address of this register.
Subsequent to this, the ENABLE bit can only be set
again by a power-on reset.

0 ENABLE R/W 0x1 This is the actual ENABLE bit that is used by the
Watchdog. Users can read whether the Watchdog is
enabled or disabled by reading this bit. Note that
this bit overlays the DISABLE_KEY.

Table 11-7 • WDOGCONTROL

Bit Number Name R/W Reset Value Description

31:3 Reserved R/W  0x0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

2 MODE R/W  0x0 Watchdog mode of operation.
0 = Reset generated if counter reaches zero.
1 = WDOGTIMEOUTINT interrupt generated (if enabled) if
counter reaches zero.

1 WAKEUPINTEN R/W  0x0 0 = WDOGWAKEUPINT interrupt generation disabled.
1 = WDOGWAKEUPINT interrupt generation enabled.

0 TIMEOUTINTEN R/W  0x0 0 = WDOGTIMEOUTINT interrupt generation disabled.
1 = WDOGTIMEOUTINT interrupt generation enabled.

Table 11-8 • WDOGSTATUS

Bit Number Name R/W Reset Value Description

31:1 Reserved R  0x1 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

0 REFRESHSTATUS R  0x1 0 = Counter in forbidden window, refresh forbidden.
Refreshing the Watchdog when REFRESHSTATUS = 0 will
cause an interrupt or reset to be generated.
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Watchdog Raw Interrupt Status Register (WDOGRIS)

Watchdog Masked Interrupt Status Register (WDOGMIS)

Table 11-9 • WDOGRIS

Bit Number Name R/W
Reset 
Value Description

31:2 Reserved R/W  0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

1 WAKEUPRS R/W  0x0 Raw Status of the WDOGWAKEUPINT interrupt. Writing 1 to this bit
clears the bit. Writing 0 has no effect.

0 TIMEOUTRS R/W 0x0 Raw Status of the WDOGTIMEOUTINT interrupt. 
Writing 1 to this bit clears the bit. Writing 0 has no effect.

Table 11-10 • WDOGMIS

Bit Number Name R/W Reset Value Description

31:2 Reserved R  0x0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation

1 WAKEUPMS R  0x0 Status of the WDOGWAKEUPINT interrupt. 
This is the logical AND of the WAKEUPRS bit of the WDOGRIS
register and WAKEUPINTEN bit of the WDOGCONTROL
register.

0 TIMEOUTMS R 0x0 Status of the WDOGTIMEOUTINT interrupt.
This is the logical AND of the TIMEOUTRS bit of the WDOGRIS
register and TIMEOUTINTEN bit of the WDOGCONTROL
register.
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MSS Status Register (MSS_SR)
The MSS Status register holds the status of system critical events, such as brownout and timeout coming
from different parts of the MSS system.

Table 11-11 • MSS_SR

Bit Number Name R/W
Reset 
Value Description

31:8 Reserved R  0x0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

7:4 COM_ERRORSTATUS R  0x0 Each bit on this bus indicates whether any accesses by the
corresponding master on the Communications Matrix
resulted in HRESP assertion by the slave to the
Communications Matrix, HRESP assertion by the
Communications Matrix to that master (in the case of
blocked fabric master), or decoding by the Communications
Matrix as being  unimplemented address space. These
register bits are "sticky" and are cleared by the writing 1 to
the COM_CLEARSTATUS bit in SysReg. The bit definitions
are as follows:
• Bit 0: Corresponds to Cortex-M3 ICODE/DCODE

master.
• Bit 1: Corresponds to Cortex-M3 SYSTEM master.
• Bit 2: Corresponds to fabric master.
• Bit 3: Corresponds to Ethernet MAC master.

3 BROWNOUT3_3VINT R  0x0 Sticky interrupt derived from a falling edge event on the
BROWNOUT3_3V_SYNCN input from the analog
subsystem (via synchronization in the reset controller),
indicating that the 3.3 V supply has dropped below a
specified threshold voltage. This signal is used as an
interrupt to the Cortex-M3 processor. 

2 BROWNOUT1_5VINT R  0x0 Sticky interrupt derived from a falling edge event on the
BROWNOUT1_5V_SYNCN input from the analog
subsystem (via synchronization in the reset controller),
indicating that the 1.5 V supply has dropped below a
specified threshold voltage. This signal is used as an
interrupt to the Cortex-M3 processor.
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1 WDOGTIMEOUTEVENT R 0x0 This signal is a sticky version of the WDOGTIMEOUTINT
signal (which is itself sticky but is cleared by
MSS_SYSTEM_RESET_N). WDOGTIMEOUTEVENT is not
affected by MSS_SYSTEM_RESET_N. This allows firmware
to determine if a system reset occurred due to a watchdog
timeout event. This signal is not used as an interrupt to the
Cortex-M3 processor. This bit is reset to 0 by PORESET_N
only and is unaffected by MSS_SYSTEM_RESET_N.
The MSS Status Register is only visible to the Cortex-M3
processor and cannot be accessed by a processor located
in the FPGA fabric. If required, the user could implement a
register bit with similar behavior to WDOGTIMEOUTEVENT
in the fabric. One approach to doing this would be to create
a processor readable flip-flop which is set when the
FPGARESETN signal asserts and is cleared by a power-on
reset. 
0 = "Don't care."
1 = Watchdog has timed out.

0 RTCMATCHEVENT R  0x0 This signal is a sticky version of the MATCH_SYNC signal
from the RTC. If a rising edge event is seen on
MATCH_SYNC, after synchronization to the FCLK domain,
this bit is asserted. It stays asserted until cleared by
CLRRTCMATCHEVENT. This signal is used as an interrupt
to the Cortex-M3 processor. The reset value could be either
0 or 1, depending on the SmartFusion top-level tie-off.

Table 11-11 • MSS_SR (continued)

Bit Number Name R/W
Reset 
Value Description
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12 – Ethernet MAC

Introduction 
The SmartFusion Ethernet MAC is a high-speed media access control (MAC) Ethernet controller. It
implements carrier sense multiple access with collision detection (CSMA/CD) algorithms defined by the
IEEE 802.3 standard. The Ethernet MAC complies with the low-pin-count Reduced Media Independent
Interface (RMII™) specification, as defined by the RMII Consortium, to interface to an external physical
layer (PHY) device. Communication with the ARM Cortex-M3 processor is implemented via a set of
Control and Status registers on an APB slave interface. The Ethernet MAC is an AHB bus master on the
AHB bus matrix (see the "AHB Bus Matrix" section on page 15). The built-in DMA controller inside the
MAC block, along with the AHB master interface, is used to automatically move data between external
RAM and the built-in transmit FIFO and receive FIFOs with minimal CPU intervention. Linked list
management enables the use of various memory allocation schemes. Internal RAMs are used as
configurable FIFO memory blocks, and there are separate memory blocks for transmit and receive
processes. The host interface uses little-endian byte ordering for the address space.

Ethernet MAC Block Diagram
Figure 12-1 shows the Ethernet MAC block diagram. 

Figure 12-1 • Ethernet MAC Block Diagram
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The RMII management interface can be used to control the external PHY device from the host side. It
allows access to all of the internal PHY registers via a simple two-wire interface. There are two signals on
the RMII management interface: the MDC (Management Data Clock) and the MDIO (Management Data
I/O). The IEEE 802.3 indirection tristate signal defines the MDIO. Figure 12-2 shows the RMII
management interface to an external RMII PHY device. 

Functional Blocks of Ethernet MAC

AHB Master Interface
The AHB block implements an AHB master function, allowing the DMA controller to access memory on
the AHB bus. 

APB Slave Interface 
This APB block implements an APB slave interface, allowing the Cortex-M3 processor to access the
Control and Status Registers set (CSR). 

Control/Status Register Logic (CSR)
The CSR component is used by the Cortex-M3 processor to control Ethernet MAC operation. It contains
the CSR register set and the interrupt controller. The CSR also provides an RMII management interface,
which the Cortex-M3 processor can access via reading and writing to the CSR registers. Refer to the
"CSR Definitions" section on page 197.

Direct Memory Access Controller (DMA)
The direct memory access DMA controller implements the host data interface. It services both the
receive and transmit channels. The TLSM and TFIFO have access to one DMA channel. The RLSM and
RFIFO have access to the other DMA channel. 

Transmit Linked List State Machine (TLSM)
The transmit linked list state machine implements the descriptor/buffer architecture of Ethernet MAC. It
manages the transmit descriptor list and fetches the data prepared for transmission from the data buffers
into the transmit FIFO.

Figure 12-2 • RMII Management Interface
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Transmit FIFO (TFIFO)
The transmit FIFO is used for buffering data prepared for transmission by Ethernet MAC. It fetches the
transmit data from the host via the DMA interface. The size of the transmit FIFO is 2,048 bytes (512 x 32
bits), which holds one packet up to 1,532 bytes.

Transmit Controller (TC)
The transmit controller implements the 802.3 transmit operation. From the network side, it uses the
standard 802.3 RMII interface for an external PHY device. The TC unit reads transmit data from the
external transmit data RAM, formats the frame, and transmits the framed data via the RMII.

Backoff/Deferring (BD)
The backoff/deferring controller implements the 802.3 half-duplex operation. It monitors the status of the
Ethernet bus and decides whether to perform a transmit or backoff/deferring of the data via the RMII.

Receive Linked List State Machine (RLSM) 
The receive linked list state machine implements the descriptor/buffer architecture of Ethernet MAC. It
manages the receive descriptor list and moves the data from the receive FIFO into the data buffers.

Receive FIFO (RFIFO)
The receive FIFO is used for buffering data received by Ethernet MAC. The size of the FIFO is 4,096
bytes (1,024 x 32 bits), which holds two packets up to 1,532 bytes each. During reception, if the RX FIFO
becomes full while receiving a partial frame, that partial frame in the RX FIFO is written into memory with
a CRC error. The frames received after the RX FIFO is full are dropped. The next incoming frames are
received by MAC when there is enough space in the RX FIFO to accommodate them. 

Receive Controller (RC)
The receive controller implements the 802.3 receive operation. From the network side it uses the
standard 802.3 RMII interface for an external PHY device. The RC block transfers data received from the
RMII to the receive data RAM. It supports internal address filtering using an internal address RAM. It also
supports an external address filtering interface.

Memory Blocks 
There are two external memory blocks required for the proper operation of Ethernet MAC: 

• Receive memory – RAM working as receive data memory 
• Transmit memory – RAM working as transmit data memory 

These RAMs can be implemented in the eSRAM_0, eSRAM_1, external RAMs connected through EMC,
or FPGA block SRAM. 

Clock and Reset Control 

Clock Controls 
As shown in Figure 12-3 on page 176, there are five clock domains in the design, including FCLK,
PCLK0, CLKR, CLKT, and MAC_CLK. The MAC_CLK is the external 50 MHz clock and CLKT is the
internal 25 MHz Transmit clock. CLKT and CLKR are the same frequency. 

• The TC and BD components operate synchronously with CLKT. This is a 2.5 MHz clock for 10
Mbps operation or a 25 MHz clock for 100 Mbps operation. 
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• The RC operates synchronously with CLKR. This is a 2.5 MHz clock for 10 Mbps operation or a
25 MHz clock for 100 Mbps operation. 

• The TFIFO, RFIFO, TLSM, RLSM, and DMA components operate synchronously with FCLK
clock. 

• The CSR operates synchronously with the PCLK0 clock. 
• CLK_TX_RX is generated from the negative edge of RMII_CLK. For 100 Mbps operation, the

RMII_CLK is divided by 2 to generate CLK_TX_RX. For 10 Mbps operation, the RMII_CLK is
divided by 20 to generate CLK_TX_RX. 

A minimum frequency of PCLK0 is required for proper operation of the transmit, receive, and general-
purpose timers. The minimum frequency for PCLK0 must be at least the CLKT frequency divided by 64.
For proper operation of the receive timer, the PCLK0 frequency must be at least the CLKR frequency
divided by 64. Refer to the "PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators" section
on page 109 for details on PCLK0 settings. If the clock frequency conditions described above are not
met, do not use transmit interrupt mitigation control, receive interrupt mitigation control, or the general-
purpose timer. Appropriate clocks should also be supplied when the hardware reset operation is
performed. 

Reset Control 
Reset Controller (RSTC)
The reset controller is used to reset all components of the Ethernet MAC. It generates a reset signal
asynchronous to all clock domains in the design from power on reset and software reset.

Figure 12-3 • Ethernet MAC Clocks
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Software Reset 
Software reset can be performed by setting the CSR0[0] (SWR) bit. The software reset will reset all
internal flip-flops. The MAC_SR bit of SOFT_RST_CR (0xE0042030) in system registers also acts as a
software reset of the Ethernet MAC. Refer to the "Reset Controller" section on page 143 for more
information.

Interface Signals 
The signals shown in Table 12-1 are included in the Ethernet MAC.

Table 12-1 • Signals included in Ethernet MAC

Name Type 
Polarity / 
Bus Size Description 

RMII PHY Interface 

MAC_RXER In High Receive error
If RX_ER is asserted during Ethernet MAC reception, the
frame is received and status of the frame is updated with
RX_ER.

MAC_CRSDV In High Carrier sense and receive data valid 
This signal must be asserted by the PHY when either a
receive or transmit medium is non-idle. The PHY device
should assert MAC_CRSDV when valid data is provided on
the RXD signal. 

MAC_MDIO In/Out 1 RMII management data input and output 
The state of the input signal can be checked by reading the
CSR9.19 bit. The output signal is driven by the CSR9.18 bit. 

MAC_RXD[1:0] In 2 Receive data recovered and decoded by PHY. The RXD[0]
signal is the least significant bit. 

MAC_TXEN Out High Transmit enable 
When asserted, indicates valid data for the PHY on the TXD
port. 

MAC_MDC Out Rise RMII management clock = 25 MHz 
This signal is driven by the CSR9.16 bit. 

MAC_TXD[1:0] Out 2 Transmit data 
The TXD[0] signal is the least significant bit. 

MAC_CLK In Rise 50 MHz ± 50 ppm clock source shared with RMII PHY. 
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Frame Data and Descriptors 

Descriptor / Data Buffer Architecture Overview 
A data exchange between the host and Ethernet MAC is performed via the descriptor lists and data
buffers, which reside in the system shared RAM (eSRAM_0, eSRAM_1, External RAMs connected
through EMC, or FPGA block SRAM). The buffers hold the host data to be transmitted or received by
Ethernet MAC. The descriptors act as pointers to these buffers. Each descriptor list should be
constructed by the host in a shared memory area and can be of an arbitrary size. There is a separate list
of descriptors for both the transmit and receive processes. 
The position of the first descriptor in the descriptor list is described by CSR3 for the receive list and by
CSR4 for the transmit list. The descriptors can be arranged in either a chained or a ring structure
(Figure 12-4 on page 178 and Figure 12-5 on page 179). In a chained structure, every descriptor
contains a pointer to the next descriptor in the list. In a ring structure, the address of the next descriptor is
determined by CSR0[6:2] (DSL—descriptor skip length). Every descriptor can point to up to two data
buffers. When using descriptor chaining, the address of the second buffer is used as a pointer to the next
descriptor; thus, only one buffer is available. A frame can occupy one or more data descriptors and
buffers, but one descriptor cannot exceed a single frame. In a ring structure, the descriptor operation may
be corrupted if only one descriptor is used. Additionally, in the ring structure, at least two descriptors must
be set up by the host. In a transmit process, the host can give the ownership of the first descriptor to
Ethernet MAC and cause the data specified by the first descriptor to be transmitted. At the same time,
the host holds the ownership of the second or last descriptor to itself. This is done to prevent Ethernet
MAC from fetching the next frame until the host is ready to transmit the data specified in the second
descriptor. In a receive process, the ownership of all available descriptors, unless it is pending
processing by the host, must be given to Ethernet MAC. 
Figure 12-4 shows descriptors in ring structure.

Figure 12-4 • Descriptors in Ring Structure
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Figure 12-5 shows descriptors in chained structure.

Table 12-2 through Table 12-6 on page 182 give bit descriptions and functions for the receive
descriptors

Figure 12-5 • Descriptors in Chained Structure
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Table 12-3 • Receive Descriptor 0 (RDES0) Bit Functions 

Bit Name Function

31 OWN Ownership bit 
1 – Ethernet MAC owns the descriptor. 
0 – The host owns the descriptor. 
Ethernet MAC will clear this bit when it completes a current frame reception or
when the data buffers associated with a given descriptor are already full. 

30 FF Filtering fail 
When set, indicates that a received frame did not pass the address recognition
process. 
This bit is valid only for the last descriptor of the frame (RDES0[8] set), when the
CSR6[30] (receive all) bit is set and the frame is at least 64 bytes long. 

 29:16 FL Frame length 
Indicates the length, in bytes, of the data transferred into a host memory for a
given frame.
This bit is valid only when RDES0[8] (last descriptor) is set and RDES0[14]
(descriptor error) is cleared. 

15 ES Error summary 
This bit is a logical OR of the following bits: 
RDES0[1] – CRC error 
RDES0[6] – Collision seen 
RDES0[7]– Frame too long 
RDES0[11] – Runt frame 
RDES0[14] – Descriptor error 
This bit is valid only when RDES0[8] (last descriptor) is set. 

14 DE Descriptor error 
Set by Ethernet MAC when no receive buffer was available when trying to store
the received data. 
This bit is valid only when RDES0[8] (last descriptor) is set. 

13:12 Reserved

11 RF Runt frame 
When set, indicates that the frame is damaged by a collision or by a premature
termination before the end of a collision window. 
This bit is valid only when RDES0[8] (last descriptor) is set. 

10 MF Multicast frame 
When set, indicates that the frame has a multicast address. 
This bit is valid only when RDES0[8] (last descriptor) is set. 

9 FS First descriptor 
When set, indicates that this is the first descriptor of a frame. 

8 LS Last descriptor 
When set, indicates that this is the last descriptor of a frame. 
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7 TL Frame too long 
When set, indicates that a current frame is longer than maximum size of 1,518
bytes, as specified by 802.3. 
TL (frame too long) in the receive descriptor has been set when the received
frame is longer than 1,518 bytes. This flag is valid in all receive descriptors when
multiple descriptors are used for one frame. 

6 CS Collision seen 
When set, indicates that a late collision was seen (collision after 64 bytes
following SFD). 
This bit is valid only when RDES0[8] (last descriptor) is set. 

5 FT Frame type 
When set, indicates that the frame has a length field larger than 1,500 (Ethernet-
type frame). When cleared, indicates an 802.3-type frame. This bit is valid only
when RDES0[8] (last descriptor) is set. 
Additionally, FT is invalid for runt frames shorter than 14 bytes. 

3 RE Report on RMII error 
When set, indicates that an error has been detected by a physical layer chip
connected through the RMII interface. 
This bit is valid only when RDES0[8] (last descriptor) is set. 

2 DB Dribbling bit 
When set, indicates that the frame was not byte-aligned. 
This bit is valid only when RDES0[8] (last descriptor) is set. 

1 CE CRC error 
When set, indicates that a CRC error has occurred in the received frame. This bit
is valid only when RDES0[8] (last descriptor) is set. 
Additionally, CE is not valid when the received frame is a runt frame. 

0 ZERO This bit is reset for frames with a legal length. 

Table 12-3 • Receive Descriptor 0 (RDES0) Bit Functions  (continued)

Bit Name Function
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Table 12-7 to Table 12-11 on page 185 give bit descriptions and functions for the transmit
descriptors.

Table 12-4 • CONTROL and COUNT (RDES1) Bit Functions

Bits Name Function 

31:26 Reserved

25 RER Receive end of ring 
When set, indicates that this is the last descriptor in the receive descriptor
ring. Ethernet MAC returns to the first descriptor in the ring, as specified by
CSR3 (start of receive list address). 

24 RCH Second address chained 
When set, indicates that the second buffer's address points to the next
descriptor and not to the data buffer. 
Note: RER takes precedence over RCH. 

21:11 RBS2 Buffer 2 size 
Indicates the size, in bytes, of memory space used by the second data buffer.
This number must be a multiple of four. If it is 0, Ethernet MAC ignores the
second data buffer and fetches the next data descriptor. 
This number is valid only when RDES1[24] (second address chained) is
cleared. 

10:0 RBS1 Buffer 1 size 
Indicates the size, in bytes, of memory space used by the first data buffer.
This number must be a multiple of four. If it is 0, Ethernet MAC ignores the
first data buffer and uses the second data buffer. 

Table 12-5 • RBA1 (RDES2) Bit Functions

Bits Name Function 

31:0 RBA1 Receive buffer 1 address 
Indicates the length, in bytes, of memory allocated for the first receive buffer.
This number must be 32-bit word aligned (RDES2[1:0] = 0b00). 

Table 12-6 • RBA2 (RDES3) Bit Functions

Bits Name Function 

31:0 RBA2 Receive buffer 2 address 
Indicates the length, in bytes, of memory allocated for the second receive
buffer. This number must be 32-bit word aligned (RDES3[1:0] = 0b00). 

Table 12-7 • Transmit Descriptors (TDESx)

TDES0 OWN STATUS 

TDES1 CONTROL TBS2 TBS1 

TDES2 TBA1 

TDES3 TBA2 

Note: The TDESx descriptors reside in receive data memory. They can be defined and addressed under
software control.
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Table 12-8 • Transmit Descriptor (TDES0) Bit Functions 

Bits Name Function 

31 OWN Ownership bit 
1 – Ethernet MAC owns the descriptor. 
0 – The host owns the descriptor. 
Ethernet MAC will clear this bit when it completes a current frame transmission
or when the data buffers associated with a given descriptor are empty. 

30:16 Reserved

15 ES Error summary 
This bit is a logical OR of the following bits: 
TDES0[1] – Underflow error 
TDES0[8] – Excessive collision error 
TDES0[9] – Late collision 
TDES0[10] – No carrier 
TDES0[11] – Loss of carrier 
This bit is valid only when TDES1[30] (last descriptor) is set. 

14:12 Reserved

11 LO Loss of carrier 
When set, indicates a loss of the carrier during a transmission. 
This bit is valid only when TDES1[30] (last descriptor) is set. 

10 NC No carrier 
When set, indicates that the carrier was not asserted by an external transceiver
during the transmission. 
This bit is valid only when TDES1[30] (last descriptor) is set. 

9 LC Late collision 
When set, indicates that a collision was detected after transmitting 64 bytes. This
bit is not valid when TDES0[1] (underflow error) is set. 
This bit is valid only when TDES1[30] (last descriptor) is set. 

8 EC Excessive collisions 
When set, indicates that the transmission was aborted after 16 retries. 
This bit is valid only when TDES1[30] (last descriptor) is set. 

7 Reserved

6:3 CC Collision count 
This field indicates the number of collisions that occurred before the end of a
frame transmission. 
This value is not valid when TDES0[8] (excessive collisions bit) is set. 
This bit is valid only when TDES1[30] (last descriptor) is set. 

1 UF Underflow error 
When set, indicates that the FIFO was empty during the frame transmission. 
This bit is valid only when TDES1[30] (last descriptor) is set. 

0 DE Deferred 
When set, indicates that the frame was deferred before transmission. Deferring
occurs if the carrier is detected when the transmission is ready to start.
This bit is valid only when TDES1[30] (last descriptor) is set. 
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Table 12-9 • Control (TDES1) Bit Functions 

Bits Name Function 

31 IC Interrupt on completion 
Setting this flag instructs Ethernet MAC to set CSR5[0] (transmit interrupt)
immediately after processing a current frame. 
This bit is valid when TDES1[30] (last descriptor) is set or for a setup packet. 

30 LS Last descriptor 
When set, indicates the last descriptor of the frame. 

29 FS First descriptor 
When set, indicates the first descriptor of the frame. 

28 FT1 Filtering type 
This bit, together with TDES0[22] (FT0), controls a current filtering mode. 
This bit is valid only for the setup frames. 

27 SET Setup packet 
When set, indicates that this is a setup frame descriptor. 

26 AC Add CRC disable 
When set, Ethernet MAC does not append the CRC value at the end of the frame.
The exception is when the frame is shorter than 64 bytes and automatic byte
padding is enabled. In that case, the CRC field is added, despite the state of the
AC flag. 

25 TER Transmit end of ring 
When set, indicates the last descriptor in the descriptor ring. 

24 TCH Second address chained 
When set, indicates that the second descriptor's address points to the next
descriptor and not to the data buffer. 
This bit is valid only when TDES1[25] (transmit end of ring) is reset. 

23 DPD Disabled padding 
When set, automatic byte padding is disabled. Ethernet MAC normally appends
the PAD field after the INFO field when the size of an actual frame is less than 64
bytes. After padding bytes, the CRC field is also inserted, despite the state of the
AC flag. When DPD is set, no padding bytes are appended. 

22 FT0 Filtering type 
This bit, together with TDES0[28] (FT1), controls the current filtering mode. This
bit is valid only when the TDES1[27] (SET) bit is set. 

21:11 TBS2 Buffer 2 size 
Indicates the size, in bytes, of memory space used by the second data buffer. If it
is zero, Ethernet MAC ignores the second data buffer and fetches the next data
descriptor. This bit is valid only when TDES1[24] (second address chained) is
cleared. 

10:0 TBS1 Buffer 1 size 
Indicates the size, in bytes, of memory space used by the first data buffer. If it is 0,
Ethernet MAC ignores the first data buffer and uses the second data buffer. 
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MAC Address and Setup Frames 
The setup frames define addresses that are used for the receive address filtering process. These frames
are never transmitted on the Ethernet connection. They are used to fill the address filtering RAM. 
Following are the requirements for the setup frame:

• A valid setup frame must be exactly 192 bytes long and must be allocated in a single buffer that is
32-bit word aligned.

• TDES1[27] (setup frame indicator) must be set.
• Both TDES1[29] (first descriptor) and TDES1[30] (last descriptor) must be cleared.

The FT1 and FT0 bits of the setup frame define the current filtering mode. 
Table 12-12 lists all possible combinations. Table 12-13 on page 186 shows the setup frame buffer
format for perfect filtering modes. Table 12-14 on page 186 shows the setup frame buffer for imperfect
filtering modes. The setup should be sent to Ethernet MAC when Ethernet MAC is in stop mode. A setup
frame with more than 192 bytes can be written into the address filtering RAM to initialize its contents, but
only the first 192 bytes constitute the address filtering operation. While writing the setup frame buffer in
the host memory, the buffer size must be twice the size of the setup frame buffer. 

Table 12-10 • TBA1 (TDES2) Bit Functions

Bits Name Function 

31:0 TBA1 Transmit buffer 1 address 
Contains the address of the first data buffer. For the setup frame, this address
must be 32-bit word aligned (TDES3[1:0] = 0b00). In all other cases, there are no
restrictions on buffer alignment. 

Table 12-11 • TBA2 (TDES3) Bit Functions

Bits Name Function 

31:0 TBA2 Transmit buffer 2 address 
Contains the address of the second data buffer. There are no restrictions on
buffer alignment. 

Table 12-12 • Filtering Type Selection

FT1 FT0 Description 

0 0 Perfect filtering mode. Setup frame buffer is interpreted as a set of sixteen 48-bit
physical addresses. 

0 1 Hash filtering mode. Setup frame buffer contains a 512-bit hash table plus a
single 48-bit physical address. 

1 0 Inverse filtering mode. Setup frame buffer is interpreted as a set of sixteen 48-bit
physical addresses. 

1 1 Hash-only filtering mode. Setup frame buffer is interpreted as a 512-bit hash
table. 
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Table 12-13 • Perfect Filtering Setup Frame Buffer

Byte Number Data Bits [31:16] Data Bits [15:0] 

1:0 {Physical address [39:32],physical address [47:40]} 

3:2 {Physical address [23:16],physical address [31:24]} 

5:4 {Physical address [7:0],physical address [15:8]} 

15:12 xxxxxxxxxxxxxxxx Physical address 1 [15:0] 

19:16 xxxxxxxxxxxxxxxx Physical address 1 [31:16] 

23:20 xxxxxxxxxxxxxxxx Physical address 1 [47:32] 

. . . 

. . . 

. . . 

171:168 xxxxxxxxxxxxxxxx Physical address 14 [15:0] 

175:172 xxxxxxxxxxxxxxxx Physical address 14 [31:16] 

179:176 xxxxxxxxxxxxxxxx Physical address 14 [47:32] 

183:180 xxxxxxxxxxxxxxxx Physical address 15 [15:0] 

187:184 xxxxxxxxxxxxxxxx Physical address 15 [31:16] 

191:188 xxxxxxxxxxxxxxxx Physical address 15 [47:32] 

Table 12-14 • Hash Table Setup Frame Buffer Format

Byte Number Data Bits [31:16] Data Bits [15:0] 

3:0 xxxxxxxxxxxxxxxx Hash filter [15:0] 

7:4 xxxxxxxxxxxxxxxx Hash filter [31:16] 

11:8 xxxxxxxxxxxxxxxx Hash filter [47:32] 

. . . 

. . . 

. . . 

123:121 xxxxxxxxxxxxxxxx Hash filter [495:480] 

127:124 xxxxxxxxxxxxxxxx Hash filter [511:496] 

131:128 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

135:132 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

. . . 

. . . 

159:156 xxxxxxxxxxxxxxxx Physical address [15:0] 

163:160 xxxxxxxxxxxxxxxx Physical address [31:16] 

167:164 xxxxxxxxxxxxxxxx Physical address [47:32] 

171:168 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

175:172 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

. . . 

. . . 

183:180 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx 

187:184 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx 

191:188 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx 
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Internal Operation

DMA Controller 
The DMA is used to control a data flow between the host and Ethernet MAC. 
The DMA services the following types of requests from the Ethernet MAC transmit and receive
processes: 

•  Transmit request: 
– Descriptor fetch 
– Descriptor closing 
– Setup packet processing 
– Data transfer from host buffer to transmit FIFO 

• Receive request: 
– Descriptor fetch 
– Descriptor closing 
– Data transfer from receive FIFO to host buffer 

The key task for the DMA is to perform an arbitration between the receive and transmit processes. Two
arbitration schemes are possible according to the CSR0[1] bit: 

1. Value 1: Round-robin arbitration scheme in which receive and transmit processes have equal
priorities

2. Value 0: The receive process has priority over the transmit process unless transmission is in
progress. In this case, the following rules apply: 
– The transmit process request should be serviced by the DMA between two consecutive

receive transfers. 
– The receive process request should be serviced by the DMA between two consecutive

transmit transfers.
Transfers between the host and Ethernet MAC performed by the DMA component are 32-bit data
transfers or burst transfers. 
In the case of data buffers, the burst length is defined by CSR0[13:8] (PBL), which is set to zero, and the
transfer ends when the transmit FIFOs are full or the receive FIFOs are empty. 

Transmit Process 
The transmit process can operate in one of three modes: running, stopped, or suspended. After a
software or hardware reset, or after a stop transmit command, the transmit process is in a stopped state.
The transmit process can leave a stopped state only after the start transmit command. 
When in a running state, the transmit process performs descriptor/buffer processing. When operating in a
suspended or stopped state, the transmit process retains the position of the next descriptor; that is, the
address of the descriptor following the last descriptor being closed. After entering a running state, that
position is used for the next descriptor fetch. The only exception is when the host writes the transmit
descriptor base address register (CSR4). In that case, the descriptor address is reset and the fetch is
directed to the first position in the list. Before writing to CSR4 the MAC must be in a stopped state. 
The transmit process remains running until one of the following events occur: 

• The hardware or software reset is issued. Setting the CSR0[0] (SWR) bit can perform the
software reset. After the reset, all the internal registers return to their default states. The current
descriptor's position in the transmit descriptor list is lost. 

• A stop transmit command is issued by the host. This can be performed by writing 0 to the
CSR6[13] (ST) bit. The current descriptor's position is retained. 

• The descriptor owned by the host is found. The current descriptor's position is retained. 
• The transmit FIFO underflow error is detected. An underflow error is generated when the transmit

FIFO is empty during the transmission of the frame. When it occurs, the transmit process enters a
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suspended state. Transmit automatic polling is internally disabled, even if it is enabled by the host
by writing the TAP bits. The current descriptor's position is retained. 

Leaving a suspended state is possible in one of the following situations: 
• A transmit poll demand command is issued. This can be performed by writing CSR1 with a

nonzero value. The transmit poll demand command can also be generated automatically when
transmit automatic polling is enabled. Transmit automatic polling is enabled only if the
CSR0[19:17] (TAP) bits are written with a nonzero value and when there was no underflow error
prior to entering the suspended state. 

• A stop transmit command is issued by the host. This can be performed by writing 0 to the
CSR6[13] (ST) bit. The current descriptor's position is retained. 

The events for the transmit process typically happen in the following order: 
1. The host sets up CSR registers for the operational mode, interrupts, etc. 
2. The host sets up transmit descriptors/data in the shared RAM. 
3. The host sends the transmit start command. 
4. Ethernet MAC starts to fetch the transmit descriptors. 
5. Ethernet MAC transfers the transmit data to Transmit Data RAM from the shared RAM. 
6. Ethernet MAC starts to transmit data on RMII.

A typical data flow for the transmit process is illustrated in Figure 12-6.

Receive Process 
The receive process can operate in one of three modes: running, stopped, or suspended. After a
software or hardware reset, or after a stop receive command, the receive process is in the stopped state.
The receive process can leave a stopped state only after a start receive command. 
In the running state, the receiver performs descriptor/buffer processing. In the running state, the receiver
fetches from the receive descriptor list. It performs this fetch regardless of whether there is any frame on
the link. When there is no frame pending, the receive process reads the descriptor and simply waits for
the frames. When a valid frame is recognized, the receive process starts to fill the memory buffers
pointed to by the current descriptor. When the frame ends, or when the memory buffers are completely
filled, the current frame descriptor is closed (ownership bit cleared). Immediately, the next descriptor on
the list is fetched in the same manner, and so on. 

Figure 12-6 • Transmit Process Transitions
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When operating in a suspended or stopped state, the receive process retains the position of the next
descriptor (the address of the descriptor following the last descriptor that was closed). After entering a
running state, the retained position is used for the next descriptor fetch. The only exception is when the
host writes the receive descriptor base address register (CSR3). In that case, the descriptor address is
reset and the fetch is pointed to the first position in the list. Before writing to CSR3, the MAC must be in a
stopped state. 
The receive process runs until one of the following events occurs: 

• A hardware or software reset is issued by the host. A software reset can be performed by setting
the CSR0[0] (SWR) bit. After reset, all internal registers return to their default states. The current
descriptor's position in the receive descriptor list is lost. 

• A stop receive command is issued by the host. This can be performed by writing 0 to the CSR6[1]
(SR) bit. The current descriptor's position is retained. 

• The descriptor owned by the host is found by Ethernet MAC during the descriptor fetch. The
current descriptor's position is retained. 

Leaving a suspended state is possible in one of the following situations: 
• A receive poll command is issued by the host. This can be performed by writing CSR2 with a

nonzero value. 
• A new frame is detected by Ethernet MAC on a receive link. 
• A stop receive command is issued by the host. This can be performed by writing 0 to the CSR6[1]

(SR) bit. The current descriptor's position is retained. 
The receive state machine goes into stopped state after the current frame is done if a STOP RECEIVE
command is given. It does not go in to a stopped state immediately.
A typical data flow in a receive process is illustrated in Figure 12-7.

The events for the receive process typically happen in the following order: 
1. The host sets up CSR registers for the operational mode, interrupts, etc. 
2. The host sets up receive descriptors in the shared RAM. 
3. The host sends the receive start command. 
4. Ethernet MAC starts to fetch the transmit descriptors. 
5. Ethernet MAC waits for receive data on RMII. 
6. Ethernet MAC transfers received data to the Receive Data RAM. 
7. Ethernet MAC transfers received data to shared RAM from Receive Data RAM. 

Figure 12-7 • Receive Process Transmissions
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Interrupt Controller 
The interrupt controller uses three internal Control and Status registers: CSR5, CSR7, and CSR11.
CSR5 contains the Ethernet MAC status information. It has 10 bits that can trigger an interrupt. These
bits are collected in two groups: normal interrupts and abnormal interrupts. Each group has its own
summary bit, NIS and AIS, respectively. The NIS and AIS bits directly control the MAC_INT output port of
Ethernet MAC (INTISR[5] to the Cortex-M3 NVIC). Every status bit in CSR5 that can source an interrupt
can be individually masked by writing an appropriate value to CSR7 (Interrupt Enable register). 
Additionally, an interrupt mitigation mechanism is provided for reducing CPU usage in servicing
interrupts. Interrupt mitigation is controlled via CSR11. There are separate interrupt mitigation control
blocks for the transmit and receive interrupts. Both of these blocks consist of a 4-bit frame counter and a
4-bit timer. The operation of these blocks is similar for the receive and transmit processes. After the end
of a successful receive or transmission operation, an appropriate counter is decremented and the timer
starts to count down if it has not already started. An interrupt is triggered when either the counter or the
timer reaches a zero value. This allows Ethernet MAC to generate a single interrupt for a few
received/transmitted frames or after a specified time since the last successful receive/transmit operation. 
It is possible to omit transmit interrupt mitigation for one particular frame by setting the Interrupt on
Completion (IC) bit in the last descriptor of the frame. If the IC bit is set, Ethernet MAC sets the transmit
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interrupt immediately after the frame has been transmitted. The interrupt scheme is shown in
Figure 12-8.

General-Purpose Timer 
Ethernet MAC includes a 16-bit general-purpose timer to simplify time interval calculation by an external
host. The timer operates synchronously with the transmit clock CLKT generated by the PHY device. This
gives the host the possibility of measuring time intervals based on actual Ethernet bit time. 
The timer can operate in one-shot mode or continuous mode. In one-shot mode, the timer stops after
reaching a zero value; in continuous mode, it is automatically reloaded and continues counting down
after reaching a zero value. 

Figure 12-8 • Interrupt Scheme
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The actual count value can be tested with an accuracy of ±1 bit by reading CSR11[15:0]. When writing
CSR11[15:0], the data is stored in the internal reload register. The timer is immediately reloaded and
starts to count down. 

Frame Format 
Ethernet MAC supports the Ethernet frame format shown in Table 12-15 (B indicates bytes). The
standard Ethernet frames (DIX Ethernet), as well as IEEE 802.3 frames, are accepted. 

Table 12-15 • Frame Field Usage

Field 
Width 
(bytes) Transmit Operation Receive Operation 

PREAMBLE 7 Generated by Ethernet MAC. Stripped from received data. Not required
for proper operation. 

SFD 1 Generated by Ethernet MAC. Stripped from received data.

DA 6 Supplied by host. Checked by Ethernet MAC according to
current address filtering mode and passed
to host. 

SA 6 Supplied by host. Passed to host. 

LENGTH/ TYPE 6 Supplied by host. Passed to host. 

DATA 0–1500 Supplied by host. Passed to host. 

PAD 0–46 Generated by Ethernet MAC
when CSR[23] (DPD) bit is
cleared and data supplied by
host is less than 64 bytes. 

Passed to host. 

FCS 4 Generated by Ethernet MAC
when CSR[26] bit is cleared. 

Checked by Ethernet MAC and passed to
host.
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Collision Handling 
If a collision is detected before the end of the PREAMBLE/ SFD, Ethernet MAC completes the
PREAMBLE/SFD, transmits the JAM sequence, and initiates a backoff computation. If a collision is
detected after the transmission of the PREAMBLE and SFD, but prior to 512 bits being transmitted,
Ethernet MAC immediately aborts the transmission, transmits the JAM sequence, and then initiates a
backoff. If a collision is detected after 512 bits have been transmitted, the collision is termed a late
collision. Ethernet MAC aborts the transmission and appends the JAM sequence. The transmit message
is flushed from the FIFO. Ethernet MAC does not initiate a backoff and does not attempt to retransmit the
frame when a late collision is detected.
Ethernet MAC uses a truncated binary exponential backoff algorithm for backoff computing, as defined in
the IEEE 802.3 standard and outlined in Figure 12-9. Backoff processing is performed only in half-duplex
mode. In full-duplex mode, collision detection is disabled.

Figure 12-9 • Backoff Process Algorithms
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Deferring
The deferment algorithm is implemented per the 802.3 specification and outlined in Figure 12-10. The
inter-frame gap (IFG) timer starts to count whenever the link is not idle. If activity on the link is detected
during the first 60 bit times of the IFG timer, the timer is reset and restarted once activity has stopped.
During the final 36 bit times of the IFG timer, the link activity is ignored. 
Carrier sensing is performed only when operating in half-duplex mode. In full-duplex mode, the state of
the CRS input is ignored. 

Figure 12-10 • Deferment Process Algorithms
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Receive Address Filtering
There are three kinds of addresses on the LAN: the unicast addresses, the multicast addresses, and the
broadcast addresses. If the first bit of the address (IG bit) is 0, the frame is unicast—dedicated to a single
station. If the first bit is 1, the frame is multicast—destined for a group of stations. If the address field
contains all ones, the frame is broadcast and is received by all stations on the LAN. 
When Ethernet MAC operates in perfect filtering mode, all frames are checked against the addresses in
the address filtering RAM. The unicast, multicast, and broadcast frames are treated in the same manner. 
When Ethernet MAC operates in the imperfect filtering mode, the frames with the unicast addresses are
checked against a single physical address. The multicast frames are checked using the 512-bit hash
table. To receive the broadcast frame, the hash table bit corresponding to the broadcast address CRC
value must be set. Ethernet MAC applies the standard Ethernet CRC function to the first six bytes of the
frame that contains a destination address. The least significant nine bits of the CRC value are used to
index the table. If the indexed bit is set, the frame is accepted. If this bit is cleared, the frame is rejected.
The algorithm is shown in Figure 12-11. 

It is important that one bit in the hash table corresponds to many Ethernet addresses. Therefore, it is
possible that some frames may be accepted by Ethernet MAC, even if they are not intended to be
received. This is because some frames that should not have been received have addresses that hash to
the same bit in the table as one of the proper addresses. The software should perform additional address
filtering to reject all such frames.

Figure 12-11 • Filtering with One Physical Address and the Hash Table
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Software Interface 

Ethernet MAC Control and Status Register Addressing 
The Control and Status registers are located physically inside Ethernet MAC and can be accessed
directly by the Cortex-M3 processor via a 32-bit interface. All the CSRs are 32 bits long and quadword-
aligned. The address bus of the CSR interface is 8 bit wide, and only bits 6:0 of the location code shown
in Table 12-16 are used to decode the CSR register address. 

Ethernet MAC Base Address: 0x40003000
Table 12-16 • 12 CSR Locations

Register 
Name Address R/W Reset Value Description 

CSR0 0x40003000 R/W 0xFE000000 Bus mode 

CSR1 0x40003008 W 0 Transmit poll demand 

CSR2 0x40003010 W 0 Receive poll demand 

CSR3 0x40003018 R/W 0xFFFFFFFF Receive list base address 

CSR4 0x40003020 R/W 0xFFFFFFFF Transmit list base address 

CSR5 0x40003028 R/W 0xF0000000 Status and control

CSR6 0x40003030 R/W 0x32000040 Operation mode 

CSR7 0x40003038 R/W 0xF3FE0000 Interrupt enable 

CSR8 0x40003040 R/W 0xE0000000 Missed frames and overflow counters 

CSR9 0x40003048 R/W 0xFFF483FB RMII management 

CSR10 0x40003050 N/A 0 Reserved 

CSR11 0x40003058 R/W 0xFFFE0000 Timer and interrupt mitigation control 

Note: CSR9 bits 19 and 2 reset values are dependent on the MDI and SDI inputs. The above assumes
MDI is high and SDI is low. 
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CSR Definitions 
Bus Mode Register (CSR0)

Table 12-17 •  Bus Mode Register (CSR0)

Bits 31:24

Bits 23:16 SPD DBO TAP

Bits 15:8 PBL

Bits 7:0 BLE DSL BAR SWR

Note: The CSR0 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value
as shown in Table 12-18. Writing to these bits has no effect.

Table 12-18 • CSR0

Bit Name R/W Reset Value Function 

31:22 N/A 0b1111111000 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

21 SPD W 0 Clock frequency selection 
This bit selects the clock frequency for CLKT and CLKR. 
When this bit is set to 0, CLKT and CLKR are 2.5 MHz. When this bit is
set to 1, CLKT and CLKR are 25 MHz. 

20 DBO W 0 Descriptor byte ordering mode: 
1 – Big-endian mode used for data descriptors 
0 – Little-endian mode used for data descriptors 

19:17 TAP R/W 0 Transmit automatic polling 
If TAP is written with a nonzero value, Ethernet MAC performs an
automatic transmit descriptor polling when operating in suspended
state. When the descriptor is available, the transmit process goes into
running state. When the descriptor is marked as owned by the host, the
transmit process remains suspended. 
The poll is always performed at the current transmit descriptor list
position. The time interval between two consecutive polls is shown in
Table 12-19 on page 198. 

16:14 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
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13:8 PBL R/W 0 Programmable burst length 
Specifies the maximum number of words (32-bit) that can be
transferred within one DMA transaction. This is tied to value 0 and the
bursts are limited only by the internal FIFO’s threshold levels. 
Note that PBL is valid only for the data buffers. Store and forward
operation packet size is limited to the transmit buffer size minus a
space for an additional DMA burst. The DMA burst length is equivalent
to 64 bytes. If store and forward operations are requested for packet
sizes that are greater than this limit, the core will enter a lockup
situation because it is unable to complete the store part of the store
and forward operation. The maximum store and forward size is given in
EQ 1. 

2, 048 – (4 × 64) = 1,792 (transmit FIFO depth is 2,048 bytes) 

EQ 1

7 BLE W 0 Big/little endian
Selects the byte-ordering mode used by the data buffers. 
1 – Big-endian mode used for the data buffers 
0 – Little-endian mode used for the data buffers 

6:2 DSL R/W 0 Descriptor skip length 
Specifies the number of long words between two consecutive
descriptors in a ring structure.

1 BAR R/W 0 Bus arbitration scheme 
1 – Transmit and receive processes have equal priority to access the
bus. 
0 – Intelligent arbitration, where the receive process has priority over
the transmit process.

0 SWR R/W 0 Software reset 
Setting this bit resets all internal flip-flops. The processor should write a
1 to this bit and then wait until a read returns a 0, indicating that the
reset has completed. This bit will remain set for several clock cycles. 

Table 12-19 • Transmit Automatic Polling Intervals

CSR0[19:17] 10 Mbps 100 Mbps

000 TAP disabled TAP disabled

001 825.6 µs 82.56 µs

010 2,476.8 µs 247.68 µs

011 5,779.2 µs 577.92 µs

100 51.6 µs 5.16 µs

101 103.2 µs 10.32 µs

110 154.8 µs 15.48 µs

111 412.8 µs 41.28 µs

Table 12-18 • CSR0 (continued)

Bit Name R/W Reset Value Function 
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Transmit Poll Demand Register (CSR1)

Receive Poll Demand Register (CSR2)

Table 12-20 • Transmit Poll Demand Register (CSR1

Bits 31:24 TPD[31:24] 

Bits 23:16 TPD[23:16] 

Bits 15:8 TPD[15:8] 

Bits 7:0 TPD[7:0] 

Table 12-21 • CSR1

Bit Name R/W Reset Value Function 

31:0 TPD W 0 Writing this field with any value instructs Ethernet MAC to check for frames
to be transmitted. This operation is valid only when the transmit process is
suspended. 
If no descriptor is available, the transmit process remains suspended. When
the descriptor is available, the transmit process goes into the running state. 

Table 12-22 • Receive Poll Demand Register (CSR2)

Bits 31:24 RPD[31:24] 

Bits 23:16 RPD[23:16] 

Bits 15:8 RPD[15:8]

Bits 7:0 RPD[7:0] 

Table 12-23 • CSR2

Bit Name R/W
Reset 
Value Function 

31:0 RPD W 0 Writing this field with any value instructs Ethernet MAC to check for receive
descriptors to be acquired. This operation is valid only when the receive
process is suspended. 
If no descriptor is available, the receive process remains suspended. When
the descriptor is available, the receive process goes into the running state. 
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Receive Descriptor List Base Address Register (CSR3)

Transmit Descriptor List Base Address Register (CSR4)

Table 12-24 • Receive Descriptor List Base Address Register (CSR3)

Bits 31:24 RLA[31:24] 

Bits 23:16 RLA[23:16] 

Bits 15:8 RLA[15:8] 

Bits 7:0 RLA[7:0] 

Table 12-25 • CSR3

Bit Name R/W Reset Value Function 

31:0 RLA R/W 0xFFFFFFFF Start of the receive list address 
Contains the address of the first descriptor in a receive descriptor list. This
address must be 32-bit word aligned (RLA[1:0] = 0). 

Table 12-26 • Transmit Descriptor List Base Address Register (CSR4)

Bits 31:24 TLA[31:24] 

Bits 23:16 TLA[23:16] 

Bits 15:8 TLA[15:8] 

Bits 7:0 TLA[7:0] 

Table 12-27 • CSR4

Bit Name R/W Reset Value Function 

31:0 TLA R/W 0xFFFFFFFF Start of the transmit list address 
Contains the address of the first descriptor in a transmit descriptor list.
This address must be 32-bit word aligned (TLA[1:0] = 0). 
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Status and Control Register (CSR5)
Table 12-28 • Status and Control Register (CSR5)

Bits 31:24

Bits 23:16 TS RS NIS

Bits 15:8 AIS ERI GTE ETI RPS

Bits 7:0 BLE DSL UNF TU TPS TI

Note: The CSR5 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value,
as shown in Table 12-29. Writing to these bits has no effect.

Table 12-29 • CSR5

Bit Name R/W Reset Value Function 

31:23 N/A 0b111100000 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

22:20 TS R 0 Transmit process state (read-only) 
Indicates the current state of a transmit process: 
000 – Stopped; RESET or STOP TRANSMIT command issued. 
001 – Running; fetching the transmit descriptor.
010 – Running; waiting for end of transmission.
011 – Running; transferring data buffer from host memory to FIFO.
100 – Reserved 
101 – Running; set up packet
110 – Suspended; FIFO underflow or unavailable descriptor. 
111 – Running; closing transmit descriptor. 

19:17 RS R 0 Receive process state (read-only) 
Indicates the current state of a receive process: 
000 – Stopped; RESET or STOP RECEIVE command issued. 
001 – Running; fetching the receive descriptor.
010 – Running; waiting for the end-of-receive packet before prefetch
of the next descriptor. 
011 – Running; waiting for the receive packet. 
100 – Suspended; unavailable receive buffer 
101 – Running; closing the receive descriptor.
110 – Reserved 
111 – Running; transferring data from FIFO to host memory.

16 NIS R/W 0 Normal interrupt summary 
This bit is a logical OR of the following bits: 
CSR5[0] – Transmit interrupt 
CSR5[2] – Transmit buffer unavailable 
CSR5[6] – Receive interrupt 
CSR5[11] – General-purpose timer overflow 
CSR5[14] – Early receive interrupt 
Only the unmasked bits affect the normal interrupt summary bit. The
user can clear this bit by writing a 1. Writing a 0 has no effect. 
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15 AIS R/W 0 Abnormal interrupt summary 
This bit is a logical OR of the following bits: 
CSR5[1] – Transmit process stopped 
CSR5[5] – Transmit underflow 
CSR5[7] – Receive buffer unavailable 
CSR5[8] – Receive process stopped 
CSR5[10] – Early transmit interrupt 
Only the unmasked bits affect the abnormal interrupt summary bit.
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

14 ERI R/W 0 Early receive interrupt 
Set when Ethernet MAC fills the data buffers of the first descriptor.
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

13:12 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

11 GTE R/W 0 General-purpose timer expiration 
Gets set when the general-purpose timer reaches zero value. The
user can clear this bit by writing a 1. Writing a 0 has no effect. 

10 ETI R/W 0 Early transmit interrupt 
Indicates that the packet to be transmitted was fully transferred into
the FIFO. The user can clear this bit by writing a 1. Writing a 0 has
no effect. 

9 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

8 RPS R/W 0 Receive process stopped 
RPS is set when a receive process enters a stopped state. The user
can clear this bit by writing a 1. Writing a 0 has no effect. 

7 RU R/W 0 Receive buffer unavailable 
When set, indicates that the next receive descriptor is owned by the
host and is unavailable for Ethernet MAC. When RU is set, Ethernet
MAC enters a suspended state and returns to receive descriptor
processing when the host changes ownership of the descriptor.
Either a receive-poll demand command is issued or a new frame is
recognized by Ethernet MAC. 
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

6 RI R/W 0 Receive interrupt 
Indicates the end of a frame receive. The complete frame has been
transferred into the receive buffers. Assertion of the RI bit can be
delayed using the receive interrupt mitigation counter/timer
(CSR11[19:17]–NRP /CSR11[23:20] – RT). 
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

Table 12-29 • CSR5 (continued)

Bit Name R/W Reset Value Function 
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5 UNF R/W 0 Transmit underflow 
Indicates that the transmit FIFO was empty during a transmission.
The transmit process goes into a suspended state. 
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

4:3 Reserved N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation

2 TU R/W 0 Transmit buffer unavailable 
When set, TU indicates that the host owns the next descriptor on the
transmit descriptor list; therefore, it cannot be used by Ethernet
MAC. When TU is set, the transmit process goes into a suspended
state and can resume normal descriptor processing when the host
changes ownership of the descriptor. Either a transmit-poll-demand
command is issued or transmit automatic polling is enabled. 
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

1 TPS R/W 0 Transmit process stopped 
TPS is set when the transmit process goes into a stopped state. 
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

0 TI R/W 0 Transmit interrupt 
Indicates the end of a frame transmission process. Assertion of the
TI bit can be delayed using the transmit interrupt mitigation
counter/timer (CSR11[26:24] - NTP/CSR11[30:27] - TT). 
The user can clear this bit by writing a 1. Writing a 0 has no effect. 

Table 12-29 • CSR5 (continued)

Bit Name R/W Reset Value Function 
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Operation Mode Register (CSR6)
Table 12-30 • Operation Mode Register (CSR6)

Bits 31:24 RA

Bits 23:16 TTM SF

Bits 15:8 TR ST FD

Bits 7:0 PM PR IF PB HO SR HP

Note: The CSR6 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value,
as shown in Table 12-31. Writing to these bits has no effect.

Table 12-31 • CSR6

Bit Name R/W
Reset 
Value Function 

31 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

30 RA R/W 0 Receive all 
When set, all incoming frames are received, regardless of their destination
address. An address check is performed, and the result of the check is
written into the receive descriptor (RDES0[30]). 

29:23 N/A 0b1100100 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

22 TTM R/W 0 Transmit threshold mode 
1 – Transmit FIFO threshold set for 100 Mbps mode 
0 – Transmit FIFO threshold set for 10 Mbps mode 
This bit is also used to select the frequency of both transmit and receive
clocks between 2.5 MHz (10 Mbps operation) and 25 MHz (100 Mbps
operation). This bit can be changed only when a transmit process is in a
stopped state. 
This TTM bit is sent out of the Ethernet MAC as an output pin and
connected to the SPEED port on the RMII to MII interface as an input port. 

21 SF R/W 0 Store and forward 
When set, the transmission starts after a full packet is written into the
transmit FIFO, regardless of the current FIFO threshold level. 
This bit can be changed only when the transmit process is in the stopped
state. 

20:16 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

15:14 TR R/W 0 Threshold control bits 
These bits, together with TTM, SF, and PS, control the threshold level for
the transmit FIFO. 
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13 ST R/W 0 Start/stop transmit command 
Setting this bit when the transmit process is in a stopped state causes a
transition into a running state. In the running state, Ethernet MAC checks
the transmit descriptor at a current descriptor list position. If Ethernet MAC
owns the descriptor, then the data starts to transfer from memory into the
internal transmit FIFO. If the host owns the descriptor, Ethernet MAC
enters a suspended state. 
Clearing this bit when the transmit process is in a running or suspended
state instructs Ethernet MAC to enter the stopped state. 
Ethernet MAC does not go into the stopped state immediately after
clearing the ST bit. It will finish the transmission of the frame data
corresponding to the current descriptor and then move to the stopped
state. 
The status bits of the CSR5 register should be read to check the actual
transmit operation state. Before giving the Stop Transmit command, the
transmit state machine in CSR5 can be checked. If the transmission state
machine is in SUSPENDED state, the Stop Transmit command can be
given so that complete frame transmission by MAC is ensured. 

12:10 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

9 FD R/W 0 Full-duplex mode: 
0 – Half-duplex mode 
1 – Forcing full-duplex mode 
Changing of this bit is allowed only when both the transmitter and receiver
processes are in the stopped state. 

8 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

7 PM R/W 0 Pass all multicast 
When set, all frames with multicast destination addresses will be received,
regardless of the address check result. 

6 PR R/W 0 Promiscuous mode 
When set, all frames will be received regardless of the address check
result. An address check is not performed. 

5 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

4 IF R/W 0 Inverse filtering (read-only) 
If this bit is set when working in a perfect filtering mode, the receiver
performs an inverse filtering during the address check process. The
filtering type bits of the setup frame determine the state of this bit. 

Table 12-31 • CSR6 (continued)

Bit Name R/W
Reset 
Value Function 
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Table 12-32 lists all possible combinations of the address filtering bits. The actual values of the IF, HO,
and HP bits are determined by the filtering type (FT1–FT0) bits in the setup frame, as shown in
Table 12-9 on page 184. The IF, HO, and HP bits are read-only. 

3 PB R/W 0 Pass bad frames 
When set, Ethernet MAC transfers all frames into the data buffers,
regardless of the receive errors. This allows the runt frames, collided
fragments, and truncated frames to be received. 

2 HO R/W 0 Hash-only filtering mode (read-only) 
When set, Ethernet MAC performs an imperfect filtering over both the
multicast and physical addresses. The filtering type bits of the setup frame
determine the state of this bit. 

1 SR R/W 0 Start/stop receive command
Setting this bit enables the reception of the frame by Ethernet MAC and
the frame is written into the receive FIFO. If the bit is not enabled, then the
frame is not written into the receive FIFO. Setting this bit when the receive
process is in a stopped state causes a transition into a running state. In
the running state, Ethernet MAC checks the receive descriptor at the
current descriptor list position. 
If Ethernet MAC owns the descriptor, it can process an incoming frame.
When the host owns the descriptor, the receiver enters a suspended state
and also sets the CSR5[7] (receive buffer unavailable) bit. Clearing this bit
when the receive process is in a running or suspended state instructs
Ethernet MAC to enter a stopped state after receiving the current frame.
Ethernet MAC does not go into the stopped state immediately after
clearing the SR bit. Ethernet MAC will finish all pending receive operations
before going into the stopped state. The status bits of the CSR5 register
should be read to check the actual receive operation state. 

0 HP R/W 0 Hash/perfect receive filtering mode (read-only) 
0 – Perfect filtering of the incoming frames is performed according to the
physical addresses specified in a setup frame.
1 – Imperfect filtering over the frames with the multicast addresses is
performed according to the hash table specified in a setup frame.
A physical address check is performed according to the CSR6[2] hash-
only (HO) bit.
When both the HO and HP bits are set, an imperfect filtering is performed
on all of the addresses.
The filtering type bits of the setup frame determine the state of this bit.

Table 12-31 • CSR6 (continued)

Bit Name R/W
Reset 
Value Function 

Table 12-32 • Receive Address Filtering Modes Summary

PM 
CSR6[7]

PR 
CSR6[6]

IF 
CSR6[4]

HO 
CSR6[2]

HP
CSR6[0] Current Filtering Mode

0 0 0 0 0 16 physical addresses – perfect filtering mode

0 0 0 0 1 One physical address for physical addresses
and 512-bit hash table for multicast addresses

0 0 0 1 1 512-bit hash table for both physical and
multicast addresses

0 0 1 0 0 Inverse filtering
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Table 12-33 lists the transmit FIFO threshold levels. These levels are specified in bytes. 

x 1 0 0 x Promiscuous mode

0 1 0 1 1 Promiscuous mode

1 0 0 0 x Pass all multicast frames

1 0 0 1 1 Pass all multicast frames

Table 12-32 • Receive Address Filtering Modes Summary

Table 12-33 • Transmit FIFO Threshold Levels (Bytes)

CSR6[21] CSR6[15:14] CSR6[22] = 1 CSR6[22] = 0

0 00 64 128

0 01 128 256

0 10 128 512

0 11 256 1024

1 xx Store and forward Store and forward
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Interrupt Enable Register (CSR7)
Table 12-34 • Interrupt Enable Register (CSR7)

Bits 31:24

Bits 23:16 NIE

Bits 15:8 AIE ERE GTE ETE RSE

Bits 7:0 RUE RIE UNE TUE TSE TIE

Note: The CSR7 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value,
as shown in Table 12-35. Writing to these bits has no effect.

Table 12-35 • CSR7

Bit Name R/W Reset Value Function 

31:17 N/A 0b111100111111111 Reserved
Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation

16 NIE R/W 0 Normal interrupt summary enable 
When set, normal interrupts are enabled. Normal interrupts are
listed below: 
CSR5[0] – Transmit interrupt 
CSR5[2] – Transmit buffer unavailable 
CSR5[6] – Receive interrupt 
CSR5[11] – General-purpose timer expired 
CSR5[14] – Early receive interrupt 

15 AIE R/W 0 Abnormal interrupt summary enable 
When set, abnormal interrupts are enabled. Abnormal interrupts
are listed below: 
CSR5[1] – Transmit process stopped 
CSR5[5] – Transmit underflow 
CSR5[7] – Receive buffer unavailable 
CSR5[8] – Receive process stopped 
CSR5[10] – Early transmit interrupt 

14 ERE R/W 0 Early receive interrupt enable 
When both the ERE and NIE bits are set, early receive interrupt
is enabled. 

13:12 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

11 GTE R/W 0 General-purpose timer overflow enable 
When both the GTE and NIE bits are set, the general-purpose
timer overflow interrupt is enabled. 

10 ETE R/W 0 Early transmit interrupt enable 
When both the ETE and AIE bits are set, the early transmit
interrupt is enabled. 
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9 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

8 RSE R/W 0 Receive stopped enable 
When both the RSE and AIE bits are set, the receive stopped
interrupt is enabled. 

7 RUE R/W 0 Receive buffer unavailable enable 
When both the RUE and AIE bits are set, the receive buffer
unavailable is enabled. 

6 RIE R/W 0 Receive interrupt enable 
When both the RIE and NIE bits are set, the receive interrupt is
enabled. 

5 UNE R/W 0 Underflow interrupt enable 
When both the UNE and AIE bits are set, the transmit underflow
interrupt is enabled. 

4:3 N/A 0 Reserved
Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

2 TUE R/W 0 Transmit buffer unavailable enable 
When both the TUE and NIE bits are set, the transmit buffer
unavailable interrupt is enabled. 

1 TSE R/W 0 Transmit stopped enable 
When both the TSE and AIE bits are set, the transmit process
stopped interrupt is enabled. 

0 TIE R/W 0 Transmit interrupt enable 
When both the TIE and NIE bits are set, the transmit interrupt is
enabled. 

Table 12-35 • CSR7 (continued)

Bit Name R/W Reset Value Function 
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Missed Frames and Overflow Counter Register (CSR8)
Table 12-36 • Missed Frames and Overflow Counter Register (CSR8)

Bits 31:24 OCO FOC[10:7]

Bits 23:16 FOC[6:0] MFO

Bits 15:8 MFC[15:8]

Bits 7:0 MFC[7:0]

Note: The CSR8 register has unimplemented bits (shaded). If these bits are read they will return a predefined value,
as shown in Table 12-37. Writing to these bits has no effect. 

Table 12-37 • CSR8

Bit Name R/W Reset Value Function 

31:29 Reserved N/A 0b111 Reserved
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

28 OCO R 0 Overflow counter overflow (read-only)
Gets set when the FIFO overflow counter overflows.
Resets when the high byte (bits [31:24]) is read.

27:17 FOC R 0 FIFO overflow counter (read-only)
Counts the number of frames not accepted due to receive FIFO
overflow. The counter resets when the high byte (bits [31:24]) is
read.
When FIFO overflow occurs, the truncated frame is DMAed to
memory with the CRC bit set.

16 MFO R 0 Missed frame overflow
Set when a missed frame counter overflows.
The counter resets when the high byte (bits [31:24]) is read.

15:0 MFC R 0 Missed frame counter (read-only)
Counts the number of frames not accepted due to the unavailability
of the receive descriptor.
The counter resets when the high byte (bits [31:24]) is read. The
missed frame counter increments when the internal frame cache is
full and the descriptors are not available.
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RMII Management Interface Register (CSR9)
Table 12-38 • RMII Management Interface Register (CSR9)

Bits 31:24

Bits 23:16 MDI MDEN MDO MDC

Bits 15:8

Bits 7:0

Note: The CSR9 register has unimplemented bits (shaded). If these bits are read they will return a predefined value,
as shown in Table 12-39. Writing to these bits has no effect.

Table 12-39 • CSR9

Bit Name R/W Reset Value Function 

31:20 N/A 0b111111111111 Reserved
Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

19 MDI R 0 RMII management data in signal (read-only). This bit reflects
the sample on the MDI during the read operation on the RMII
management interface. 

18 MDEN R/W 0b1 RMII management operation mode 
1 – Indicates that Ethernet MAC reads the RMII PHY
registers.
0 – Indicates that Ethernet MAC writes to the RMII PHY
registers. This bit controls the active low tristate enable for
the top-level MDIO data output. 

17 MDO R/W 0 RMII management write data. The value of this bit drives the
MDO signal when a write operation is performed. 

16 MDC R/W 0 RMII management clock. The value of this bit drives the
MDC signal. 

15:0 N/A 0b1000001111111011 Reserved
Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.
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General-Purpose Timer and Interrupt Mitigation Control Register (CSR11)
Table 12-40 • General-Purpose Timer and Interrupt Mitigation Control Register (CSR11)

Bits 31:24 CS TT NTP

Bits 23:16 RT NRP CON

Bits 15:8 TIM[15:8]

Bits 7:0 TIM[7:0]

Table 12-41 • CSR11

Bit Name R/W Reset Value Function 

31 CS R/W 0b1 Cycle size 
Controls the time units for the transmit and receive timers according to
the following: 
1 – RMII 100 Mbps mode – 5.12 µs

RMII 10 Mbps mode – 51.2 µs 
0 – RMII 100 Mbps mode – 81.92 µs 

RMII 10 Mbps mode – 819.2 µs 

30:27 TT R/W 0b1111 Transmit timer 
Controls the maximum time that must elapse between the end of a
transmit operation and the setting of the CSR5[0] (TI-transmit interrupt)
bit. 
This time is equal to TT × (16 × CS). 
The transmit timer is enabled when written with a nonzero value. After
each frame transmission, the timer starts to count down if it has not
already started. It is reloaded after every transmitted frame. Writing 0 to
this field disables the timer effect on the transmit interrupt mitigation
mechanism. 
Reading this field gives the actual count value of the timer. 

26:24 NTP R/W 0b111 Number of transmit packets 
Controls the maximum number of frames transmitted before setting the
CSR5[0] (TI-transmit interrupt) bit. 
The transmit counter is enabled when written with a nonzero value. It is
decremented after every transmitted frame. It is reloaded after setting
the CSR5[0] - TI bit. 
Writing 0 to this field disables the counter effect on the transmit interrupt
mitigation mechanism. 
Reading this field gives the actual count value of the counter. 

23:20 RT R/W 0b1111 Receive timer 
Controls the maximum time that must elapse between the end of a
receive operation and the setting of the CSR5[6] (RI-receive interrupt)
bit. 
This time is equal to RT × CS. 
The receive timer is enabled when written with a nonzero value. After
each frame reception, the timer starts to count down if it has not already
started. It is reloaded after every received frame. Writing 0 to this field
disables the timer effect on the receive interrupt mitigation mechanism. 
Reading this field gives the actual count value of the timer. 
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19:17 NRP R/W 0b111 Number of receive packets 
Controls the maximum number of received frames before setting the
CSR5[6] (RI-receive interrupt) bit. 
The receive counter is enabled when written with a nonzero value. It is
decremented after every received frame. It is reloaded after setting the
CSR5[6]-RI bit. 
Writing 0 to this field disables the timer effect on the receive interrupt
mitigation mechanism. 
Reading this field gives the actual count value of the counter. 

16 CON R/W 0 Continuous mode 
1 – General-purpose timer works in continuous mode 
0 – General-purpose timer works in one-shot mode 
This bit must always be written before the timer value is written. 

15:0 TIM R/W 0 Timer value 
Contains the number of iterations of the general-purpose timer. Each
iteration duration is as follows: 
RMII 100 Mbps mode – 81.92 µs 
RMII 10 Mbps mode – 819.2 µs 

Table 12-41 • CSR11 (continued)

Bit Name R/W Reset Value Function 
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IOMUXes Associated with Ethernet MAC
IOMUXes 16, 17, 18, 19, 20, 21, 22, 23, and 24 are used to multiplex Ethernet MAC and fabric interface
signals to MSSIOBUFs. These are RMII PHY interface signals except for MAC_RMII_CLK input, which is
a dedicated MSSIOBUF on a SmartFusion cSoC. Refer to the "Fabric Interface and IOMUX" section on
page 343 for a description of the IOMUX.

IOMUXes for MAC_TXD[1:0], MAC_RXD[1:0], MAC_TX_EN, 
MAC_CRSDV, MAC_RX_ER, MAC_MDIO, MAC_MDC
To use the MAC_TXD[1:0], MAC_RXD[1:0], MAC_TX_EN, MAC_CRSDV, MAC_RX_ER, MAC_MDIO,
and MAC_MDC signals, an IOMUX is used to route the signal to an MSSIOBUF. This IOMUX is used to
share the MSSIOBUF between the various MAC signals and fabric, when MAC is not in use. 
Figure 12-12 shows the IOMUX topology for MAC_TXD[0]. A similar topology exists for the remaining
MAC signals.
In this case, IOMUX_16 is configured to connect OUT_A to MSSIOBUF IO_O port. When MAC is not in
use, the M2F[0], F2M[0], and F2M_OE[0] can then be routed to use MSSIOBUF.

Figure 12-12 • Example of Ethernet MAC Interaction with FPGA Fabric via an IOMUX
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Table 12-42 lists the association between MAC I/Os, IOMUXes, and fabric interface.

Table 12-43 through Table 12-51 on page 218 give the descriptions for all IOMUXes associated with the
Ethernet MAC.

IOMUX 16

IOMUX 17

Table 12-42 • MAC IO Interaction with Fabric and IOMUxes

MAC_x_Signal Fabric Interface IOMUX

MAC_TXD[0] 0 16

MAC_TXD[1] 1 17

MAC_RXD[0] 2 18

MAC_RXD[1] 3 19

MAC_TXEN 4 20

MAC_CRSDV 5 21

MAC_RXER 6 22

MAC_MDIO 7 23

MAC_MDC 8 24

Table 12-43 • IOMUX 16

Pad Name
Pad 

Ports IOMUX_16_CR

IOMUX 16 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_TXD[0]/
IOuxwByVz

I M2F[0]

O MAC_TXD[0] F2M[0]

OE VDD F2M_OE[0]

PU IOMUX_16_PU

PD IOMUX_16_PD

ST IOMUX_16_ST

Table 12-44 • IOMUX 17

Pad Name
Pad 

Ports IOMUX_17_CR

IOMUX 17 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_TXD[1]/
IOuxwByVz

I M2F[1]

O MAC_TXD[1] F2M[1]

OE VDD F2M_OE[1
]

PU IOMUX_17_PU

PD IOMUX_17_PD

ST IOMUX_17_ST
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IOMUX 18

IOMUX 19

IOMUX 20

Table 12-45 • IOMUX 18

Pad Name
Pad 

Ports IOMUX_18_CR

IOMUX 18 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_RXD[0]/
IOuxwByVz

I MAC_RXD[0] M2F[2]

O F2M[2]

OE GND F2M_OE[2]

PU IOMUX_18_PU

PD IOMUX_18_PD

ST IOMUX_18_ST

Table 12-46 • IOMUX 19

Pad Name
Pad 

Ports IOMUX_19_CR

IOMUX 19 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_RXD[1]/
IOuxwByVz

I MAC_RXD[1] M2F[3]

O F2M[3]

OE GND F2M_OE[3]

PU IOMUX_19_PU

PD IOMUX_19_PD

ST IOMUX_19_ST

Table 12-47 • IOMUX 20

Pad Name
Pad 

Ports IOMUX_20_CR

IOMUX 20 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_TXEN/
IOuxwByVz

I M2F[4]

O MAC_TXEN F2M[4]

OE VDD F2M_OE[4]

PU IOMUX_20_PU

PD IOMUX_20_PD

ST IOMUX_20_ST
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IOMUX 21

IOMUX 22

IOMUX 23

Table 12-48 • IOMUX 21

Pad Name
Pad 

Ports IOMUX_21_CR

IOMUX 21 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_CRSDV/
IOuxwByVz

I MAC_CRSDV M2F[5]

O GND F2M[5]

OE GND F2M_OE[5]

PU IOMUX_21_PU

PD IOMUX_21_PD

ST IOMUX_21_ST

Table 12-49 • IOMUX 22

Pad Name
Pad 

Ports IOMUX_22_CR

IOMUX 22 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_RXER/
IOuxwByVz

I MAC_RXER M2F[6]

O GNS F2M[6]

OE GND F2M_OE[6]

PU IOMUX_22_PU

PD IOMUX_22_PD

ST IOMUX_22_ST

Table 12-50 • IOMUX 23

Pad Name
Pad 

Ports IOMUX_23_CR

IOMUX 23 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_MDIO/
IOuxwByVz

I MAC_MDI M2F[7]

O MAC_MDO F2M[7]

OE MAC_MDEN F2M_OE[7]

PU IOMUX_23_PU

PD IOMUX_23_PD

ST IOMUX_23_ST
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IOMUX 24
Table 12-51 • IOMUX 24

Pad Name
Pad 

Ports IOMUX_24_CR

IOMUX 24 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

MAC_MDC/
IOuxwByVz

I M2F[8]

O MAC_MDC F2M[8]

OE VDD F2M_OE[8]

PU IOMUX_24_PU

PD IOMUX_24_PD

ST IOMUX_24_ST
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13 – Serial Peripheral Interface (SPI) Controller

The serial peripheral interface controller is an APB slave that provides a serial interface compliant with
the Motorola SPI, Texas Instruments synchronous serial, and National Semiconductor MICROWIRE™
formats. In addition, the SPI supports interfacing to large SPI flash and EEPROM devices.
The SmartFusion device has two identical SPI peripherals. The letter x in register and signal descriptions
is used as a placeholder for 0 or 1, indicating SPI_0 or SPI_1.
Figure 13-1 shows a block diagram for the SPI controller.

SPI Controller Functional Description
SPI controller supports both Master and Slave modes of operation. 

Figure 13-1 • SPI Controller Block Diagram
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SPI Controller Block Diagram
Figure 13-1 on page 219 shows the SPI Controller block diagram. See Table 13-1 on page 221 for SPI
interface signals definitions.

• In Master mode, SPI generates SPI_x_CLK, selects a slave using SPI_x_SS, transmits data on
SPI_x_DO, and receives data on SPI_x_DI. 

• In Slave mode, SPI is selected by SPI_x_SS, receives clock on SPI_x_CLK, and incoming data
on SPI_x_DI. 

SPI controller embeds two 4 × 32 (depth × width) FIFOs for receive and transmit. These FIFOs are
accessible through RX data and TX data registers. Writing to the TX data register causes the data to be
written to the transmit FIFO. This is emptied by transmit logic. Similarly reading from the RX data register
causes data to be read from the receive FIFO.
The not empty port of receive FIFO and not full port of transmit FIFO flags of the FIFOs are exposed as
SPIRXAVAIL (SPI has data to be read) and SPITXRFM (SPI has more room to send) ports. These are
connected to the PDMA engine to allow for continuous DMA streaming for large SPI transfers and thus
helps to free up the ARM Cortex-M3 processor.
Interrupts can be setup to signal the following:

• The completion of a data frame transfer transmission/reception 
• Overflow/under-run events when the DMA channel accesses the transmit or receive FIFOs.

SPI Modes of Transfer
SPI controller has two basic modes of transfer. It can be controlled by the Cortex-M3 microcontroller or
the peripheral DMA (PDMA). In Cortex-M3 mode, the transfers are handled by firmware which can poll
the status register or respond to interrupts. In PDMA mode the transfers are automatically handled by the
PDMA engine.

Cortex-M3 Controlled Mode
In this mode, the size of the data frames (size of the single transfer is set in register SPITXRXDFS_REG)
and the number of transfers (set in the TXRXDFCOUNT field of the CONTROL register) are specified.
Upon completion of each transfer—that is, after a specified number of data frames (1 by default) are
sent—an optional interrupt is generated. The SPI controller keeps track of the number of data frames so
that special signals like output enable can be deactivated at the end of a transfer. 
For example, consider the transmission of 64 KB of data to an external EEPROM from the Cortex-M3
controlled SPI controller. The data frame size is set to 8 and the number of data frames per transfer is set
to 1. After each transfer, the software must respond to the interrupt—transmit done—and reload the FIFO
until all 64 KB are sent. To improve throughput, the number of data frames per each transfer can be set
to 4 to utilize the full depth of the transmit FIFO. 

PDMA Mode
In this mode, interrupts are turned off and the PDMA engine uses the SPITXRFM and SPIRXAVAIL
signals to control the filling and emptying of the transmit and receive FIFOs. The SPITXRFM is
connected to the transmit FIFO not full flag. The SPIRXAVAIL is connected to the receive FIFO not
empty flag.
In DMA mode, the TXDONE and RXRDY interrupts are masked in RIS and the interrupt capability in the
PDMA engine is used to notify the application on completion. For more information on PDMA, refer to the
"Peripheral DMA (PDMA)" section on page 35.
For example, consider the transmission of 64 KB data to an external EEPROM from a PDMA-controlled
SPI controller. The data frame size is set to 8 and the number of data frames per transfer is set to 1. The
transmit FIFO is repeatedly emptied by the PDMA engine, using the SPITXRFM signal.
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SPI Interface Signals
Figure 13-1 lists SPI signals. Signals that are brought to chip-level pins are marked as external. Signals
that interface with other parts of SmartFusion MSS are marked as internal.

SPI Controller Operation
This section describes SPI controller operation, including FIFO, interrupt, and error handling. The SPI
controller supports three types of data transfer protocols. These are selected by bits 2 and 3 of the
Control Register (CONTROL [3:2]). These are the transfer protocols:

• Motorola SPI
• National Semiconductor MICROWIRE
• TI Synchronous Serial

The protocol details are explained in the"SPI Data Transfer Protocol Details" section on page 223.

SPI Transmit and Receive FIFO Flags and Interrupts
The SPI controller contains two 4 × 32 (depth x width) FIFOs: one for the receive side and the other for
the transmit side. The TXFIFOFUL and TXFIFOEMP bits of the SPISTAUS_REG register indicate the full
or empty status of the transmit FIFO. The RXFIFOFUL and RXFIFOEMP bits of the SPISTAUS_REG
register indicate the full or empty status of the receive FIFO. The Cortex-M3 microcontroller can poll
these bits to obtain the status of the corresponding FIFO. 
For large data transfers under Cortex-M3 control, the full depth of transmit FIFO can be used by setting
the number of data frames in a burst to a number greater than 1 (maximum is 64 K frames). When
interrupts are enabled, the TXDONE bit of the RIS register is asserted after all the data frames in the
burst are sent. 

Table 13-1 • SPI Interface Signals

Name Type

Polarity/
Bus 
Size Description

External Pins

SPI_x_DI Input 1 Serial data input

SPI_x_DO Output 1 Serial data output

SPI_x_CLK Input/output 1 Serial clock. Input when SPI is in Slave mode. Output
when SPI is in Master mode.

SPI_x_SS[0] Input/output 1 Slave select. Input when SPI is in Slave mode. Output
when SPI is in Master mode.

Signals Routed Via IOMUXes but Not to a Pin

SPI_x_SS[7:1]* Output 7 Extra slave select signal. Valid only in Master mode. 

Internal Signals

SPI_x_MODE Output 1 SPI mode. Used by the MSS IOMUXes to determine
INOUT signal directions (1 = Master, 0 = Slave).

SPI_x_OEN Output 1 Output enable

SPI_x_TXRFM Output 1 SPI ready to transmit. Used by MSS PDMA engine.

SPI_x_RXAVAIL Output 1 SPI received data. Used by MSS PDMA engine.

Note: *For the A2F200 device, SPI_0 can only select four slaves. This means only SPI_0_SS[0],
SPI_0_SS[3:1] outputs are valid.
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For example, if the data frame size is set to 32 and the count to 2, then interrupt TXDONE is generated
after every two words (32 bits). The default value for the frame count is 1.
The TXUNDERRUN and RXOVERFLOW bits of the SPICNTL_REG register are conditional interrupts
that are available for each channel (in DMA mode) to indicate that a FIFO under-run or FIFO overflow
has occurred. If the transmit FIFO is accessed for data to transfer and there is no data in the FIFO, then
a transmit under-run error (TXUNDERRUN) is generated. This can be conditionally used to generate an
interrupt. In this event, the transmission is assumed to have been lost and the application must catch the
error and restart the transmission from the beginning. Internally the transmit logic returns to an idle state
and the entire transmission is deemed lost.
If the channel attempts to write to a receive FIFO which is already full then receive overflow error
(RXOVERFLOW) is generated. This can be conditionally used to generate an interrupt. In this case, the
transmission continues but the data is now corrupted because a data frame is missing. It is assumed that
the software will clear the interrupt and recover (possibly by reading from the receive FIFO to clear the
source of the interrupt, allowing more data to be received, or even by halting the transmission and
resetting the SPI controller).
There are no interrupts available to signal to the Cortex-M3 microcontroller that the transmit FIFO has
overflowed or a read operation is attempted on an empty receive FIFO. The SPITXRFM flag (room for
more) and SPIRXAVAIL flag (data ready to be read) are assumed to be used only in DMA mode under
the control of the DMA Engine, which has its own interrupts and control mechanism.

SPI Clock Requirements
The SPI_0 and SPI_1 peripherals are clocked by PCLK0 on APB bus 0 (APB_P0) and PCLK1 on APB
bus 1 (APB_P1), respectively. PLCLK0 and PLCK1 are free running versions of FCLK (the main clock
driving the entire MSS) which are derived from the MSS_CCC. Refer to the "PLLs, Clock Conditioning
Circuitry, and On-Chip Crystal Oscillators" section on page 109.
In slave mode, the input clock to the SPI controller (SPICLK) can not be faster than one twelfth of PCLK0
or PCLK1. This means that for a PCLK of 100 MHz, the maximum SPI clock speed allowed is 8.33 MHz.
In master mode, the SPI clock (SPI_x_CLK) can run at even divisors of PCLK, ranging from 2 to 256.
This also means that for a PCLK of 100 MHz, the allowed range for SPI clock is 390 KHz to 50 MHz.

SPI Status at Reset
After reset, the slave select (SPI_x_SS[0]) pins default to a logic High. After selecting the SPI mode and
enabling the SPI controller, the SPI_x_SS lines default to the correct values for each protocol (see the
"SPI Control Register (CONTROL)" section on page 233). After reset, the clock out (SPI_x_CLK) is a
logic Low.
At reset, the FIFOs are cleared and their respective read and write pointers are set to zero. Similarly, all
the internal registers on the SPI controller are reset to their default values, as shown in the "SPI Register
Interface Details" section on page 233.

SPI Error Recovery and Handling
The SPI protocol defines only the packet formats for data transmission and does not include any error
recovery strategy "physical layer" protocols. Specifically, if an error occurs on a slave (for example, it fails
to respond to the chip select or gets overwhelmed with incoming data) the master will not necessarily be
aware of it. The master and slave must therefore have prior knowledge of each other’s capabilities before
transmission can begin.

RX Overflow
An RX overflow condition arises when the receive FIFO has not been emptied in time. As a result, the
last write to the receive FIFO from the channel overwrote some previously received data that had not yet
been read by the host processor. An example of this scenario happens when the SPI controller is
operating in master mode and the receive FIFO is not being serviced by the processor after the SPI
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controller raises the RXRDY interrupt flag found in the RIS register. Eventually the FIFO will fill up and
subsequent writes by the channel will cause the RX overflow to occur.
The corrective action required is for the host to read from the FIFO until the FIFO is empty. This can be
checked by reading the FIFO status in the STATUS register.

TX Under-Run
A TX under-run condition arises when a channel requests to send data while no data is available in the
transmit FIFO. An example of this scenario happens when the SPI Controller is operating in slave mode
and gets a request to send data while no data is available in transmit FIFO.
The corrective action required is for the host to write data into the transmit FIFO. The status flags
TXFIFOEMP or TXFIFOEMPNXT to indicate whether the FIFO is empty or will be after the next read
operation.

SPI Data Transfer Protocol Details
This section covers the details of each of the three data transfer protocols, including timing diagrams,
signal requirements, and error case scenarios.

Motorola SPI Protocol
The Motorola SPI is a full duplex, four-wire synchronous transfer protocol. It supports programmable
clock polarity and phase.
The SPO (clock polarity) control bit determines the polarity of the clock. If SPO is Low, SPISCLKO is
driven low when no data is transferred. If SPO is High, SPISCLK is driven high when no data is
transferred.
The SPH (clock phase) control bit determines the clock edge that captures the data. When SPH is Low,
data is captured on the first clock transition (rising edge if SPO = 0). When SPH is HIGH, data is captured
on the second clock transition (rising edge if SPO = 1).
Table 13-2 summarizes the active edges of the various master SPI modes for A2F200. See Table 13-3
on page 231 for A2F060 and A2F500.

The number of bits transferred is set in the TxRx Data Frame Register (TXRXDF_SIZE). Note that
SPI_x_SS is not pulsed between frames when SPH = 1. 
For completeness, the rest of the possible transfer modes are shown in Figure 13-6 through Figure 13-3
on page 224.
Note: The timing diagrams in Figure 13-2 on page 224 through Figure 13-13 on page 230 apply to all

SmartFusion devices.

Table 13-2 • Motorola SPI Transfer Modes (A2F200 only)

Mode SPO/SPH
Sample 
Edge

Shift 
Edge

Pulse Slave Select 
Between Continuous 

Transfers (Master mode)

Clock in Idle Period, 
Slave Select in Idle 

Period

0 0/0 Rising Falling Yes 0/1

1 0/1 Falling Rising No 0/1

2 1/0 Falling Rising Yes 1/1

3 1/1 Rising Falling No 1/1
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Single Frame Transfer – Mode 0: SPO = 0, SPH = 0

Multiple Frame Transfer – Mode 0: SPO = 0, SPH = 0

Single Frame Transfer – Mode 1: SPO = 0, SPH = 1

Figure 13-2 • Motorola SPI Mode 0
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Notes:
1. Between frames, the slave select (SPI_x_SS) is asserted for the duration of clock pulse.
2. Between frames, the clock (SPI_x_CLK) is low.
3. Data is transferred most significant bit (MSB) first.
4. The output enable (SPI_x_OEN) signal is asserted during transmission, deasserted at end of transfer (after the last

frame is sent).
Figure 13-3 • Motorola SPI Mode 0 Multiple Frame Transfer
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Figure 13-4 • Motorola SPI Mode 1
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Single Frame Transfer – Mode 2: SPO = 1, SPH = 0

Single Frame Transfer – Mode 3: SPO = 1, SPH = 1

Output Enable (SPI_x_OEN) Timing
• Each SPI mode comprises two phases: a transmit (or shift out) and receive (or sample). It is a

requirement that the output enable (SPI_x_OEN) line which enables the output pad should be
driven so that the pad is ready to transmit when the data is available (setup).

• The pad is held on long enough for the recipient to sample the data (hold).
The minimum setup and hold time is one half SPI_x_CLK.
In slave mode, the situation is slightly complicated because the input clock is withdrawn at the end of the
transfer. For example, consider the waveform for SPO = 1, SPH = 0 (Figure 13-5). In this case, data is
sampled on the falling edge of the clock and shifted on the rising edge of the clock.
The data is sampled on the falling edge and must be held for one half SPI_x_CLK after the last falling
edge at the end of the transmission. This means SPI_x_OEN must be held High for at least one half
SPI_x_CLK after the last falling edge to satisfy the hold time requirement.
However, in the above slave case, the SPI_x_CLK input has been withdrawn so it cannot be used for
timing purposes. In this SPI controller implementation the following rules are used:

• After the last active edge of SPI_x_CLK, the SPI_x_OEN signal is held active for at least one
internal slave SPI_x_CLK cycle (which is derived from the input PCLK using the clock division
frequency register CLK_GEN).

• The SPI_x_OEN is held active if the slave select line (SPI_x_SS) is Low, there is a transmission
in progress, or there is more data to be transmitted.

Figure 13-5 • Motorola SPI Mode 2 
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Figure 13-6 • Motorola SPI Mode 3
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Motorola SPI Error Case Scenarios
The SPI protocol does not specify any error recovery strategy. The master and slave require prior
knowledge of clock rates and data-frame layouts.
However, there are built-in mechanisms in the SPI controller, by which when the Slave encounters an
error, the Master can toggle the Slave clock until it gets to a known state. Here are three specific error
scenarios and the behavior of the SPI controller in Motorola protocol mode:

• If the slave select signal is withdrawn in the middle of a transfer, the transfer continues until the
end of the data frame.

• If the input clock is withdrawn, the SPI controller will remain paused until the clock is restarted. It
will pick up where it left off.

• If the slave select signal is withdrawn before a transfer occurs, the slave remains in the IDLE state
(no data transfer having been initiated).

The SPI controller has no built-in timer. For applications where there is a possibility of a slave going to
sleep for a long time, or in the case of very long transfers, the application should use one of the
SmartFusion on-chip timers. Refer to the "System Timer" section on page 305 for more information. 

National Semiconductor MICROWIRE Protocol
The National Semiconductor MICROWIRE serial interface is a half-duplex protocol using a master/slave
message passing technique. Each serial transmission begins with an 8-bit control word, during which
time no incoming data is received. After the control word is sent, the external slave decodes it, and after
waiting one serial clock cycle from the end of the control word, responds with the required data, which
may be of a length of 4 to 16 bits.

Single Frame Transfer

In this mode, the most significant byte of the FIFO transmit word is the control byte. The total data frame
size supplied must be at least 12 bits long (8 bits for the control word and a minimum of 4 bits for data
payload). Only the output data is sampled and inserted in the receive FIFO.

Figure 13-7 • National Semiconductor MICROWIRE Single Frame Transfer
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Multiple Frame Transfer

The slave select signal (SPI_x_SS) is continuously asserted (held Low) while SPI_x_OEN is also
asserted (Low) for the duration of each control byte. The other data transfers proceed in back-to-back
manner.

Texas Instruments (TI) Synchronous Serial Protocol
The TI synchronous serial interface is based on a full duplex, four-wire synchronous transfer protocol.
The transmit data pin is put in a high-impedance mode (tristated) when not transmitting.

• The slave select (SPI_x_SS) signal is pulsed between transfers to guarantee a High-to-Low
transition between each frame.

• In an idle state, the slave select (SPI_x_SS) signal is kept Low.
• Data is available on the clock cycle immediately following the slave select (SPI_x_SS) assertion.
• Both the SPI master and the SPI slave capture each data bit into their serial shift registers on the

falling edge of the clock (SPI_x_CLK). The received data is latched on the rising edge of the clock
(SPI_x_CLK).

• The output enable signal (SPI_x_OEN) is asserted (active Low) throughout the transfer.

Single Frame Transfer

Figure 13-8 • National Semiconductor MICROWIRE Multiple Frame Transfer
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Figure 13-9 • TI Synchronous Serial Single Frame Transfer
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Multiple Frame Transfer

Texas Instruments Synchronous Serial Error Case Scenarios
When the SPI controller is configured for the TI synchronous serial protocol, while in Slave mode, it
responds to failure events on slave select (SPI_x_SS) and slave clock (SPI_x_CLK) in the following
manner:

• Withdrawal of SPI_x_CLK: In this case the device pauses and will resume on reasserting the
clock.

• Premature pulsing of slave select: If the slave select is pulsed during a data frame transmission, it
will be ignored.

• Disconnection of slave select before a transfer: The transfer is not initiated unless the pulse is
issued.

SPI Data Transfer for Large Flash/EEPROM Devices in 
Motorola SPI Modes

Serial flash and EEPROM devices can be driven using the Motorola SPI modes. The following outlines
the interfaces to the required flash/EEPROM devices and shows how they can be driven using the
Motorola SPI modes. In each of these modes, the SPI controller is configured as a master with the slave
select line hooked to the signal SPICS shown on the waveform. The serial flash/EEPROM device then
acts as the slave.

Devices that Require Data Frame Sizes of up to 32 Bits
Serial flash/EEPROM devices, such as the Atmel 25010/020/040, have a data frame size smaller than 32
bits and can be directly driven from the SPI mode. 

Figure 13-10 • TI Synchronous Serial Multiple Frame Transfer
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Write Operation for Atmel 25010/20/40 Devices

The SPI controller selects the devices using the slave select signal. The data frame size is set to 24 bits.
The SPI is configured with SPO = 0, SPH = 0. The first byte is the instruction. Bit 5 of the instruction is
part of the address (the 9th bit as required by the Atmel part). Bits 8-15 form a byte address. The residual
8 bits correspond to the data to be written.

Read Operation for Atmel 25010/20/40 Devices

For the read operation, the data frame size is set to 24 bits and the SPI controller is configured with SPO
= 0, SPH = 0. Upon completion, the least significant byte of the received data frame corresponds to the
data read.

Note: This first byte contains the op-code that defines the operations to be performed. The op-code also contains
address bit A8 in both the READ and WRITE instructions. This is mandated by the Atmel device.

Figure 13-11 • Write Operation Timing
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Note: This first byte contains the op-code that defines the operations to be performed. The op-code also contains
address bit A8 in both the READ and WRITE instructions. This is mandated by the Atmel device.

Figure 13-12 • Read Operation Timing
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Devices that Require Data Frame Sizes of More than 32 Bits
Serial flash devices, such as the Atmel AT25DF321, which support mode 3 (SPO = 1 and SPH = 1),
require more than 32 bits of frame data in some modes.
To drive these devices, continuous transfers are required from the SPI interface while holding slave
select Low continuously (which is connected to the chip select of the target device). This is accomplished
by using the transmit FIFO from the SPI which, if it is kept not empty, will enforce continuous back-to-
back transfers. The slave select will continue to be held Low (active) in SPI Mode 1 (SPO = 0 and SPH =
1) and Mode 1 (SPO = 1 and SPH = 1) and not pulsed between data frames.
For example, to send 64 bits to the AT25DF321 (8-bit op-code, 24-bit address, 4 data bytes), the data
frame size (TXRXDF_SIZE) can be set to 32 and the data frame count set to 2 (field TXRXDFCOUNT of
CONTROL).

Page Program for Atmel AT25DF321

In this mode, the op-code, address, and data require more than 32 clock periods. To drive this device, the
chip select (CS) can be connected to the slave select signal, the data frame size set to 16, and the FIFO
repeatedly filled until the target flash device is programmed. As long as there is data to be transmitted in
the FIFO, the chip select signal (connected to slave select on the SPI controller) should be asserted Low.

Devices that Do Not Support Mode 1 (SPO = 0 and SPH =1) or 
Mode 3 (SPO = 1 and SPH = 1)
For flash devices which do not support mode 1 (SPO = 0 and SPH = 1) or mode 3 (SPO = 1 and
SPH = 1), it is necessary to use a dedicated GPIO pin to drive the chip select signal.
The device driver would initially assert the chip select through the GPIO, then activate the SPI transfer—
possibly comprising many individual 32-bit data frames—and finally withdraw the GPIO.

Figure 13-13 • Page Program Timing
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Control Bits SPS, SPO, and SPH (A2F060 and A2F500)
These bits configure the SPI clock and select for A2F060 and A2F500, as shown in
Table 13-3. 

Table 13-3 • SPI Clock and Select (A2F060 and A2F500)

Mode SPS1 SPO SPH
Clock in 

Idle
Sample 
Edge

Shift 
Edge

Select 
in Idle Select Between Frames

MOT 0 0 0 Low Rising Falling High Pulse between all frames

0 1 0 High Falling Rising High

0 0 1 Low Falling Rising High Does not pulse between back-to-back frames,
does if transmit FIFO empties

0 1 1 High Rising Falling High Does not pulse between back-to-back frames,
does if transmit FIFO empties

1 0 0 Low Rising Falling High Stays active until all the frames set by frame
counter have been transmitted

1 0 1 High Falling Rising High

1 1 0 Low Falling Rising High

1 1 1 High Rising Falling High

TI 0 0 0 Low Falling Rising Low Normal Operation.
SPICLK only generated with select and data
bits

– – – Low Falling Rising Low Removes SLAVE_SELECT on consecutive
frames (back-to-back) making them look like
big frames

– 1 – Running Falling Rising Low SPI_x_CLK is free running.

NSC 0 0 0 Low Rising Falling High Normal Operation.
SPI_x_CLK only generated with select and
data bits

– – 1 Low Rising Falling High Forces IDLE cycles (SLAVE_SELECT
deactivated) between back-to-back frames

– 1 – Running Rising Falling High SPI_x_CLK is free running.

1 – – Low Rising Falling High After sending the command part of the frame,
subsequent frames are concatenated to
create a single large data frame (master
operation only).

Notes:
1. SPS is the additional control in A2F060 and A2F500.
2. The timing diagrams in Figure 13-2 on page 224 through Figure 13-13 on page 230 apply to all devices.
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SPI Register Interface Summary 
Table 13-4 summarizes each of the registers covered by this document. There are two addresses for
each register; one for each of the SPI controllers in a SmartFusion device.

Table 13-4 • SPI Register Summary

Register Name
Address 
(SPI_0)

Address 
(SPI_1) R/W

Reset 
Value Description

CONTROL 0x40001000 0x40011000 R/W 0x0000102 Control register

TXRXDF_SIZE 0x40001004 0x40011004 R/W 0x04 Transmit and receive data frame size 

STATUS 0x40001008 0x40011008 R 0x2440 Status register

INT_CLEAR 0x4000100C 0x4001100C W 0x00 Interrupt Clear register

RX_DATA 0x40001010 0x40011010 R Unknown Receive Data register

TX_DATA 0x40001014 0x40011014 W 0x00000000 Transmit Data register

CLK_GEN 0x40001018 0x40011018 R/W 0x07 Output Clock Generator (master mode)

SLAVE_SELECT 0x4000101C 0x4001101C R/W 0x00 Specifies slave selected (master mode)

MIS 0x40001020 0x40011020 R 0x00 Masked interrupt status

RIS 0x40001024 0x40011024 R 0x00 Raw interrupt status

The following registers apply to A2F060 and A2F500 only

CONTROL2 0x40001028 0x40011028 R/W 0x00 Control bits for enhanced mode

COMMAND 0x4000102C 0x4001102C R/W 0x00 Command register

PKTSIZE 0x40001030 0x40011030 R/W 0x00 Packet size

Reserved 0x40001034 0x40011034 – 0x00 Reserved. Should not be written.

Reserved 0x40001038 0x40011038 – 0x00 Reserved. Should not be written.

STAT8 0x4000103C 0x4001103C R 0x44 Status register (reduced width)

CTRL0 (CTRL) 0x40001040 0x40011040 R/W 0x02 Aliased control register – read and write
bits 7:0

CTRL1 (CTRL) 0x40001044 0x40011044 R/W 0x01 Aliased control register – read and write
bits 15:8

CTRL2 (CTRL) 0x40001048 0x40011048 R/W 0x00 Aliased control register – read and write
bits 23:16

CTRL3 (CTRL) 0x4000104C 0x4001104C R/W 0x00 Aliased control register – read and write
bits 25:24
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SPI Register Interface Details 
This section describes each of the SPI registers in detail.

SPI Control Register (CONTROL)
Table 13-5 • CONTROL

Bit 
Number Name R/W Reset Value Description

[31:26] Reserved R/W 0 (A2F200 only) 
Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

31 RESET R/W 1 (A2F060 and A2F500) 
0: The logic clocked by the SPI clocks is enabled
1: The logic clocked by the SPI clocks is held in reset

30 OENOFF R/W 0 (A2F060 and A2F500)
0: SPI output enable active as required
1: The core will not assert the SPI output enable. This allows
multiple slaves to be connected to a single master sharing a
single slave select and software protocol implemented that
can enable the slaves transmit data when a certain broadcast
address SPI command is received.

29 BIGFIFO R/W 0 (A2F060 and A2F500)
0: FIFO size is 4 frames
1: FIFO sizes are
Frame Size 

4–8 Bits = 32 frames
9–16 bits = 16 frames
17–32 bits = 8 frames

28 CLKMODE R/W 0 (A2F060 and A2F500)
0: Sets SPI_x_CLK using PCLK / (2**(CLK_GEN + 1)) 

where CLK_GEN = 0 to 15 
1: Sets SPI_x_CLK using PCLK / (2*(CLK_GEN+ 1) 

where CLKRATE = 0 to 255

27 FRAMEURUN R/W 0 (A2F060 and A2F500)
0: Under-runs are generated whenever a read is attempted
from an empty transmit FIFO.
1: Under-run condition will be ignored for the complete frame
if the first data frame read resulted in a potential overflow; that
is, the slave was not ready to transmit any data. If the first
data frame is read from the FIFO and transmitted, an under-
run will be generated if the FIFO becomes empty for any of
the remaining packet frames (while SLAVE_SELECT is
active).
Master operation will never create a transmit FIFO under-run
condition
Revision 3 233



Serial Peripheral Interface (SPI) Controller
26 SPS R/W 0 (A2F060 and A2F500)
Controls SPI signal polarity, etc. Refer to Table 13-3 on
page 231.

25 SPH R/W 0 Clock phase (Table 13-2 on page 223 for A2F200)

24 SPO R/W 0 Clock polarity

[23:8] TXRXDFCOUNT R/W 0x0001 Number of data frames to be sent/received, 1 to 65,535.
This register once set will not change. An internal frame
counter counts frames until it reaches the limit set by this
register.
When this register is written, the internal frame counter is also
reset. When that counter reaches TXRXDFCOUNT, interrupts
are generated and idle cycles inserted on the SPI bus
(SLAVE_SELECT deactivated).
The core will transmit data whenever the transmit FIFO is
loaded. The counter is used to count frames, terminate bursts
and generate interrupts

7 INTTXUNRRUN R/W 0 Interrupt on transmit under-run.
If set to 1, interrupt is not masked and will result in interrupt to
the Cortex-M3 microcontroller. 
If set to 0 interrupt is masked.

6 INTRXOVRFLO R/W 0 Interrupt on receive overflow. 
If set to 1, interrupt is not masked and will result in interrupt to
the Cortex-M3 microcontroller. 
If set to 0 interrupt is masked.

5 INTTXDATA R/W 0 Interrupt on transmit data. 
If set to 1, interrupt is not masked and will result in interrupt to
the Cortex-M3 microcontroller. 
If set to 0, interrupt is masked.

4 INTRXDATA R/W 0 Interrupt on receive data. 
If set to 1, interrupt is not masked and will result in interrupt to
the Cortex-M3 microcontroller. 
If set to 0, interrupt is masked.

[3:2] TRANSFPRTL R/W 0 Transfer protocol
Decode:
0b00 – Motorola SPI
0b01 – TI Synchronous Serial
0b10 – National Semiconductor MICROWIRE
0b11 – Reserved
Note: The transfer protocol cannot be changed while the SPI

is enabled.

Table 13-5 • CONTROL (continued)

Bit 
Number Name R/W Reset Value Description
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Recommended Start-Up Sequence 
Bits in the Control register should be set in the following order for slave operation; this is also
recommended for master operation.

1. Write with RESET =1 and ENABLE = 0 and other bits as required
2. Write with RESET = 0 and ENABLE = 0 and other bits as required
3. Write with RESET = 0 and ENABLE = 1 and other bits as required

This sequence prevents spurious clock pulses clocking the SPI slave logic as the clock source
is and polarity is selected should the SPICLK be in a non-idle state

SPI TxRx Data Frame Register (TXRXDF_SIZE)

1 MODE R/W 1 SPI implementation
0 – Slave
1 – Master (default)

0 ENABLE R/W 0 0: Core will not respond to external signals until this bit is
enabled.  SPISCLKO driven to zero and SPIOEN, SPISS
(slave select) driven inactive.
1: Core is active
Note: All the registers are accessible to the Cortex-M3

microcontroller, even when the core is disabled.

Table 13-5 • CONTROL (continued)

Bit 
Number Name R/W Reset Value Description

Table 13-6 • TXRXDF_SIZE

Bit Number Name R/W Reset Value Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

[5:0] TXRXDFS R/W 0x04 Transmit and receive data size. Maximum value is 32. Number of
bits shifted out and received per frame (count starts from 1).
In National Semiconductor MICROWIRE mode, this is the number
of shifts to be done after the control byte is sent.
Note: This Register must be set before SPI is enabled. Writes to

this register are ignored after SPI is enabled.
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SPI Status Register (STATUS)
Table 13-7 • STATUS

Bit 
Number Name R/W Reset Value Description

[31:15]1 Reserved R/W 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value
of a reserved bit should be preserved across a read-
modify-write operation.

14 ACTIVE R 0 (A2F060 and A2F500 only)
Core is still transmitting or receiving data 

13 SSEL R 0 (A2F060 and A2F500 only)
Current state of SSEL signal 

12 FRAMESTART R 0 (A2F060 and A2F500 only)
Indicates that the next frame in the receive FIFO was
the first received after SSEL went active; i.e., the start of
a packet of frames. 

11 TXFIFOEMPNXT R 0 Transmit FIFO empty on next read

10 TXFIFOEMP R 1 Transmit FIFO empty

9 TXFIFOFULNXT R 0 Transmit FIFO full on next write

8 TXFIFOFUL R 0 Transmit FIFO full

7 RXFIFOEMPNXT R 0 Receive FIFO empty on next read

6 RXFIFOEMP R 1 Receive FIFO empty 

5 RXFIFOFULNXT R 0 Receive FIFO full on next write

4 RXFIFOFUL R 0 Receive FIFO full

3 TXUNDERRUN R 0 No data available for transmission. The channel cannot
read data from the transmit FIFO because the transmit
FIFO is empty. In reality this can only be raised in Slave
mode because the Master will not attempt to transmit
unless there is data in FIFO.

2 RXOVERFLOW R 0 Channel is unable to write to receive FIFO as it is full.
Applies to Master and Slave modes.

1 RXDATRCED R 0 1 means the number of frames specified by
TXRXDFCOUNT (CONTROL register) has been
received and can be read. Applies to Master and Slave
modes.

0 TXDATSENT R 0 1 means the numbers of frames specified by
TXRXDFCOUNT (CONTROL register) have been sent.
Applies to Master and Slave modes.

Notes:
1. For A2F200, the reserved bits are [31:12].
2. Bits [11:4] correspond to FIFO Status.
3. None of these status bits are sticky. That means during the run time the status of these bits reflects the current

status of SPI.
4. To determine the cause of an interrupt, the Masked Interrupt Status register (MIS) needs to read.
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SPI Interrupt Clear Register (INT_CLEAR)

SPI Receive Data Register (RX_DATA)

SPI Transmit Data Register (TX_DATA)

Table 13-8 • INT_CLEAR

Bit Number Name R/W Reset Value Description

[31:6]1 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

5 SSEND W 0 (A2F060 and A2F500 only)
Slave select end 

4 Reserved W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

3 TXCHUNDRUN W 0 Transmit channel under-run

2 RXCHOVRFLW W 0 Receive channel over flow

1 RXRDYCLR W 0 Clears receive ready (rx_rdy)

0 TXDONECLR W 0 Clears transmit done (tx_done)

Notes:
1. For A2F200, the reserved bits are [31:4].
2. A read to this register has no effect. It returns all zeroes.

Table 13-9 • RX_DATA

Bit Number Name R/W Reset Value Description

[31:0] RXDATA R 0 Received data. Reading this clears the register of
the received data.

Table 13-10 • TX_DATA

Bit Number Name R/W Reset Value Description

[31:0] TXDATA W 0 Data to be transmitted. Writing to this clears the
last data transmitted.
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SPI SCLK Generation Register (CLK_GEN)

SPI Slave Select Register (SLAVE_SELECT)

Table 13-11 • CLK_GEN

Bit Number Name R/W Reset Value Description

[31:8]* Reserved R/W 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

[7:0] SCLKOGEN R/W 0x07 Specifies the division of incoming PCLK for generation of
SPI_x_CLK.
(A2F200 only)
SPI_x_CLK = PCLK / (2(SCLKOGEN +1))
where SCLKOGEN = 0 to 15
Note: For A2F200, CLK_GEN[7:4] are reserved bits.
(A2F060 and A2F500 only)
The method used to calculate the PCLK divisor is defined by
CONTROL Register bit 28 (CLKMODE).
CLKMODE = 0:
SPI_x_CLK = PCLK / (2(SCLKOGEN +1))

where SCLKOGEN = 0 to 15
CLKMODE = 1:
SPI_x_CLK = PCLK / (2 x (SCLKOGEN +1))

where SCLKOGEN = 0 to 255

Note: *For A2F200, the reserved bits are [31:4].

Table 13-12 • SLAVE_SELECT

Bit Number Name R/W Reset Value Description

[31:8] Reserved R/W N/A Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

[7:0] SLAVESELECT R/W 0 Specifies the slave selected. Writing 1 to a bit position 
selects the corresponding slave. SLAVESELECT[7:1] are 
available at the FPGA fabric interface, while 
SLAVESELECT[0] is available at the SPI_x_SS[0] pin.*
Note: The slave select output signal is active low.

Note: *Currently for the A2F200 device, SPI_0 can only select four slaves. This means only SPI_0_SS[0],
SPI_0_SS[3:1] outputs are valid.
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SPI Masked Interrupt Status Register (MIS)
These bits indicate the masked interrupt status by ANDing the interrupt enables in the CONTROL
registers with the raw interrupt register. When any of these bits are set, the INTERRUPT output will be
active. The bits are cleared by writing to the Interrupt clear register.

Table 13-13 • MIS

Bit 
Number Name R/W

Reset 
Value Description

[31:6]1 Reserved R/W N/A Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

5 SSENDMSKINT R 0 (A2F060 and A2F500 only)
Masked status of slave select end. 
SSENDMSKINT = SSEND and INTEN_SSEND 2

4 Reserved R 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

3 TXCHUNDMSKINT R 0 Masked status of transmit channel under-run. 
TXCHUNDMSKINT = TXCHUNDR and INTTXUNRRUN 3

2 RXCHOVRFMSKINT R 0 Masked status of receive channel overflow
RXCHOVRFMSKINT = RXCHOVRF and INTRXOVRFLO 3

1 RXRDYMSKINT R 0 Masked status of receive data ready (data received in FIFO)
RXRDYMSKINT = RXRDY and INTRXDATA 3

0 TXDONEMSKINT R 0 Masked status of transmit done (data shifted out)
TXDONEMSKINT = TXDONE and INTTXDATA 3

Notes:
1. For A2F200, the reserved bits are [31:4].
2. MIS[5:4] = RIS[5:4] and CONTROL2[5:4].
3. MIS[3:0] = RIS[3:0] and CONTROL [7,6,4,5].
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SPI Raw Interrupt Status Register (RIS)

SPI Control Bits for Enhanced Mode (CONTROL2)
This register is applicable to A2F060 and A2F500 devices only.

Table 13-14 • RIS

Bit 
Number Name R/W Reset Value Description

[31:6]* Reserved R/W N/A Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

5 SSEND R 0 (A2F060 and A2F500 only)
Indicates that SPI_X_SS[0] has gone inactive.

4 Reserved R 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-
write operation.

3 TXCHUNDR R 0 RAW interrupt status. Reading this returns raw interrupt
status.
Raw status of transmit channel under-run

2 RXCHOVRF R 0 Raw status of receive channel overflow

1 RXRDY R 0 Receive data ready (data received in FIFO)

0 TXDONE R 0 Raw status of transmit done (data shifted out)

Note: For A2F200, the reserved bits are [31:4].

Table 13-15 • CONTROL2 

Bits Name R/W Reset Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

5 INTEN_SSEND R/W 0 0: No effect
1: Enables the interrupt as SLAVE_SELECT goes High. SPI master
and slave modes.

[4:3] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

2 DISFRMCNT R/W 0 0: The internal frame counter is active. When the counter reaches
the programmed limit it will pause the current SPI transfer inserting
idle cycles, and generate the appropriate interrupts.
1: The internal frame counter is NOT active. The core will transmit
data until the transmit FIFO empties. TXRXDFCOUNT (CONTROL
register) should also be programmed to zero.

[1:0] Reserved – 0 Write 00 to these bits. 
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SPI Command Register (COMMAND)
Use of the command register allows multiple operations to be achieved without the possibility of a CPU
interrupt happening.
This register is applicable to A2F060 and A2F500 devices only

Table 13-16 • COMMAND

Bits Name R/W Reset Description

[31:7] Reserved R/W Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

6 TXNOW R/W 0 Writing a 1 will clear the TXBUSY bit in slave mode immediately
rather than waiting for PKTSIZE frames to be available, telling the
master that data is available. 
This is intended for use when less than the programmed PKTSIZE
data frames are being transmitted, removing the requirement to
transmit PKTSIZE frames.
Will stay set until the first data frame is transmitted.

5 AUTOSTALL R/W 0 Writing a 1 will cause the master to delay transmission until the
transmit FIFO contains the number of frames specified by the
PKTSIZE register. This will guarantee that the frames are transmitted
with no idle cycles or time gaps between them.
The bit will be automatically cleared as soon as the core starts
transmitting the frames.

4 CLRFRAMECNT R/W 0 Writing a 1 will clear the internal frame counter, This bit always reads
as zero. 
The counter is also cleared when the core is disabled, or CTRL1 or
CTRL2 are written (the frame count limit is changed).

3 TXFIFORST R/W 0 Writing a 1 will reset the TX FIFO. This bit always reads as zero.

2 RXFIFORST R/W 0 Writing a 1 will reset the RX FIFO. This bit always reads as zero.

1 AUTOEMPTY R/W 0 Writing a 1 will cause the SPI core to automatically discard any
further received data until the number of frames requested in
TXRXDFCOUNT (CONTROL register) have been received, or in
slave mode SELECT_SELECT goes inactive.
This bit will stay set until all the frames are complete or the CPU
clears it.

0 AUTOFILL R/W 0 Writing a 1 will cause the SPI core to automatically fill the transmit
FIFO with zeros to match the number of frames requested in
TXRXDFCOUNT (CONTROL register). Typically the CPU will write
the five bytes to the TXDATA register and then set this bit. The CPU
now simply reads data from the receive FIFO until the complete set of
frames has been read.
This bit will stay set until all the frames are complete or the CPU
clears it.
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SPI Packet Size (PKTSIZE)
This register is applicable to A2F060 and A2F500 only.

Table 13-17 • PKTSIZE

Bits Name R/W Reset Value Description

[31:6] Reserved R/W Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

5:0 PKTSIZE R/W 0 Sets the size of SPI CMD/DATA frame.
242 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
SPI Status8 Register (STAT8)
This register allows important status bits to read as a single 8-bit value, which reduces the overhead of
checking status bits when an 8-bit processor is being used.
This register is applicable to A2F060 and A2F500 only.

Control Register Alias
This directly maps the control register to 4-byte wide registers; this reduces the overhead of setting bits in
the control register when an 8-bit processor is being used.

This register is applicable to A2F060 and A2F500 only.

Table 13-18 • STAT8

Bit Name

Equivalent 
Status 

Register 
Bits Description

[31:8] Reserved Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

7 ACTIVE 14 Core is still transmitting data

6 SSEL 13 Current State of SSEL

5 TXUNDERRUN 3 Transmit FIFO under flowed

4 RXOVFLOW 2 Receive FIFO overflowed

3 TXFULL 8 Transmit FIFO is full, i.e. no space for more data

2 RXEMPTY 6 Receive FIFO is empty (no data available to read

1 DONE 0 and 1 Number of requested frames have been transmitted and received.

0 FIRSTFRAME 12 Next frame in Receive FIFO was first received after
SLAVE_SELECT went active (Command frame).

Note: R/W and Reset Value are the same as the corresponding Control register bits.

Table 13-19 • CTRL

Address Bits Name Description

0x40 7:0 CTRL0 Same as Control register bits [7:0]

0x44 7:0 CTRL1 Same as Control register bits [15:8]
This sets the lower bits of TXRXDFCOUNT (CONTROL register)
and clears the internal frame counter.

0x48 7:0 CTRL2 Same as Control register bits [23:16]
This sets the upper bits of TXRXDFCOUNT (CONTROL register)
and clears the internal frame counter

0x4C 7:0 CTRL3 Same as control register bits [31:24]

Note: R/W and Reset Value are the same as the corresponding Control register bits.
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IOMUXes Associated with SPI_x
IOMUXes 0, 1, 2, 3, and 57 to 63 are used to multiplex SPI_0, GPIO, and fabric interface signals to
MSSIOBUFs. IOMUXes 8, 9, 10, 11, and 70 to 76 are used to multiplex SPI_1, GPIO, and fabric interface
signals to MSSIOBUFs. 

IOMUX Description
The MSS contains multiplexers which are involved in the re-use of some MSS related I/O pads and in
providing a number of options for multiplexing GPIO, peripheral signals, and fabric interface signals to
the I/O pad. IOMUXes are associated with the GPIO block, fabric interface, and all MSS communications
peripherals (UARTS 0 and 1, SPI 0 and 1, I2C 0 and 1, and the Ethernet MAC).
For every reusable MSS I/O pad there is an IOMUX. The IOMUX is intended to provide flexibility in the
allocation of MSS I/O pads, so that if the user is not using a particular interface. the corresponding I/O
pads can be reallocated to another interface. Also, if certain I/O pads are not being used (or are not
present in some devices), the IOMUX allows the signals to be connected within the IOMUX internally.
The IOMUX is composed of four multiplexers—M0, M1, M2, and M3—as shown in the "IOMUX
Functional Description" section on page 366. The register description is contained in the same document
following the IOMUX functional description.

IOMUXes for SPI_x_DI, SPI_x_DO, SPI_x_CLK, and SPI_x_SS[0]
To use the SPI_x_DO, SPI_x_DI, SPI_x_CLK, and SPI_x_SS[0] signals, an IOMUX is used to route the
signal to a MSSIOBUF. This IOMUX is used to share the MSSIOBUF between the SPI_x signal and a
GPIO. If both the GPIO and the SPI_x signal are needed, another IOMUX can be configured to route the
GPIO to the FPGA fabric interface. The GPIN source select register must be configured appropriately as
well. For more information about the GPIN source select register, refer to the "General Purpose I/O Block
(GPIO)" section on page 319. The IOMUXes can be configured using the MSS configurator. The GPIO
signal can be routed to an FPGA I/O using the SmartDesign tool. 
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Figure 13-14 shows the IOMUX topology for SPI_0_DI, which applies to SPI_1_DI, SPI_x_DO,
SPI_x_CLK, and SPI_x_SS[0] as well.

In this case, IOMUX_1 is configured to connect IN_A to MSSIOBUF IO_I port. IOMUX_41 can be
configured to route the GPIO_16 signals to the fabric interface. The M2F[25], F2M[25], and F2M_OE[25]
can then be routed to a FPGAIOBUF using the SmartDesign tool. Similar configuration applies to
SPI_1_DI, SPI_x_DO, SPI_x_CLK, and SPI_x_SS[0] as well.
Table 13-20 shows the associated GPIO, IOMUX, and fabric interface signals for these signals.

Figure 13-14 • SPI Signal Interaction with GPIO and Fabric

Table 13-20 • SPI Signal GPIO and Fabric Mapping

SPI_x_Signal MSS GPIO Fabric Interface IOMUX

SPI_0_SDO 16 25 0, 41

SPI_0_SDI 17 26 1, 42

SPI_0_CLK 18 27 2, 43

SPI_0_SS[0] 19 28 3, 44

SPI_1_SDO 24 33 8, 49

SPI_1_SDI 25 34 9, 50

SPI_1_CLK 26 35 10, 51

SPI_1_SS[0] 27 36 11, 52

I/O

IO_I

IO_O

IO_OE

IN_A

OE_A
OUT_A

IN_B

OE_B
OUT_B

A

B

SPI_0_DI

SPI_0
IOMUX_1

FPGAIOBUF_X

FPGA Fabric

M2F[25] F2M[25] F2M_OE[25]

GND

I/O

IO_I

IO_O

IO_OE

MSSIOBUF_X

GPI[16]

GPIO_16

GPOE[16]
GPO[16]

GPIN_16_SRC

A

B

IN_A
OUT_A

OE_A
IN_B

OUT_B
OE_B

IOMUX_41

X Not Connected to I/O pad
X Not Connected to I/O pad
X Not Connected to I/O pad

GND
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IOMUXes for Extra Slave Select Signals SPI_x_SS[7:1]
To use these SPI_x signals, you must route them to an FPGA I/O through an IOMUX. The MSS
configurator in the SmartDesign tool is used to route the SPI_x signal to the FPGA fabric interface
(through an IOMUX). Routing the signal from the FPGA fabric interface to a FPGA I/O is performed
separately using the SmartDesign tool. Figure 13-15 shows the IOMUX topology for SPI_0_SS[1].

For SPI_0_SS[1], IOMUX_57 is configured using the IOMUX_57_CR register to connect OUT_A to
IN_B, which connects SPI_0_SS[1] to M2F[41] in the fabric. The M2F[41] signal can then be connected
to a FPGAIOBUF using the SmartDesign tool. Similar configuration applies to SPI_1_SS[1],
SPI_x_SS[2], SPI_x_SS[3], SPI_x_SS[4], SPI_x_SS[5], SPI_x_SS[6], and SPI_x_SS[7]. Table 13-21
shows the associated GPIO, IOMUX, and fabric interface signals for these signals.

Figure 13-15 • SPI_x_SS[7:1] Interaction with GPIO and Fabric

Table 13-21 •  SPI Extra Signal GPIO and Fabric Mapping

SPI_x_Signal Fabric Interface Signal IOMUX

SPI_0_SS[1] M2F_41 57

SPI_0_SS[2] M2F_42 58

SPI_0_SS[3] M2F_43 59

SPI_1_SS[1] M2F_54 70

SPI_1_SS[2] M2F_55 71

SPI_1_SS[3] M2F_56 72

SPI_1_SS[4] M2F_57 73

SPI_1_SS[5] M2F_58 74

SPI_1_SS[6] M2F_59 75

SPI_1_SS[7] M2F_60 76

I/O

IO_I

IO_I

IO_OE

IN_A

OE_A

OUT_A

IN_B

OE_B

OUT_B

A

B

SPI_0_SS[1]

SPI_0
IOMUX_57

FPGAIOBUF_X

FPGA Fabric

M2F[41] F2M[41] F2M_OE[41]

VDD X Not Connected to I/O Pad
X Not Connected to I/O pad
X Not Connected to I/O Pad
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Table 13-22 through Table 13-39 on page 252 give descriptions for all IOMUXes associated with SPI_x
signals.

IOMUX 0

IOMUX 1

IOMUX 2

Table 13-22 • IOMUX 0

Pad Name
Pad 

Ports IOMUX_0_CR

IOMUX 0 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_DO/GPIO_16 I GPI_16

O SPI_0_DO GPO_16

OE SPI_0_DEN GPOE_16

PU IOMUX_0_PU

PD IOMUX_0_PD

ST IOMUX_0_ST

Table 13-23 • IOMUX 1

Pad Name
Pad 

Ports IOMUX_1_CR

IOMUX 1 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_DI/GPIO_17 I SPI_0_DI GPI_17

O GND GPO_17

OE GND GPOE_17

PU IOMUX_1_PU

PD IOMUX_1_PD

ST IOMUX_1_ST

Table 13-24 • IOMUX 2

Pad Name
Pad 

Ports IOMUX_2_CR

IOMUX 2 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_CLK/GPIO_18 I SPI_0_CLKI GPI_18

O SPI_0_CLKO GPO_18

OE SPI_0_MODE GPOE_18

PU IOMUX_2_PU

PD IOMUX_2_PD

ST IOMUX_2_ST
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IOMUX 3

IOMUX 8

IOMUX 9

Table 13-25 • IOMUX 3

Pad Name
Pad 

Ports IOMUX_3_CR

IOMUX 3 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_SS[0]/GPIO_19 I SPI_0_SSI GPI_19

O SPI_0_SSO GPO_19

OE SPI_0_MODE GPOE_19

PU IOMUX_3_PU

PD IOMUX_3_PD

ST IOMUX_3_ST

Table 13-26 • IOMUX 8

Pad Name
Pad 

Ports IOMUX_8_CR

IOMUX 8 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_DO/GPIO_24 I GPI_24

O SPI_1_DO GPO_24

OE SPI_1_DEN GPOE_24

PU IOMUX_8_PU

PD IOMUX_8_PD

ST IOMUX_8_ST

Table 13-27 • IOMUX 9

Pad Name
Pad 

Ports IOMUX_9_CR

IOMUX 9 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_DI/GPIO_25 I SPI_1_DI GPI_25

O GND GPO_25

OE GND GPOE_25

PU IOMUX_9_PU

PD IOMUX_9_PD

ST IOMUX_9_ST
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IOMUX 10

IOMUX 11

IOMUX 57

Table 13-28 • IOMUX 10

Pad Name
Pad 

Ports IOMUX_10_CR

IOMUX 10 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_CLK/GPIO_26 I SPI_1_CLKI GPI_26

O SPI_1_CLKO GPO_26

OE SPI_1_MODE GPOE_26

PU IOMUX_10_PU

PD IOMUX_10_PD

ST IOMUX_10_ST

Table 13-29 • IOMUX 11

Pad Name
Pad 

Ports IOMUX_11_CR

IOMUX 11 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[0]/GPIO_27 I SPI_1_SSI GPI_27

O SPI_1_SSO GPO_27

OE SPI_1_MODE GPOE_27

PU IOMUX_11_PU

PD IOMUX_11_PD

ST IOMUX_11_ST

Table 13-30 • IOMUX 57

Pad Name
Pad 

Ports IOMUX_57_CR

IOMUX 57 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_SS[1] I M2F[41]

O SPI_0_SS[1] F2M[41]

OE VDD F2M_OE[41]

PU IOMUX_57_PU

PD IOMUX_57_PD

ST IOMUX_57_ST
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IOMUX 58

IOMUX 59

IOMUX 70

Table 13-31 • IOMUX 58

Pad Name
Pad 

Ports IOMUX_58_CR

IOMUX 58 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_SS[2] I M2F[42]

O SPI_0_SS[2] F2M[42]

OE VDD F2M_OE[42]

PU IOMUX_58_PU

PD IOMUX_58_PD

ST IOMUX_58_ST

Table 13-32 • IOMUX 59

Pad Name
Pad 

Ports IOMUX_59_CR

IOMUX 59 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_SS[3] I M2F[43]

O SPI_0_SS[3] F2M[43]

OE VDD F2M_OE[43]

PU IOMUX_59_PU

PD IOMUX_59_PD

ST IOMUX_59_ST

Table 13-33 • IOMUX 70

Pad Name
Pad 

Ports IOMUX_70_CR

IOMUX 70 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[1] I M2F[54]

O SPI_1_SS[1] F2M[54]

OE VDD F2M_OE[54]

PU IOMUX_70_PU

PD IOMUX_70_PD

ST IOMUX_70_ST
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IOMUX 71

IOMUX 72

IOMUX 73

Table 13-34 • IOMUX 71

Pad Name
Pad 

Ports IOMUX_71_CR

IOMUX 71 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[2] I M2F[55]

O SPI_1_SS[2] F2M[55]

OE VDD F2M_OE[55]

PU IOMUX_71_PU

PD IOMUX_71_PD

ST IOMUX_71_ST

Table 13-35 • IOMUX 72

Pad Name
Pad 

Ports IOMUX_72_CR

IOMUX 72 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[3] I M2F[56]

O SPI_1_SS[3] F2M[56]

OE VDD F2M_OE[56]

PU IOMUX_72_PU

PD IOMUX_72_PD

ST IOMUX_72_ST

Table 13-36 • IOMUX 73

Pad Name
Pad 

Ports IOMUX_73_CR

IOMUX 73 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[4] I M2F[57]

O SPI_1_SS[4] F2M[57]

OE VDD F2M_OE[57]

PU IOMUX_73_PU

PD IOMUX_73_PD

ST IOMUX_73_ST
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IOMUX 74

IOMUX 75

IOMUX 76

Table 13-37 • IOMUX 74

Pad Name
Pad 

Ports IOMUX_74_CR

IOMUX 74 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[5] I M2F[58]

O SPI_1_SS[5] F2M[58]

OE VDD F2M_OE[58]

PU IOMUX_74_PU

PD IOMUX_74_PD

ST IOMUX_74_ST

Table 13-38 • IOMUX 75

Pad Name
Pad 

Ports IOMUX_75_CR

IOMUX 75 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[6] I M2F[59]

O SPI_1_SS[6] F2M[59]

OE VDD F2M_OE[59]

PU IOMUX_75_PU

PD IOMUX_75_PD

ST IOMUX_75_ST

Table 13-39 • IOMUX 76

Pad Name
Pad 

Ports IOMUX_78_CR

IOMUX 76 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[7] I M2F[60]

O SPI_1_SS[7] F2M[60]

OE VDD F2M_OE[60]

PU IOMUX_76_PU

PD IOMUX_76_PD

ST IOMUX_76_ST
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14 – Inter-Integrated Circuit (I2C) Peripherals

SmartFusion devices contain two identical master/slave I2C peripherals that perform serial-to-parallel
conversion on data originating from serial devices, and perform parallel-to-serial conversion on data from
the ARM Cortex-M3 processor to these devices. The Cortex-M3 embedded processor controls the I2C
peripherals via the APB interface. 
Throughout this chapter, a lower case x in register and signal descriptions is used as a place holder for 0
or 1, indicating I2C_0 (on the APB_0 bus) or I2C_1 (on the APB_1 bus).
The I2C peripherals support I2C, SMBus, and PMBus data transfers, which conform to the Philips Inter-
Integrated Circuit (I2C) v2.1 specification and support the SMBus v2.0 and PMBus v1.1 specifications.
The I2C peripherals use a 7-bit addressing format and run up to 400 Kbps data rates nominally. Faster
rates can be achieved depending on the external load. The I2C peripherals include the following features:

• Data transfer in multiples of bytes
• Multi-master collision detection and arbitration
• Own slave address and general call address detection
• SMBus timeout and real-time idle condition counters
• Optional SMBus signals, I2C_x_SMBSUS_N and I2C_x_SMBALERT_N, controlled via APB

interface

Block Diagram 
Figure 14-1 shows the block diagram for the I2C peripherals.

Figure 14-1 • I2C Block Diagram
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Functional Description
The Cortex-M3 processor accesses the I2C peripherals registers via the advanced peripheral bus (APB)
interface. The APB registers are defined in the "I2C_x Register Map" on page 259. 
Input signals are synchronized with the internal clock, PCLK0 for I2C_0 and PCLK1 for I2C_1. Glitches
shorter than the glitch register length are filtered out. The filter length is configurable from 3 to 6 clock
periods. Note that the I2C Fast Mode (400 kbps) specification states that glitches 50 ns or less should be
filtered out of the incoming clock and data lines. Refer to the "GLITCHREG Register" section on
page 272 for more details.
The address comparator checks the received 7-bit slave address with its own slave address. It also
compares the first received 8-bit byte with the general call address (0x00). If a match is found, the
STATUS register is updated and an interrupt is requested.
The I2C peripherals can operate in the following four modes:

1. Master Transmitter mode: Serial data transmitted via SDA; serial clock transmitted via SCL.
2. Master Receiver mode: Serial data received via SDA; serial clock transmitted via SCL.
3. Slave Receiver mode: Serial data and the serial clock received via SDA and SCL.
4. Slave Transmitter mode: Serial data transmitted via SDA; serial clock received via SCL.

The programmable clock pulse generator provides the serial bus clock pulses when the I2C peripheral is
in a master mode. The clock generator is switched off when the I2C peripheral is in a slave mode. Refer
to the "Clocks" section on page 256 for details about the baud rate clock (BCLK). 

Slave Mode
After setting the ENS1 bit in the CTRL register, the I2C peripheral is in the "not addressed slave mode,"
which means the I2C peripheral looks for its own slave address and the general call address. If one of
these addresses is detected, the peripheral switches to addressed slave mode and an interrupt is
requested. Then the peripheral can operate as a slave transmitter or a slave receiver. 

Transfer Example
• Cortex-M3 processor sets ENS1 and AA bits.
• I2C peripheral receives own address and 0.
• I2C peripheral generates interrupt request; STATUS register = 0x60 (Table 14-8 on page 265).
• Cortex-M3 processor prepares for receiving data and then clears the SI bit.
• I2C peripheral receives next data byte and then generates interrupt request. The STATUS

register contains a value of 0x80 or 0x88, depending on the AA bit (Table 14-8 on page 265).
• Transfer is continued according to Table 14-8 on page 265.

Master Mode
When the Cortex-M3 processor wishes to become the bus master, the I2C peripheral waits until the serial
bus is free. When the serial bus is free, the peripheral generates a start condition, sends the slave
address and transfers the direction bit. The peripheral may operate as a master transmitter or as a
master receiver depending on the transfer direction bit. 

Transfer Example 
• Cortex-M3 processor sets ENS1 and STA bits.
• I2C peripheral sends START condition and then generates interrupt request. STATUS

register = 0x80 (Table 14-6 on page 261).
• Cortex-M3 processor writes the DATA register (7-bit slave address and 0) and then clears SI bit.
• I2C peripheral sends DATA register contents and then generates interrupt request. The STATUS

register contains 0x18 or 0x20 value depending on received ACK bit. (Table 14-6 on page 261).
• Transfer is continued according to Table 14-6 on page 261.

While in a master mode, the arbitration logic checks that every transmitted logic 1 actually appears as a
logic 1 on the bus. While in Master Transmitter mode, if another device on the bus overrules a logic 1 and
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pulls the data line low, arbitration is lost and the I2C peripheral immediately changes from Master
Transmitter mode to Slave Receiver mode. The synchronization logic synchronizes the serial clock
generator block with the transmitted clock pulses coming from another master device. The arbitration
and synchronization logic also utilizes timeout requirements set forth in the SMBus Specification Version
2.0. 
Figure 14-2 depicts a PMBus example using the Cortex-M3 processor, I2C, and MSS GPIO. PMBus
protocols are run through the serial bus, and the additional PMBus control signal is routed through the
MSS GPIO. The firmware to control the PMBus control signals must be written by the user. SMBus
devices may also be linked to the same bus as shown.

Clockstretching
The I2C peripheral supports the clock stretching feature as defined in Philips I2C v2.1 Specifications. This
is to address situations where an I2C slave is not able to meet the clock speed provide by the I2C master
and needs to slow down slightly. An I2C slave is allowed to hold down the clock if it needs to reduce the
bus speed. The I2C master reads back the clock signal after releasing it to a High state and waits until the
line has actually gone High. 
Clockstretching sounds a bit odd but is a common practice. However, the total bandwidth of the shared
bus might be significantly decreased. So, especially for I2C buses shared by multiple devices, it is
important to estimate the impacts of clockstretching. Do not make the slowest I2C device dominate your
bus performance.
Note: When an I2C peripheral is used in SMBus or IPMI modes, there are built-in timeout counters that

limit the amount of time the clock can be stretched by a slave. For the SMBus protocol, the clock
stretching limit is 35 ms (there is a minimum limit of 10 KHz on the SMBus clock). The SMBus
protocol assumes that if something takes too long, there is a problem on the bus and that all
devices must reset in order to clear this mode. Similarly, for IPMI there is a 3 ms SCL low timeout.
Thus in these modes, slave devices are not allowed to hold the clock Low for too long.

Figure 14-2 • I2C Application Example
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Inter-Integrated Circuit (I2C) Peripherals
System Dependencies

Clocks
The I2C_0 and I2C_1 peripherals are clocked by PCLK0 on APB Bus 0 and PCLK1 on APB Bus 1,
respectively.  PLCLK0 and PLCK1 are free running versions of FCLK (the main clock driving the entire
MSS) which are derived from the MSS_CCC. Refer to the "PLLs, Clock Conditioning Circuitry, and On-
Chip Crystal Oscillators" section on page 109 for details.

Baud Rate Clock (BCLK)
The baud rate clock (BCLK) is a pulse-for-transmission speed control signal and is internally
synchronized with the clock input. BCLK may be used to set the serial clock frequency from a clock
sourced within the FPGA fabric when the CR[2:0] bits in the CTRL register are set to 0b111. Otherwise,
PCLK0 or PCLK1 is used to determine the serial clock frequency. The actual non-stretched serial bus
clock frequency can be calculated based on the setting in the CR[2:0] fields of the CTRL register and the
frequencies of PCLK0 or PCLK1 and BCLK. Refer to the "CTRL Register" section on page 260 for the bit
settings.

Resets
The I2C peripherals reset to zero on power-up and are held in reset until the user enables them. The user
has the option under software control to reset the I2C peripherals by writing to bit 11 or bit 12 in the
System Register, SOFT_RST_CR, located at address 0xE0042030 in the memory map. The soft resets
are encoded in Table 14-1.

At power-up, the reset signals are asserted 1. This keeps the I2C peripherals in a reset state. If the user
sets this bit to 0, the I2C peripheral is allowed to become active. If I2C_x_SR is 0, the I2C_x peripheral
could still be held in reset by other system reset sources. See the "Reset Controller" section on page 143
for more details.

Table 14-1 • Soft Reset Bit Definitions for the I2C peripherals

Bit Number Name R/W Reset Value Description

 11 I2C_0_SR R/W 0x1 Controls reset input to I2C_0
 0 – Release I2C_0 from reset
 1 – Keep I2C_0 in reset (reset value)

12 I2C_1_SR R/W 0x1 Controls reset input to I2C_1
 0 – Release I2C_1 from reset
 1 – Keep I2C_1 in reset (reset value)
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SMBus Clock Low Reset
If the SCL clock line is held low by a master that has initiated a bus reset with the SMBUS register, the
following sequence should occur. Refer to Figure 14-3.
SMBus Bus Reset Sequence: 

• The master device sets the SMBUS RESET bit, forcing the SCL clock line low.
• The master device enters the reset state, D0, and an interrupt is generated after 35 ms.
• A slave device will enter the reset state, D8, after 25 ms and an interrupt will be generated. 
• Once the interrupt is asserted, the APB controller of the slave device needs to clear the interrupt

within 10 ms per the SMBus Specification v.2.0, and the slave device enters the idle state, F8. 
• After 35 ms, the master device’s interrupt will be asserted, and the APB controller of the master

device needs to clear the interrupt, forcing the master device into the idle state, F8.

Interrupts
There are three interrupt signals from each I2C peripheral. The I2C_0_INT, I2C_0_SMBALERT, and
I2C_0_SMBSUS signals are generated by I2C_0 and are mapped to IRQ 14, IRQ 15, and IRQ 16 in the
Cortex-M3 NVIC controller. The I2C_1_INT, I2C_1_SMBALERT, and I2C_1_SMBSUS signals are
generated by I2C_1 and are mapped to IRQ 17, IRQ 18, and IRQ 19 in the Cortex-M3 NVIC controller.
All interrupt enable bits within the NVIC are located at address 0xE000E100; IRQ 14 through IRQ 19
correspond to bit locations 14 through 19, respectively. The user must also enable SMBus interrupts
(I2C_x_SMBALERT and I2C_x_SMBSUS) in the I2C peripheral by setting the appropriate bits in the
SMBUS register. The user must clear the appropriate bit in the SMBus Register in the respective
interrupt service routine to prevent a reassertion of the interrupt. 
The I2C_x_INT, I2C_x_SMBALERT, and I2C_x_SMBSUS I2C interrupt signals can be monitored by
FPGA logic via the fabric interface interrupt controller (FIIC). These six signals (three for each I2C) are
combined with other interrupt sources and connected to the MSSINT[0] bit. One exception while in non-
ACE mode is that the I2C_1_INT interrupt signal is connected to MSSINT[5] bit. Refer to the "Fabric
Interface and IOMUX" section on page 343 for more details.

Figure 14-3 • SMBus Bus Reset Sequence
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Fabric Interface Signals Associated with I2C_0 and I2C_1 
Some I2C signals are connected directly to the fabric interface so they can be routed to FPGA logic or
FPGA I/Os. Table 14-2 lists the I2C signals available on the fabric interface. Refer to the "Fabric Interface
and IOMUX" section on page 343 for more information.

Table 14-2 •  I2C Fabric Interface Signals

I2C_0 and I2C_1 Signals

Name 
Input to / Output 

from FPGA Fabric Function

I2C0SMBSUSNO Input Output suspend mode signal; used if I2C is the master/host. 
Note: Not a wired-AND signal.

I2C0SMBALERTNO Input Output wired-AND interrupt signal; used in slave/device mode if the I2C
wants to force communication with a host.

I2C0SMBSUSNI Output Input suspend mode signal; used if I2C is slave/device.
Note: Not a wired-AND signal.

I2C0SMBALERTNI Output Input wired-AND interrupt signal; used in master/host mode to monitor
whether slave/devices want to force communication with the host.

I2C0BCLK0 Output Pulse for SCL speed control. Used only if the configuration bits CR[2:0]
= 111; otherwise various divisions of PCLK are used.

I2C1SMBSUSNO Input Output suspend mode signal; used if I2C is the master/host. 
Note: Not a wired-AND signal.

I2C1SMBALERTNO Input Output wired-AND interrupt signal; used in slave/device mode if the I2C
wants to force communication with a host.

I2C1SMBSUSNI Output Input suspend mode signal; used if I2C is slave/device. 
Note: Not a wired-AND signal.

I2C1SMBALERTNI Output Input wired-AND interrupt signal; used in master/host mode to monitor
if slave/devices want to force communication with the host.

I2C1BCLK Output Pulse for SCL speed control. Used only if the configuration bits cr[2:0] =
111; otherwise various divisions of PCLK are used.
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I2C_x Register Map 
The I2C_0 base address resides at 0x40002000 and extends to address 0x40002FFF in the Cortex-M3
memory map. The I2C_1 base address resides at 0x40012000 and extends to address 0x40012FFF in
the Cortex-M3 memory map.

Table 14-3 • I2C_x Register Definitions

Register 
Name

I2C_0 
Address

I2C_1 
Address R/W Reset Value Description

CTRL 0x40002000 0x40012000 R/W 0 Used to configure the I2C peripheral.

STATUS 0x40002004 0x40012004 R 0xF8 Read-only value which indicates the current
state of the I2C peripheral

DATA 0x40002008 0x40012008 R/W 0 Read/write data to/from the serial interface

ADDR 0x4000200C 0x4001200C R/W 0 Contains the primary programmable address of
the I2C peripheral

SMBUS 0x40002010 0x40012010 R/W 0b01X1X000 Configuration register for SMBus timeout reset
condition and for the optional SMBus signals
SMBALERT_N and SMBSUS_N

FREQ 0x40002014 0x40012014 R/W 0x08 Necessary for configuring real-time timeout
logic. Can be set to the PCLK frequency for 25
ms SMBus timeouts, or may be changed to
increase/decrease the timeout value.

GLITCHREG 0x40002018 0x40012018 R/W 0x03 Number of registers in the glitch filter. Can be
set to value from 3 to 6. Correct value to meet
I2C fast mode 50 ns spike suppression will
depend on the PCLK frequency.
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CTRL Register 
Table 14-4 • CTRL

Bit 
Number Name R/W

Reset 
Value Description

7 CR2 R/W 0 Clock rate bit 2; refer to bit 0.

6 ENS1 R/W 0 Enable bit. When ENS1 = 0, the sda and scl outputs are in a high impedance
and sda and scl input signals are ignored. When ENS1 = 1, the I2C is enabled. 

5 STA R/W 0 The START flag. When STA = 1, the I2C checks the status of the serial bus
and generates a START condition if the bus is free. 

4 STO R/W 0 The STOP flag. When STO = 1 and the I2C is in a master mode, a STOP
condition is transmitted to the serial bus. 

3 SI R/W 0 The Serial Interrupt flag. The SI flag is set by the I2C whenever there is a
serviceable change in the STATUS register. After the register has been
updated, the SI bit must be cleared by software. 
Note: The SI bit is directly readable via the APB INTERRUPT signal.

2 AA R/W 0 The Assert Acknowledge flag.
When AA = 1, an acknowledge will be returned when: 
• The own slave address has been received 
• The general call address has been received while the gc bit in the Address

register is set. 
• A data byte has been received while the I2C is in the master receiver

mode.
• A data byte has been received while the I2C is in the slave receiver mode.
When AA = 0, a not acknowledge will be returned when: 
• A data byte has been received while the I2C is in the master receiver

mode.
• A data byte has been received while I2C is in the slave receiver mode.

1 CR1 R/W 0 Serial clock rate bit 1. Refer to bit 0.

0 CR0 R/W 0 Serial clock rate bit 0. Clock rate is defined as follows:
CR2 CR1 CR0 SCL Frequency
0 0 0 PCLK frequency/256
0 0 1 PCLK frequency/224
0 1 0 PCLK frequency/192
0 1 1 PCLK frequency/160
1 0 0 PCLK frequency/960
1 0 1 PCLK frequency/120
1 1 0 PCLK frequency/60 
1 1 1 BCLK frequency/8 

Note: BCLK is synchronized to PCLK and hence must be PCLKFREQ/2 or
less.
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STATUS Register

STATUS Register – Master Transmitter Mode

Table 14-5 • STATUS

Bit 
Number Name R/W

Reset 
Value Description

7:0 STATUS register R 0xF8 The STATUS register is read-only. The status values depend on the
mode of operation and are listed in Table 14-6 through Table 14-10 on
page 269. Whenever there is a change of state, INTERRUPT is
requested. After updating any registers, the APB interface control must
clear the INTERRUPT by clearing the SI bit of the CTRL register.

Table 14-6 • STATUS Register – Master Transmitter Mode 

Status 
Code Status

DATA Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

0x08 A START condition has
been transmitted.

Load SLA+W X 0 0 X SLA+W will be transmitted; ACK will be
received.

0x10 A repeated START
condition has been
transmitted.

Load SLA+W X 0 0 X SLA+W will be transmitted; ACK will be
received.

or Load SLA+R X 0 0 X SLA+W will be transmitted; Core will be
switched to MST/REC mode. 

0x18 SLA+W has been
transmitted; ACK has
been received.

Load data byte 0 0 0 X Data byte will be transmitted; ACK will be
received. 

or no action 1 0 0 X Repeated START will be transmitted. 

or no action 0 1 0 X STOP condition will be transmitted; STO
flag will be reset. 

or no action 1 1 0 X STOP condition followed by a START
condition will be transmitted; STO flag will
be reset.

0x20 SLA+W has been
transmitted; not ACK
has been received.

Load data byte 0 0 0 X Data byte will be transmitted; ACK will be
received. 

or no action 1 0 0 X Repeated START will be transmitted. 

or no action 0 1 0 X STOP condition will be transmitted; STO
flag will be reset. 

or no action 1 1 0 X STOP condition followed by a START
condition will be transmitted; STO flag will
be reset. 

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter 
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
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0x28 Data byte in DATA
register has been
transmitted; ACK has
been received.

Load data byte 0 0 0 X Data byte will be transmitted; ACK bit will
be received. 

or no action 1 0 0 X Repeated START will be transmitted.

or no action 0 1 0 X STOP condition will be transmitted; STO
flag will be reset. 

or no action 1 1 0 X STOP condition followed by a START
condition will be transmitted; STO flag will
be reset. 

0x30 Data byte in DATA
register has been
transmitted; NACK has
been received. 

Data byte 0 0 0 X Data byte will be transmitted; ACK will be
received.

or no action 1 0 0 X Repeated START will be transmitted.

or no action 0 1 0 X STOP condition will be transmitted; STO
flag will be reset.

or no action 1 1 0 X STOP condition followed by a START
condition will be transmitted; STO flag will
be reset.

0x38 Arbitration lost in
SLA+R/W or data bytes.

No action 0 0 0 X The bus will be released; not-addressed
slave mode will be entered.

or no action 1 0 0 X A START condition will be transmitted
when the bus becomes free.

0xD0 SMBus Master Reset
has been activated.

No Action X X X X Wait 35 ms for interrupt to be set, clear
interrupt, and proceed to F8H state.

Table 14-6 • STATUS Register – Master Transmitter Mode  (continued)

Status 
Code Status

DATA Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter 
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
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STATUS Register – Master Receiver Mode
Table 14-7 •  STATUS Register – Master Receiver Mode 

Status 
Code Status

DATA Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

0x08 A START condition has
been transmitted. 

Load SLA+R X 0 0 X SLA+R will be transmitted; ACK will be
received. 

0x10 A repeated START 
condition has been 
transmitted. 

Load SLA+R X 0 0 X SLA+R will be transmitted; ACK will be
received.

or Load SLA+W X 0 0 X SLA+W will be transmitted; F2DSS_I2C
will be switched to MST/TRX mode.

0x38 Arbitration lost in not 
ACK bit. 

No action 0 0 0 X The bus will be released; F2DSS_I2C will
enter slave mode.

or no action 1 0 0 X A start condition will be transmitted when
the bus becomes free. 

0x40 SLA+R has been 
transmitted; ACK has 
been received. 

No action 0 0 0 0 Data byte will be received; not ACK will be
returned.

or no action 0 0 0 1 Data byte will be received; ACK will be
returned. 

0x48 SLA+R has been 
transmitted; not ACK 
has been received.

No action 1 0 0 X Repeated START condition will be
transmitted. 

or no action 0 1 0 X STOP condition will be transmitted; STO
flag will be reset.

or no action 1 1 0 X STOP condition followed by a START
condition will be transmitted; STO flag will
be reset. 

0x50 Data byte has been
received; ACK has
been returned. 

Read data byte 0 0 0 0 Data byte will be received; not ACK will be
returned.

or read data byte 0 0 0 1 Data byte will be received; ACK will be
returned. 

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter 
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
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0x58 Data byte has been
received; not ACK has
been returned.

Read data byte 1 0 0 X Repeated START condition will be
transmitted. 

or read data byte 0 1 0 X STOP condition will be transmitted; STO
flag will be reset.

or read data byte 1 1 0 X STOP condition followed by a START
condition will be transmitted; STO flag will
be reset.

0xD0 SMBus Master Reset
has been activated.

No Action X X 0 X Wait 35 ms for interrupt to be set, clear
interrupt, and proceed to F8H state.

Table 14-7 •  STATUS Register – Master Receiver Mode  (continued)

Status 
Code Status

DATA Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter 
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
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STATUS Register – Slave Receiver Mode
Table 14-8 • STATUS Register – Slave Receiver Mode 

Status 
Code Status

DATA Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

0x60 Own SLA+W has 
been received; ACK 
has been returned. 

No action X 0 0 0 Data byte will be received and not ACK will
be returned.

or no action X 0 0 1 Data byte will be received and ACK will be
returned. 

0x68 Arbitration lost in 
SLA+R/W as 
master; own 
SLA+W has been 
received; ACK 
returned. 

No action X 0 0 0 Data byte will be received and not ACK will
be returned.

or no action X 0 0 1 Data byte will be received and ACK will be
returned. 

0x70 General call 
address (00H) has 
been received; ACK 
has been returned.

No action X 0 0 0 Data byte will be received and not ACK will
be returned.

or no action X 0 0 1 Data byte will be received and ACK will be
returned. 

0x78 Arbitration lost in 
SLA+R/W as 
master; general call 
address has been 
received; ACK 
returned. 

No action X 0 0 0 Data byte will be received and not ACK will
be returned. 

or no action X 0 0 1 Data byte will be received and ACK will be
returned.

0x80 Previously
addressed with own
SLV address; DATA
has been received;
ACK returned. 

Read data byte X 0 0 0 Data byte will be received and not ACK will
be returned. 

or read data byte X 0 0 1 Data byte will be received and ACK will be
returned. 

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
Revision 3 265



Inter-Integrated Circuit (I2C) Peripherals
0x88 Previously
addressed with own
SLA; DATA byte
has been received;
not ACK returned.

Read data byte 0 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address. 

or read data byte 0 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address will be
recognized.

or read data byte 1 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address; START condition will be
transmitted when the bus becomes free.

or read data byte 1 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes free.

0x90 Previously
addressed with
general call
address; DATA has
been received; ACK
returned.

Read data byte X 0 0 0 Data byte will be received and not ACK will
be returned.

or read data byte X 0 0 1 Data byte will be received and ACK will be
returned.

0x98 Previously
addressed with
general call
address; DATA has
been received;
NACK returned.

Read data byte 0 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address.

or read data byte 0 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address will be
recognized.

or read data byte 1 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address; START condition will be
transmitted when the bus becomes free.

or read data byte 1 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes free.

Table 14-8 • STATUS Register – Slave Receiver Mode  (continued)

Status 
Code Status

DATA Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
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0xA0 A STOP condition
or repeated START
condition has been
received while still
addressed as
SLV/REC or
SLV/TRX. 

No action 0 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address.

or no action 0 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address will be
recognized.

or no action 1 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address; START condition will be
transmitted when the bus becomes free.

or no action 1 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes free. 

0xD8 25 ms SCL low time
has been reached;
device must be
reset

no action X X 0 X Slave must proceed to reset state by
clearing the interrupt within 10ms, according
to SMBus Specification 2.0.

Table 14-8 • STATUS Register – Slave Receiver Mode  (continued)

Status 
Code Status

DATA Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
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STATUS Register – Slave Transmitter Mode
Table 14-9 • Status Register – Slave Transmitter Mode 

Status 
Code Status

DATA Register 
Action

CTRL register bits

Next Action Taken by CoreSTA STO SI AA

0xA8 Own SLA+R has been
received; ACK has been
returned. 

Load data byte X 0 0 0 Last data byte will be transmitted; ACK
will be received. 

or load data byte X 0 0 1 Data byte will be transmitted; ACK will
be received. 

0xB0 Arbitration lost in
SLA+R/W as master;
own SLA+R has been
received; ACK has been
returned. 

Load data byte X 0 0 0 Last data byte will be transmitted; ACK
will be received.

or load data byte X 0 0 1 Data byte will be transmitted; ACK will
be received.

0xB8 Data byte has been
transmitted; ACK has
been received. 

Load data byte X 0 0 0 Last data byte will be transmitted; ACK
will be received. 

or load data byte X 0 0 1 Data byte will be transmitted; ACK will
be received. 

0xC0 Data byte has been
transmitted; not ACK has
been received. 

No action 0 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address. 

or no action 0 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized. 

or no action 1 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address; START condition will be
transmitted when the bus becomes free. 

or no action 1 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes free. 

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter 
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave
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STATUS Register – Miscellaneous States

0xC8 Last data byte has
transmitted; ACK has
been received. 

No action 0 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address. 

or no action 0 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized. 

or no action 1 0 0 0 Switched to not-addressed SLV mode;
no recognition of own SLA or general
call address; START condition will be
transmitted when the bus becomes free. 

or no action 1 0 0 1 Switched to not-addressed SLV mode;
own SLA or general call address will be
recognized; START condition will be
transmitted when the bus becomes free. 

0xD8 25 ms SCL low time has
been reached; device
must be reset.

no action X X 0 X Slave must proceed to reset state by
clearing the interrupt within 10ms,
according to SMBus Specification 2.0.

Table 14-9 • Status Register – Slave Transmitter Mode  (continued)

Status 
Code Status

DATA Register 
Action

CTRL register bits

Next Action Taken by CoreSTA STO SI AA

Notes:
1. SLA = Slave address 
2. SLV = Slave 
3. REC = Receiver 
4. TRX = Transmitter 
5. SLA+W = Master sends slave address then writes data to slave
6. SLA+R = Master sends slave address then reads data from slave

Table 14-10 • STATUS Register – Miscellaneous States

Status 
Code Status

DATA 
Register 
Action

CTRL Register Bits

Next Action Taken by CoreSTA STO SI AA

0x38 Arbitration lost No action 0 0 0 X Bus will be released

or no action 1 0 0 X A start condition will be transmitted when the
bus becomes free.

0xF8 No relevant state
information available; SI
= 0. 

No Action No Action Idle

0x00 Bus error during MST or
selected slave modes.

No action 0 1 0 X Only the internal hardware is affected in the
MST or addressed SLV modes. In all cases,
the bus is released and the state switched in
non-addressed slave mode. Stop Flag is
reset.
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DATA Register
The DATA register contains a byte of serial data to be transmitted or a byte that has just been received.
The Cortex-M3 processor can read from and write to this 8-bit, directly addressable register while it is not
in the process of shifting a byte (after an interrupt has been generated).
The bit descriptions are listed below in both data and addressing context. Data context is the 8-bit data
format from MSB to LSB. Addressing context is based on a master sending an address call to a slave on
the bus, along with a direction bit (master transmit data or receive data from a slave).

ADDR Register

Table 14-11 • DATA

Bit Number Name R/W Reset Value Description

7 sd7 R/W 0 Data context: serial data bit 7 (MSB)
Addressing context: serial address bit 6 (MSB)

6 sd6 R/W 0 Data context: serial data bit 6
Addressing context: serial address bit 5

5 sd5 R/W 0 Data context: serial data bit 5
Addressing context: serial address bit 4

4 sd4 R/W 0 Data context: serial data bit 4
Addressing context: serial address bit 3

3 sd3 R/W 0 Data context: serial data bit 3
Addressing context: serial address bit 2

2 sd2 R/W 0 Data context: serial data bit 2
Addressing context: serial address bit 1

1 sd1 R/W 0 Data context: serial data bit 1
Addressing context: serial address bit 0 (LSB)

0 DIR R/W 0 Data context: serial data bit 0 (LSB)
Addressing context: direction bit. 0 = Write; 1 =
Read

Table 14-12 • ADDR

Bit Number Name R/W Reset Value Description

7 adr6 R/W 0 Own slave address bit 6 

6 adr5 R/W 0 Own slave address bit 5 

5 adr4 R/W 0 Own slave address bit 4 

4 adr3 R/W 0 Own slave address bit 3 

3 adr2 R/W 0 Own slave address bit 2 

2 adr1 R/W 0 Own slave address bit 1 

1 adr0 R/W 0 Own slave address bit 0 

0 GC R/W 0 General call address acknowledge. If the gc
bit is set, the general call address is
recognized; otherwise it is ignored. 
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SMBUS Register
Table 14-13 • SMBUS

Bit 
Number Name R/W

Reset 
Value Description

7 SMBus Reset R/W 0 Writing a one to this bit will force the clock line low until
35 ms has been exceeded, thus resetting the entire
bus as per the SMBus Specification Version 2.0.
Usage:   When the I2C is used as a host controller
(master), the user can decide to reset the bus by
holding the clock line low 35 ms. Slaves must react to
this event and reset themselves.

6 SMBSUS_NO Control R/W 0b1 SMBSUS_NO control; used in master/host mode to
force other devices into power-down/suspend mode.
Active low. 
Note: SMBSUS_NO and SMBSUS_NI are separate

signals (not wired-AND). If the I2C is part of a
host-controller, SMBSUS_NO could be used as
an output; if I2C is a slave to a host-controller
that has implemented SMBSUS_N, then only
SMBSUS_NI’s status would be relevant.

5 SMBSUS_NI Status R 0bX Status of SMBSUS_NI signal.
Note: SMBSUS_NO and SMBSUS_NI are separate

signals (not wired-AND). If the I2C is part of a
host-controller, SMBSUS_NO could be used as
an output; if I2C is a slave to a host-controller
that has implemented SMBSUS_N, then only
SMBSUS_NI’s status would be relevant.

4 SMBALERT_NO Control R/W 0b1 SMBALERT_NO control; used in slave/device mode to
force communication with the master/host. Wired-
AND.
Status of SMBALERT_NI signal. Wired-AND.

3 SMBALERT_NI Status R 0bX Status of SMBALERT_NI signal. Wired-AND.

2 SMBus Enable R/W 0 0 = SMBus timeouts and status logic disabled
(standard I2C bus operation)
1 = SMBus timeouts and status logic enabled.

1 SMBUS Interrupt Enable R/W 0 0 = SMBUS Interrupt signal (SMBS) disabled.
1 = SMBUS Interrupt signal (SMBS) enabled.

0 SMBALERT Interrupt Enable R/W 0 0 = SMBALERT Interrupt signal (SMBA) disabled.
1 = SMBALERT Interrupt signal (SMBA) enabled.
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FREQ Register

GLITCHREG Register

IOMUXes Associated with I2C_0 and I2C_1
IOMUXes 6, 7, 47, and 48 are used to multiplex I2C_0, GPIO, and fabric interface signals to
MSSIOBUFs. IOMUXes 14, 15, 55, and 56 are used to multiplex I2C_1, GPIO, and fabric interface
signals to MSSIOBUFs. Refer to the "Fabric Interface and IOMUX" section on page 343 for a more
thorough description of how IOMUXes operate. 

IOMUXes for I2C_x_SDAI, I2C_x_SDAO, I2C_x_SCLI, and 
I2C_x_SCLO
To use the I2C_x_SDAI, I2C_x_SDAO, I2C_x_SCLI, and I2C_x_SCLO signals, an IOMUX is used to
route the signals to an MSSIOBUF. This IOMUX is used to share the MSSIOBUF between the I2C
signals and a GPIO. 

Table 14-14 • FREQ

Bit 
Number Name R/W

Reset 
Value Description

7:0 FREQ R/W 0x08 PCLKx frequency in MHz from 1 to 255. 
If the PCLKx frequency is used, and SMBus is enabled, the SMBus
timeouts will be configured per the SMBus specification. If another
timeout value is desired, scale the Frequency value per the following
formula:
Timeout scale = Fscale/Factual
If the actual PCLKx frequency is 100 Mhz, and a scale down is desired
that results in a 3 ms timeout rather than 25 ms timeout, then:
Fscale = 3/25 x Factual = 0.12 x 100 = 12 Mhz
Writing 12 into the FREQ register will have the effect of reducing the
maximum timeout count value and thus reducing the real-time timeout
from 25 ms to 3 ms.

Table 14-15 • GLITCHREG

Bit 
Number Name R/W

Reset 
Value Description

7:0 GLITCHREG R/W 0x03 The number of registers in the glitch filter can be set to a value from
3 to 6. Correct value to meet I2C fast mode 50 ns spike suppression
will depend on the PCLK frequency.
Guideline:
PCLK Freq. (MHz) GlitchReg Value for 50 ns

Spike Suppression 
Freq. ≤ 40 3
40 < Freq. ≤ 60 4
60 < Freq. ≤ 80 5 
80 < Freq. ≤ 100 6
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Figure 14-4 shows the IOMUX topology for I2C_0_SDAI and I2C_0_SDAO, which applies to
I2C_0_SCLI and I2C_0_SCLO, I2C_1_SDAI and I2C_1_SDAO, and I2C_1_SCLI and I2C_1_SCLO as
well.

In this case, IOMUX_6 is configured to connect all three interface A ports (IN_A, OUT_A, and OE_A) to
the MSSIOBUF. IOMUX_47 can be configured to route the GPIO_22 signals to the fabric interface. The
M2F[31], F2M[31], and F2M_OE[31] can then be routed to an FPGAIOBUF using the Libero tool. Similar
configuration applies to I2C_0_SCLI and I2C_0_SCLO, I2C_1_SDAI and I2C_1_SDAO, and
I2C_1_SCLI and I2C_1_SCLO. 
When utilizing the MSSIOBUF for I2C SDA and SCL signals (instead of MSS GPIO) the IOMUXes are
configured for open-drain operation. To achieve this, the inverse of the I2C output signal (I2C_x_SDAO
or I2C_x_SCLO) is fed into the IOMUX OE_A port. The OUT_A port of the IOMUX (which is an input port
into the IOMUX) is tied to GND. The I2C input signal (I2C_x_SDAI or I2C_x_SCLI) is driven by the
IOMUX IN_A port (which is an output port on the IOMUX).

Figure 14-4 • I2C_0_SDAI and I2C_0_SDAO IOMUX Topology
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Table 14-16 shows I2C signal connections

Table 14-17 through Table 14-24 on page 276 provide descriptions for all IOMUXes associated with
I2C_0 and I2C_1 signals.

IOMUX 6

IOMUX 7

Table 14-16 • I2C_x_SDAI, I2C_x_SDAO, I2C_x_SCLI, and I2C_x_SCLO Signal Connections

 I2C Signals MSS GPIO Fabric Interface IOMUX

I2C_0_SDAI
I2C_0_SDAO

22 31 6, 47

I2C_0_SCLI
I2C_0_SCLO

23 32 7, 48

I2C_1_SDAI
I2C_1_SDAO

30 39 14, 55

I2C_1_SCLI
I2C_1_SCLO

31 40 15, 56

Table 14-17 • IOMUX 6

Pad Name
Pad 

Ports IOMUX_6_CR

IOMUX 6 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_0_SDA/GPIO_22 I I2C_0_SDAI GPI_22

O GND GPO_22

OE ~(I2C_0_SDAO) GPOE_22

PU IOMUX_6_PU

PD IOMUX_6_PD

ST IOMUX_6_ST

Table 14-18 • IOMUX 7

Pad Name
Pad 

Ports IOMUX_7_CR

IOMUX 7 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_0_SCL/GPIO_23 I I2C_0_SCLI GPI_23

O GND GPO_23

OE ~(I2C_0_SCLO) GPOE_23

PU IOMUX_7_PU

PD IOMUX_7_PD

ST IOMUX_7_ST
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IOMUX 47

IOMUX 48

IOMUX 14

Table 14-19 • IOMUX 47

Pad Name
Pad 

Ports IOMUX_47_CR

IOMUX 47 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_22/ioUXWbYvZ I GPI_22 M2F[31]

O GPO_22 F2M[31]

OE GPOE_22 F2M_OE[31]

PU IOMUX_47_PU

PD IOMUX_47_PD

ST IOMUX_47_ST

Table 14-20 • IOMUX 48

Pad Name
Pad 

Ports IOMUX_48_CR

IOMUX 48 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_23/ioUXWbYvZ I GPI_23 M2F[32]

O GPO_23 F2M[32]

OE GPOE_23 F2M_OE[32]

PU IOMUX_48_PU

PD IOMUX_48_PD

ST IOMUX_48_ST

Table 14-21 • IOMUX 14

Pad Name
Pad 

Ports IOMUX_14_CR

IOMUX 14 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_1_SDA/GPIO_30 I I2C_1_SDAI GPI_30

O GND GPO_30

OE ~(I2C_1_SDAO) GPOE_30

PU IOMUX_14_PU

PD IOMUX_14_PD

ST IOMUX_14_ST
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IOMUX 15

IOMUX 55

IOMUX 56

Table 14-22 • IOMUX 15

Pad Name
Pad 

Ports IOMUX_15_CR

IOMUX 15 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_1_SCL/GPIO_31 I I2C_1_SCLI GPI_31

O GND GPO_31

OE ~(I2C_1_SCLO) GPOE_31

PU IOMUX_15_PU

PD IOMUX_15_PD

ST IOMUX_15_ST

Table 14-23 • IOMUX 55

Pad Name
Pad 

Ports IOMUX_55_CR

IOMUX 55 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_30/ioUXWbYvZ I GPI_30 M2F[39]

O GPO_30 F2M[39]

OE GPOE_30 F2M_OE[39]

PU IOMUX_55_PU

PD IOMUX_55_PD

ST IOMUX_55_ST

Table 14-24 • IOMUX 56

Pad Name
Pad 

Ports IOMUX_56_CR

IOMUX 56 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_31/ioUXWbYvZ I GPI_31 M2F[40]

O GPO_31 F2M[40]

OE GPOE_31 F2M_OE[40]

PU IOMUX_56_PU

PD IOMUX_56_PD

ST IOMUX_56_ST
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15 – Universal Asynchronous Receiver/Transmitter 
(UART) Peripherals

SmartFusion devices contain two identical universal asynchronous receiver/transmitter peripherals that
provide software compatibility with the popular 16550 device. They perform serial to-parallel conversion
on data originating from modems or other serial devices, and perform parallel-to-serial conversion on
data from the ARM Cortex-M3 processor to these devices. 
Throughout this chapter, a lower case x in register and signal descriptions is used as a place holder for 0
or 1, indicating UART_0 or UART_1.

Block Diagram

Functional Description
When transmitting, data is written in parallel into the transmit FIFO of the UART. The data is then
transmitted in serial form. When receiving data, the UART transforms the serial input data into a parallel
form to facilitate reading by the Cortex-M3 processor. 
The data width is programmable to 5, 6, 7, or 8 bits. The UART also supports various parity settings
including even, odd, and no-parity as well as different stop bits including 1, 1½, and 2 bits. If the incoming
word is error free, it is placed in the receiver RX_FIFO.
The interrupt control block sends an interrupt signal back to the Cortex-M3 processor, depending on the
state of the FIFO and its received and transmitted data. The Interrupt Identification Register (IIR)
provides the level of the interrupt. Interrupts are sent for empty transmission/receipt buffers (or FIFOs),
an error in receiving a character, or other conditions requiring the attention of the processor.
The UART_0 and UART_1 peripherals are clocked by PCLK0 on APB Bus 0 and PCLK1 on APB Bus 1,
respectively. PLCLK0 and PLCK1 are free running versions of FCLK (the main clock driving the entire
MSS) which are derived from the MSS_CCC. See the "Clocking Resources Available to the SmartFusion
FPGA Fabric" section in the SmartFusion FPGA Fabric User’s Guide for additional information.
The baud rate generator block takes the input PCLK (PCLK0 on APB_0 and PCLK1 on APB_1) and
divides it by a programmed value (from 1 to 216 – 1). The result is divided by 16 to create the
transmission clock (BAUDOUT).

Figure 15-1 • UART Block Diagram
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System Dependencies

Resets
UART_x resets to zero on power-up and is held in reset until the user enables it. The user has the option
under software control to reset the UART_x by writing to bit 7 or bit 8 of the SOFT_RST_CR located at
address 0xE0042030 in the system memory map, as shown in Table 15-1.

At power-up this signal is asserted as 1. This keeps UART_x in a reset state. If the user sets this bit to 0,
UART_x is allowed to become active. If UART_x_SR is 0, UART_x could still be held in reset by other
system reset sources. See the "Reset Controller" section on page 143 for more details.

Interrupts
There is one interrupt signal from each UART peripheral. The UART_0_INTR signal is generated by
UART_0 and is mapped to IRQ10 in the Cortex-M3 NVIC Controller. The UART_1_INTR signal is
generated by UART_1 and is mapped to IRQ11 in the Cortex-M3 NVIC controller. Both interrupt enable
bits within the NVIC are located at address 0xE000E100; IRQ10 and IRQ11 correspond to bit locations
10 and 11 respectively. The user must also enable interrupts in the UART_x by setting the appropriate
bits in the IER register while the divisor latch access bit (DLAB), bit 7 of LCR, is 0.
The user must clear the appropriate bit in the IER in the respective interrupt service routine to prevent a
re-assertion of the interrupt. 

Table 15-1 • Soft Reset Bit Definition for the UARTs

Bit Number Name R/W Reset Value Description

8 UART_1_SR R/W 0x1 Controls reset input to UART_1
 0 = Release UART_1 from reset
 1 = Keep UART_1 in reset (reset value)

7 UART_0_SR R/W 0x1 Controls reset input to UART_0
 0 = Release UART_0 from reset
 1 = Keep UART_0 in reset (reset value) 
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UART_x Register Map 
The UART_0 base address resides at 0x40000000 and extends to address 0x40000FFF in the
Cortex-M3 memory map. The UART_1 base address resides at 0x40010000 and extends to address
0x40010FFF in the Cortex-M3 memory map. Table 15-2 defines the control and status registers for the
UARTs, and Table 15-3 on page 280 through Table 15-15 on page 287 give bit definitions for each of the
registers.

Table 15-2 • UART_x Register Definitions

Register Name
Divisor Latch

Access Bit
UART_0 
Address

UART_1 
Address R/W

Reset 
Value Description

RBR 0 0x40000000 0x40010000 R – Receive Buffer Register

THR 0 0x40000000 0x40010000 W – Transmit Holding Register

DLR 1 0x40000000 0x40010000 R/W 0x01 Divisor Latch (LSB) Register

DMR 1 0x40000004 0x40010004 R/W 0 Divisor Latch (MSB) Register

IER 0 0x40000004 0x40010004 R/W 0 Interrupt Enable Register

IIR – 0x40000008 0x40010008 R 0xC1 Interrupt Identification Register

FCR – 0x40000008 0x40010008 W 0 FIFO Control Register

LCR – 0x4000000C 0x4001000C R/W 0 Line Control Register

MCR – 0x40000010 0x40010010 R/W 0 Modem Control Register

LSR – 0x40000014 0x40010014 R 0x60 Line Status Register

MSR – 0x40000018 0x40010018 R 0 Modem Status Register

SR – 0x4000001C 0x4001001C R/W 0 Scratch Register
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Receive Buffer Register (RBR)

Transmit Holding Register (THR)

Divisor Latch (LSB) Register (DLR)

Table 15-3 • RBR

Bit 
Number Name R/W

Reset 
Value Description

7:0 RBR R – This register holds the receive data bits for UART_x. The
reset value is unknown since the register is loaded with
data in the Receive FIFO. Bit 0 is the LSB and is the first
bit received. The divisor latch access bit (DLAB), bit 7 of
LCR, must be 0 to read this register. This register is read
only; writing to this register with the DLAB 0 changes the
THR register value.

Table 15-4 • THR

Bit 
Number Name R/W Reset Value Description

7:0 THR W – This register holds the data bits to be transmitted. Bit 0
is the LSB and is transmitted first. The reset value is
unknown since the register is loaded with data in the
Transmit FIFO. The divisor latch access bit (DLAB), bit
7 of LCR, must be 0 to write to this register. This
register is write only; reading from this register with the
DLAB 0 reads the RBR register value.

Table 15-5 • DLR

Bit 
Number Name R/W Reset Value Description

7:0 DLR R/W 0x01 This register holds the LSB of the divisor value used
to calculate the baud rate. The baud rate (BR) clock is
generated by dividing the input reference clock
(PCLK_0 for UART_0 and PCLK_1 for UART_1) by
16 and the divisor value, as shown in EQ 1.

EQ 1
The divisor latch access bit (DLAB) (bit 7 of LCR)
must be 1 to access this register. 

BR PCLK_x
16 divisor value×
----------------------------------------------=
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Divisor Latch (MSB) Register (DMR)

Interrupt Enable Register (IER)

Table 15-6 • DMR

Bit Number Name R/W Reset Value Description

7:0 DMR R/W 0 This register holds the MSB of the divisor value
used to calculate the baud rate. The baud rate
(BR) clock is generated by dividing the input
reference clock (PCLK_0 for UART_0 and
PCLK_1 for UART_1) by 16 and the divisor value,
as shown in EQ 2.

EQ 2
The divisor latch access bit (DLAB) (bit 7 of LCR)
must be 1 to access this register. 

Table 15-7 • IER

Bit 
Number Name R/W Reset Value Description

7:4 Reserved R/W 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value
of a reserved bit should be preserved across a read-
modify-write operation.

3 EDSSI R/W 0 Modem status interrupt enable
0 = Disabled (default)
1 = Enabled

2 ELSI R/W 0 Receiver line status interrupt enable
0 = Disabled (default)
1 = Enabled

1  ETBEI R/W 0 Transmit holding register empty interrupt enable
0 = Disabled (default)
1 = Enabled

0 ERBFI R/W 0 Receive data available interrupt enable
0 = Disabled (default)
1 = Enabled
The divisor latch access bit (DLAB) (bit 7 of LCR) must
be 0 to access this register. 

BR PCLK_x
16 divisor value×
----------------------------------------------=
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Interrupt Identification Register (IIR)
Table 15-8 • IIR

Bit 
Number Name R/W Reset Value Description

7:6 Mode R 0b11 Always 0b11. Enables FIFO mode.

5:4 Reserved R 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

3:0 Interrupt 
identification 

bits

R 0b0001 0b0110 = Highest priority. Receiver line status interrupt due to
overrun error, parity error, framing error, or break interrupt.
Reading the Line Status Register resets this interrupt.
0b0100 = Second priority. Receive data available interrupt
modem status interrupt. Reading the Receiver Buffer Register
(RBR) or the FIFO drops below the trigger level resets this
interrupt.
0b1100 = Second priority. Character timeout indication interrupt
occurs when no characters have been read from the RX FIFO
during the last four character times and there was at least one
character in it during this time. Reading the Receive Buffer
Register (RBR) resets this interrupt.
0b0010 = Third priority. Transmit Holding Register Empty
interrupt. Reading the IIR or writing to the Transmit Holding
Register (THR) resets the interrupt.
0b0000 = Fourth priority. Modem status interrupt due to Clear to
Send, Data Set Ready, Ring Indicator, or Data Carrier Detect
being asserted. Reading the Modem Status Register resets this
interrupt.
This register is read only; writing has no effect. Also see
Table 15-9.

Table 15-9 • Interrupt Identification Bit Values

IIR 
Value

Priority 
Level Interrupt Type Interrupt Source Interrupt Reset Control

0b0110 Highest Receiver line status Overrun error, parity error, or break
interrupt

Reading the Line Status
Register

0b0100 Second Received data 
available

Receiver data available Reading the Receiver Buffer
register or the FIFO drops below
the trigger level

0b1100 Second Character timeout 
indication

No characters have been read from
the RX FIFO during the last four
character times and there was at least
one character in it during this time.

Reading the Receiver Buffer
register

0b0010 Third Transmitter Holding
register empty

Transmitter Holding Register empty Reading the IRR or writing into
the Transmitter Holding register

0b0000 Fourth Modem status Clear to Send, Data Set Ready, Ring
Indicator, or Data Carrier Detect

Reading the Modem Status
register
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FIFO Control Register (FCR)
Table 15-10 • FCR

Bit Number Name R/W Reset Value Description

7:6 RX_TRIG W 0b11 These bits are used to set the trigger level for the
RX FIFO interrupt.
0b00 = 1 byte
0b01 = 4 bytes
0b10 = 8 bytes
0b11 = 14 bytes (default)

5:4 Reserved W 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products,
the value of a reserved bit should be preserved
across a read-modify-write operation.

3 ENABLE_TXRDY_RXRDY W 1 Software must always set this bit to 1 for efficient
data transfer from transmit FIFO to PDMA.

2 CLEAR_TX_FIFO W 0 Clears all bytes in TX FIFO and resets counter
logic. The transmit shift register is not cleared.
0 = Disabled (default)
1 = Enabled

1 CLEAR_RX_FIFO W 0 Clears all bytes in RX FIFO and resets counter
logic. The receive shift register is not cleared.
0 = Disabled (default)
1 = Enabled

0 Reserved W 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products,
the value of a reserved bit should be preserved
across a read-modify-write operation.
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Line Control Register (LCR)
Table 15-11 • LCR

Bit Number Name R/W Reset Value Description

7 DLAB R/W 0 Divisor latch access bit. Enables access to the divisor
latch registers during read or write operation to
address 0 and 1.
0 = Disabled (default)
1 = Enabled

6 SB R/W  0 Set break. Enabling this bit sets SOUT to 0. This does
not have any effect on the transmitter logic. 
0 = Disabled (default)
1 = Enabled

5 SP  R/W 0 Stick parity
 0 = Disabled (default)
1 = Enabled
When stick parity is enabled, the parity bit is set
according to bits [4:3] as follows:
11 = 0 is sent as parity bit and checked when receiving.
01 = 1 is sent as parity bit and checked when receiving.

4 EPS R/W 0 Even parity select
0 = Odd parity (default)
1 = Even parity

3 PEN R/W 0 Parity enable. When enabled, parity is added to
transmission and checked when receiving.
0 = Disabled (default)
1 = Enabled

2 STB R/W 0 Number of stop bits (STB). 
0 = 1 stop bit (default)
1 = 1 ½ stop bits when WLS = 00
The number of stop bits is 2 for all other cases not
described above (STB = 1 and WLS = 01, 10 or 11)

1:0 WLS R/W 0 Word length select
0b00 = 5 bits (default)
0b01 = 6 bits
0b10 = 7 bits
0b11 = 8 bits
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Modem Control Register (MCR)
Table 15-12 • MCR 

Bit 
Number Name R/W Reset Value Description

7:5 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation

4 LOOP R/W 0 Loop enable bit. In Loop mode, SOUT is set to 1
and the SIN, DSRn, CTSn, RIn, and DCDn inputs
are disconnected. The output of the Transmitter is
looped back into the Receiver. The modem control
outputs (DTRn, RTSn, OUT1n, and OUT2n) are
connected internally to the modem control inputs,
and the modem control output pins are set at 1. In
loopback mode, the transmitted data is
immediately received, allowing the CPU to check
the operation of the UART. The interrupts are
operating in loop mode.
0 = Disabled (default)
1 = Enabled

3 OUT2 R/W 0 Controls the Output2 (OUT2n) signal. Active low.
0 = OUT2n is 1 (default)
1 = OUT2n is 0

2 OUT1 R/W 0 Controls the Output1 (OUT1n) signal. Active low.
0 = OUT1n is 1 (default)
1 = OUT1n is 0

1 RTS R/W 0 Controls the Request to Send (RTSn) signal.
Active low.
0 = RTSn is 1 (default)
1 = RTSn is 0

0 DTR R/W 0 Data Terminal Ready (DTRn) signal. Active low.
0 = DTRn is 1 (default)
1 = DTRn is 0
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Line Status Register (LSR)
Table 15-13 • LSR

Bit 
Number Name R/W

Reset 
Value Description

7 FIER R 0 This bit is set when there is at least one parity error,
framing error, or break indication in the FIFO. FIER is
cleared when the Cortex-M3 processor reads the LSR if
there are no subsequent errors in the FIFO.

6 TEMT R 1 Transmit empty. This bit is set to 1 when both the
transmitter FIFO and shift registers are empty.

5 THRE R 1 Transmitter holding register empty. THRE causes an
interrupt to the Cortex-M3 processor when bit 1 (ETBEI)
in the Interrupt Enable Register is 1. This bit is set when
the TX FIFO is empty. It is cleared when at least one byte
is written to the TX FIFO.

4 BI R 0 Break interrupt. Indicates that the receive data is at 0
longer than a full word transmission time (start bit + data
bits + parity + stop bits). BI is cleared when the CPU
reads the Line Status Register. This error is revealed to
the Cortex-M3 processor when its associated character is
at the top of the FIFO. When break occurs, only one zero
character is loaded into the FIFO.

3 FE R 0 Framing error. Indicates that the receive byte did not have
a valid stop bit. FE is cleared when the CPU reads the
Line Status Register. The UART will try to resynchronize
after a framing error. To do this, it assumes that the
framing error was due to the next start bit, so it samples
this start bit twice, and then starts receiving the data. This
error is revealed to the CPU when its associated
character is at the top of the FIFO.

2 PE R 0 Parity error. Indicates that the receive byte had a parity
error. PE is cleared when the CPU reads the Line Status
Register. This error is revealed to the CPU when its
associated character is at the top of the FIFO.

1 OE R 0 Overrun error. Indicates that the new byte was received
before the CPU read the byte from the receive buffer, and
that the earlier data byte was destroyed. OE is cleared
when the CPU reads the Line Status Register. If the data
continues to fill the FIFO beyond the trigger level, an
overrun error will occur once the FIFO is full and the next
character has been completely received in the shift
register. The character in the shift register is overwritten,
but it is not transferred to the FIFO.

0 DR R 0 Data ready. Indicates when a data byte has been
received and stored in the receive buffer or the FIFO. DR
is cleared to 0 when the CPU reads the data from the
receive buffer or the FIFO.
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Modem Status Register (MSR)

Scratch Register (SR)

Table 15-14 • MSR

Bit Number Name R/W Reset Value Description

7 DCD R 0 Data carrier detect. The complement of DCDn input.
When bit 4 of the MCR is set to 1 (LOOP), this bit is
equivalent to OUT2 in the MCR.

6 RI R 0 Ring indicator. The complement of the RIn input.
When bit 4 of the MCR is set to 1 (LOOP), this bit is
equivalent to OUT1 in the MCR.

5 DSR R 0 Data set ready. The complement of the DSR input.
When bit 4 of the MCR is set to 1 (LOOP), this bit is
equivalent to RTSn in the MCR.

4 CTS R 0 Clear to send. The complement of the CTSn input.
When bit 4 of the Modem Control Register (MCR) is
set to 1 (LOOP), this bit is equivalent to DTR in the
MCR.

3 DDCD R 0 Delta data carrier detect. Indicates that DCD input has
changed state.
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status
interrupt is generated.

2 TERI R 0 Trailing edge of ring indicator. Indicates that RI input
has changed from 0 to 1. 
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status
interrupt is generated.

1 DDSR R 0 Delta data set ready. Indicates that the DSRn input
has changed state since the last time it was read by
the CPU.
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status
interrupt is generated.

0 DCTS R 0 Delta clear to send. Indicates that the CTSn input has
changed state since the last time it was read by the
CPU.
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status
interrupt is generated.

Table 15-15 • SR

Bit Number Name R/W Reset Value Description

7:0 SR  R/W 0 Scratch Register. This register has no effect on
UART operation.
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IOMUXes Associated with UART_x
IOMUXes 4, 5, 12, and 13 are used to multiplex UART_x transmit and receive signals with GPIOs to
MSSIOBUFs. IOMUXes 64-69 and 77-82 are used to multiplex modem control signals to fabric interface
signals for further connection to FPGA IO. Refer to the "Fabric Interface and IOMUX" section on
page 343 for a more thorough description of how IOMUXes operate.

IOMUXes for UART_x_TXD and UART_x_RXD
To use the UART_x_TXD and UART_x_RXD signals, an IOMUX is used to route the signal to an
MSSIOBUF. This IOMUX is used to share the MSSIOBUF between the UART_x signal and a GPIO. As
an example, Figure 15-2 shows the IOMUX topology for UART_0_TXD. Similar topologies apply to
UART_0_RXD, UART_1_RXD, and UART_1_TXD. For UART_0_TXD, IOMUX_4 would be configured
to connect OUT_A to MSSIOBUF IO_O port. IOMUX_45 can be configured to route the GPIO_20 signals
to the fabric interface. The M2F[29], F2M[29], and F2M_OE[29] signals can then be routed to an
FPGAIOBUF using the Libero tool.

IOMUXes for Modem Control Signals
To use these UART_x signals, they must be routed to an FPGA IO through an IOMUX. The MSS
configurator in SmartDesign is used to route the UART_x signal to the FPGA fabric interface (through an
IOMUX) by initializing the contents of the IOMUX_n_CR registers. Routing the signal from the FPGA
fabric interface to an FPGA I/O is performed separately using the Libero tool.    
As an example, in Figure 15-3 on page 289, for UART_0_RTS, IOMUX_64 is configured using the
IOMUX_64_CR register to connect OUT_A to IN_B, which connects UART_0_RTS to M2F[48] in the
fabric. The M2F[48] signal can then be connected to a FPGAIOBUF using the Libero tool. Similar IOMUX

Figure 15-2 • UART_0_TXD IOMUX Topology
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arrangements apply to UART_1_RTS, UART_x_DTR, UART_x_CTS, UART_x_DSR, UART_x_RI, and
UART_x_DCD as well. 
Table 15-16 shows the associated GPIO, IOMUX, and fabric interface signals for each UART_x signal.
The MSS configurator tool manages the assignment and allocation of IOMUXes in a graphical user
friendly way. The output of the MSS configurator is used by the system boot code to initialize the MSS to
a known state.

Table 15-17 through Table 15-32 on page 295 describe the IOMUXes associated with UART_x signals.

Figure 15-3 • UART_0_RTS Signal IOMUX Topology

Table 15-16 • UART_x Fabric Interface Signal Connections

UART_x Signal Fabric Interface Signal IOMUX

UART_0_RTS M2F_48 64

UART_0_DTR M2F_49 65

UART_0_CTS F2M_50 66

UART_0_DSR F2M_51 67

UART_0_RI F2M_52 68

UART_0_DCD F2M_53 69

UART_1_RTS M2F_61 77

UART_1_DTR M2F_62 78

UART_1_CTS F2M_63 79

UART_1_DSR F2M_64 80

UART_1_RI F2M_65 81

UART_1_DCD F2M_66 82

I/O

IO_I

IO_I

IO_OE

IN_A

OE_A

OUT_A

IN_B

OE_B

OUT_B

A

B

UART_0_RTS

UART_0
IOMUX_64

FPGAIOBUF_X

FPGA Fabric

M2F[48] F2M[48] F2M_OE[48]

VDD X Not connected to I/O pad
X Not connected to I/O pad
X Not connected to I/O pad
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IOMUX 4

IOMUX 5

IOMUX 64

Table 15-17 • IOMUX 4

Pad Name
Pad 

Ports IOMUX_4_CR

IOMUX 4 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_TXD/GPIO_20 I GPI_20

O UART_0_TXD GPO_20

OE GND GPOE_20

PU IOMUX_4_PU

PD IOMUX_4_PD

ST IOMUX_4_ST

Table 15-18 • IOMUX 5

Pad Name
Pad 

Ports

IOMUX_5_CR IOMUX 5 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_RXD/GPIO_21 I UART_0_RXD GPI_2
1

O GND GPO_21

OE GND GPOE_2
1

PU IOMUX[5]_PU

PD IOMUX[5]_PD

ST IOMUX[5]_ST

Table 15-19 •  IOMUX 64

Pad Name
Pad 

Ports IOMUX_64_CR

IOMUX 64 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_RTS I M2F[48]

O UART_0_RTS F2M[48]

OE VDD F2M_OE[48]

PU IOMUX_64_PU

PD IOMUX_64_PD

ST IOMUX_64_ST
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IOMUX 65

IOMUX 66 

IOMUX 67

Table 15-20 • IOMUX 65

Pad Name
Pad 

Ports IOMUX_65_CR

IOMUX 65 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_DTR I M2F[49]

O UART_0_DTR F2M[49]

OE VDD F2M_OE[49]

PU IOMUX_65_PU

PD IOMUX_65_PD

ST IOMUX_65_ST

Table 15-21 • IOMUX 66

Pad Name
Pad 

Ports IOMUX_66_CR

IOMUX 66 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_CTS I UART_0_CTS M2F[50]

O GND F2M[50]

OE GND F2M_OE[50]

PU IOMUX_66_PU

PD IOMUX_66_PD

ST IOMUX_66_ST

Table 15-22 • IOMUX 67

Pad Name

Pad 
Ports IOMUX_67_CR IOMUX 67 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_DSR I UART_0_DSR M2F[51]

O GND F2M[51]

OE GND F2M_OE[51]

PU IOMUX_67_PU

PD IOMUX_67_PD

ST IOMUX_67_ST
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IOMUX 68

IOMUX 69

IOMUX 12

Table 15-23 • IOMUX 68

Pad Name
Pad 

Ports IOMUX_68_CR

IOMUX 68 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_RI I UART_0_RI M2F[52]

O GND F2M[52]

OE GND F2M_OE[52]

PU IOMUX_68_PU

PD IOMUX_68_PD

ST IOMUX_68_ST

Table 15-24 • IOMUX 69

Pad Name
Pad 

Ports IOMUX_69_CR

IOMUX 69 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_DCD I UART_0_DCD M2F[53]

O GND F2M[53]

OE GND F2M_OE[53]

PU IOMUX_69_PU

PD IOMUX_69_PD

ST IOMUX_69_ST

Table 15-25 • IOMUX 12

Pad Name
Pad 

Ports IOMUX_12_CR

IOMUX 12 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_TXD/GPIO_28 I GPI_28

O UART_1_TXD GPO_28

OE GND GPOE_28

PU IOMUX_12_PU

PD IOMUX_12_PD

ST IOMUX_12_ST
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IOMUX 13

IOMUX 77

IOMUX 78

Table 15-26 • IOMUX 13

Pad Name
Pad 

Ports IOMUX_13_CR

IOMUX 13 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_RXD/GPIO_29 I UART_1_RXD GPI_29

O GND GPO_29

OE GND GPOE_29

PU IOMUX_13_PU

PD IOMUX_13_PD

ST IOMUX_13_ST

Table 15-27 • IOMUX 77

Pad Name
Pad 

Ports IOMUX_77_CR

IOMUX 77 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_RTS I M2F[61]

O UART_1_RTS F2M[61]

OE VDD F2M_OE[61]

PU IOMUX_77_PU

PD IOMUX_77_PD

ST IOMUX_77_ST

Table 15-28 • IOMUX 78

Pad Name
Pad 

Ports IOMUX_78_CR

IOMUX 78 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_DTR I M2F[62]

O UART_1_DTR F2M[62]

OE VDD F2M_OE[62]

PU IOMUX_78_PU

PD IOMUX_78_PD

ST IOMUX_78_ST
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IOMUX 79

IOMUX 80

IOMUX 81

Table 15-29 • IOMUX 79

Pad Name
Pad 

Ports IOMUX_79_CR

IOMUX 79 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_CTS I UART_1_CTS M2F[63]

O GND F2M[63]

OE GND F2M_OE[63]

PU IOMUX_79_PU

PD IOMUX_79_PD

ST IOMUX_79_ST

Table 15-30 • IOMUX 80

Pad Name
Pad 

Ports IOMUX_80_CR

IOMUX 80 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_DSR I UART_1_DSR M2F[64]

O GND F2M[64]

OE GND F2M_OE[64]

PU IOMUX_80_PU

PD IOMUX_80_PD

ST IOMUX_80_ST

Table 15-31 • IOMUX 81

Pad Name
Pad 

Ports IOMUX_81_CR

IOMUX 81 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_RI I UART_1_RI M2F[65]

O GND F2M[65]

OE GND F2M_OE[65]

PU IOMUX_81_PU

PD IOMUX_81_PD

ST IOMUX_81_ST
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IOMUX 82

SmartFusion MSS UART Application Development
This section provides overview of the design flow to facilitate seamless UART application development
using SmartFusion devices. Using the MSS UART peripherals does not require any hardware
configuration in the MSS configurator. Configuration of UART peripherals using the Microsemi UART
drivers is required. The user application would then use predefined functions in the UART drivers to
perform application-specific serial transmit and receive tasks.
User application code can be developed and debugged using any of the three supported embedded
software development tools: SoftConsole, Keil Microcontroller Development Kit (MDK) µVision,® and IAR
Embedded Workbench.® Microsemi provides a set of UART drivers that can be generated from the MSS
configurator or from the Firmware Catalog. These drivers are common for all three tool flows. However,
the Cortex Microcontroller Software Interface Standard (CMSIS) access layer is dependent on the tool
flow selected and should be chosen based on the specific tool flow the user is implementing.
The MSS UART drivers allow rapid application code development using the SmartFusion MSS UART
without having to manually read and write the MSS System Registers to send and receive serial data.
MSS UART drivers are efficient and flexible, allowing UART to be used in either polled mode or in
interrupt driven mode. For specific details on drivers, refer to the SmartFusion MSS Configurators and
Drivers User’s Guides.

Application Development Using MSS UART Drivers
As a first step, tool-specific CMSIS files must be imported into the project along with MSS UART
drivers.The mss_uart.h header file, which defines UART function prototypes, must be included in the
application code to get access to the UART functions, as shown below:

Example
#include "mss_uart.h"

The drivers define structure type mss_uart_instance_t to hold UART data. Predefined instance names
for UART_0 and UART_1 are g_mss_uart_0 and g_mss_uart_1, respectively. These names should be
used in all the functions to refer to UART instances.
Before using an instance of MSS UART, it must be initialized and configured to match the serial line
communication parameters required by the system. These parameters include the baud rate, the number
of data bits, the parity setting, and the number of stop bits. The function MSS_UART_init() must be used,
as shown in the example below.

Table 15-32 • IOMUX 82

Pad Name
Pad 

Ports IOMUX_82_CR

IOMUX 82 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_DCD I UART_1_DCD M2F[66]

O GND F2M[66]

OE GND F2M_OE[66]

PU IOMUX_82_PU

PD IOMUX_82_PD

ST IOMUX_82_ST
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Example 
MSS_UART_init (
&g_mss_uart0, // Instantiating UART_0
MSS_UART_57600_BAUD, 
MSS_UART_DATA_8_BITS | MSS_UART_NO_PARITY |
MSS_UART_ONE_STOP_BIT);

Transmission and reception of serial data using MSS UART can be done in either polled method or
interrupt driven method. Applications in which transmit or receipt of serial data is a primary function can
typically use the polled method. In contrast, applications in which the Cortex-M3 microcontroller performs
various tasks will benefit from using the interrupt driven method. This prevents the processor from idling
cycles, polling for transmit ready or received serial data. 

Polled Transmission Method
The function MSS_UART_polled_tx() is used for polled transmission. This function returns when the full
content of the transmit data buffer, defined as one of the arguments, has been transferred to the UART’s
transmit FIFO. The following example shows usage of this function:

Example
MSS_UART_polled_tx // UART in polled mode
( &g_mss_uart0, // UART instance being addressed
greeting_msg, // pointer to transmit data buffer
sizeof(greeting_msg)); // size of the data to be transmitted

Interrupt Driven Transmission Method
The function MSS_UART_irq_tx() is used for interrupt driven transmission. This function returns
immediately after transmit data buffer location (address) is stored and transmit interrupts are enabled on
both the MSS UART peripheral and the Cortex-M3 Interrupt Controller (NVIC). 
It is important to note that before the transmit data buffer can be cleared or overwritten, the user must
confirm that the UART data has been moved from the data buffer to the UART’s transmit FIFO by calling
the function MSS_UART_tx_complete(). This function returns zero when the transfer is complete. The
following example shows usage of these two companion functions:

Example 
MSS_UART_irq_tx(// UART in Interrupt Driven Mode
&g_mss_uart0, // UART Instance being addressed
tx_buff, // Pointer to transmit data buffer
sizeof(tx_buff) ); // Size of the data to be transmitted.
   
// Check whether UART_0 data has been moved to TX FIFO
while(0 == MSS_UART_tx_complete(&g_mss_uart0 ) 
{;}

Polled Receive Method
In the polled receive mode, the MSS UART driver function MSS_UART_get_rx() is called in a loop or at a
regular interval to check for data received in the RX FIFO of the MSS UART. The function returns the
number of bytes that were copied into the receive data buffer and returns 0 if no data has been received.
The following example shows usage of this function:

Example
While(1){
rx_size = MSS_UART_get_rx (
&g_mss_uart0, // UART Instance 
rx_buff,  // Pointer to receive data buffer
sizeof(rx_buff) // Size of the data receive buffer
);}
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Interrupt Driven Receive Method
In interrupt driven receive mode, the user must register the RX Interrupt Service Routine (ISR), also
called known as Interrupt Handler Function, so that the appropriate function can be called when the
UART Receive Data Available (RDA) interrupt occurs. Within the user defined ISR, the
MSS_UART_get_rx() function is called to access received data. The following section explains the
process.

Registering ISR (receive handler)
The function MSS_UART_set_rx_handler() is used to register the user defined ISR function. This
function also enables the UART Received Data Available (RDA) interrupt and the corresponding UART
interrupt in the Cortex-M3 NVIC as part of its implementation. The trigger level argument sets the number
of bytes that must be received before UART issues the RDA Interrupt. The example below shows usage
of the handler function:

Example
MSS_UART_set_rx_handler( 
&g_mss_uart0, //UART Instance being addressed 
uart0_rx_handler, // Pointer to the user defined receive handler function
MSS_UART_FIFO_SINGLE_BYTE); // Trigger level for RDA interrupt firing

Example
The following example shows a typical user defined ISR function:
void uart0_rx_handler( void )
{
uint8_t rx_buff[RX_BUFF_SIZE];
uint32_t rx_size = 0;
 
rx_size = MSS_UART_get_rx( &g_mss_uart0, rx_buff, sizeof(rx_buff) );
 
process_rx_data( rx_buff, rx_size );//User Defined Function
}

The SmartFusion MSS UART application development overview provided in this section should enable
the user to rapidly and easily adopt the SmartFusion MSS UART peripherals in their embedded
application. For additional details on the three tool flows and UART examples, refer to the SmartFusion
UART tutorials available at http://www.microsemi.com/soc/products/smartfusion/docs.aspx.
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16 – Real-Time Counter (RTC) System 

The real-time counter (RTC) system enables SmartFusion devices to support both Standby and Time
Keeping modes of operation, greatly reducing power consumption in many applications. The RTC
system comprises the following four blocks that work together to provide this increased functionality and
reduced power consumption:

• RTC 
• Low-power 32 KHz crystal oscillator
• Battery switching circuit
• MSS interface

Figure 16-1 shows these blocks and how they are connected.

Low-Power Crystal Oscillator Functional Description
The low-power crystal oscillator generates a 32.768 KHz clock for the RTC. It consists of an inverting
amplifier, an external ceramic or quartz resonator, and two load capacitors. The generated clock is also
connected to the microcontroller subsystem clock conditioning circuit (MSS_CCC) so that this clock can
be used by the FPGA fabric. This clock may also be used by the MSS. 
This oscillator is enabled/disabled by the XTAL_EN bit (bit 0) of the RTC's control/status register
(CTRL_STAT_REG). 

Figure 16-1 • Real-Time Counter System Block Diagram
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Real-Time Counter (RTC) System
Battery Switching Circuit Functional Description
SmartFusion devices have an input for an external battery source that allows both the RTC and the low-
power crystal oscillator to function when the 3.3 V VCC supply has been removed. This VDDBAT pin is
intended to be connected to 3.0 V lithium cells and should not exceed 3.5 V. This pin may be used with
higher voltage cells, such as 3.7 V lithium-ion, provided a suitable method (such as a diode) is used to
keep the VDDBAT at or below 3.5 V.
The battery switching circuit continuously compares the battery voltage with the voltage on the
VCCLPXTAL pin. This circuit will automatically power the RTC and the low-power crystal oscillator from
the battery whenever the battery voltage is approximately 0.4 V or more above the VCCLPXTAL pin
voltage. The combined load on the battery (switching circuit, RTC, and low-power crystal oscillator) is
expected to be less than 10 µA. 
The comparator hysteresis for this battery switching circuit has hysteresis.

RTC Functional Description
The RTC is an APB_0 slave which provides a counter as well as a MATCH output signal that can be
used to interrupt the Cortex-M3 processor and to power-up the on-chip 1.5 V voltage regulator. An on-
chip 32 KHz oscillator provides the clock source for the RTC (Figure 16-2).

A 40-bit loadable counter is used as the primary timekeeping element within the RTC. This counter can
be configured to reset itself when a count value is reached that matches the value set within a 40-bit
match register. Note that the only exception to this self-clearing mechanism occurs when the 40-bit
counter is equal to zero, since the counter would never increment from zero. When the device is first
powered up (when the 3.3 V supply becomes valid), the 40-bit counter and 40-bit match register are
cleared to logic 0, and the MATCH output signal is active (logic 1). At any time when the 40-bit counter
value does not match the value in the 40-bit match register, the MATCH output signal will become
inactive (logic 0).

Figure 16-2 • RTC Block Diagram
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When the MATCH signal is active, the RTCMATCHEVENT bit (bit 0) in the DSS_STATUS register will be
set. This bit is used as an interrupt to the Cortex-M3 processor. This bit will remain set until cleared by
writing to the CLRRTCMATCHEVENT bit (bit 0) in the CLR_DSS_STATUS Register.
Both the counter and match registers are addressable (read/write) from the APB_0 bus interface. The
counter action can be suspended/resumed by clearing/setting the CNTR_EN bit in the
CTRL_STAT_REG register. This allows the RTC to be used for measuring intervals in time.
If a 32.768 KHz external resonator is connected to the low-power crystal oscillator pins, the 40-bit
counter will have a maximum count of 4,294,967,296 seconds, which equates to just over 136 years of
elapsed timekeeping with a minimum period of 1/256 of a second, which will be the toggle rate of the LSB
of the 40-bit counter.
Frequencies other than 32.768 KHz can be used as a clock source with the appropriate scaling of the
LSB time interval. 
A 7-bit prescaler is used to divide the source clock (from the external crystal) by 128. This prescaled 50%
duty-cycle clock is then used by the counter logic as its reference clock. Given an external crystal
frequency of 32.768 KHz, the prescaler output clock will toggle at a rate of 32.768 KHz / 128 = 256 Hz.
The 40-bit counter and match registers are each divided into five bytes. Each byte is directly
addressable. APB reads and writes must be word aligned. The address map of registers is shown below.

Real-Time Counter Register Interface Summary 
Table 16-1 describes the Real-Time Counter Register interface.

Table 16-1 • Real-Time Counter Register Map
Register Name Address R/W Reset Value Description
COUNTER0_REG 0x40014100 R/W 0 Counter bits 7:0

COUNTER1_REG 0x40014104 R/W 0 Counter bits 15:8

COUNTER2_REG 0x40014108 R/W 0 Counter bits 23:16

COUNTER3_REG 0x4001410C R/W 0 Counter bits 31:24

COUNTER4_REG 0x40014110 R/W 0 Counter bits 39:32

MATCHREG0_REG 0x40014120 R/W 0 Match register bits 7:0

MATCHREG1_REG 0x40014124 R/W 0 Match register bits 15:8

MATCHREG2_REG 0x40014128 R/W 0 Match register bits 23:16

MATCHREG3_REG 0x4001412C R/W 0 Match register bits 31:24

MATCHREG4_REG 0x40014130 R/W 0 Match register bits 39:32

MATCHBITS0_REG 0x40014140 R/W 0 Individual Match bits 7:0

MATCHBITS1_REG 0x40014144 R/W 0 Individual Match bits 15:8

MATCHBITS2_REG 0x40014148 R/W 0 Individual Match bits 23:16

MATCHBITS3_REG 0x4001414C R/W 0 Individual Match bits 31:24

MATCHBITS4_REG 0x40014150 R/W 0 Individual Match bits 39:32

CTRL_STAT_REG 0x40014160 R/W 0 Control (write) / Status (read) register bits 7:0

Note: Accessing RTC Registers: When reading the RTC count or match register, which operates in the XTLCLK
domain, the appropriate 40-bit value is first copied to a capture register through clock synchronization circuitry, if
and only if the least significant byte of that set of register is addressed. Higher-order bytes of the same set of
registers captured with the LSB can then be read on immediately later read cycles. Higher order bytes of that set
of registers can be read in any order but must be read before switching to a different set of registers to ensure
data consistency. For example, when using the RTC counter address ranges from 0x40014100 to 0x40014110,
register 0x40014100 must be accessed first before accessing addresses 0x40014104, 0x40014108,
0x4001410C, and 0x40014110 to get the full 40-bit value.
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Control/Status Register (CTRL_STAT_REG)
The Control/Status register (CTRL_STAT_REG) is an 8-bit register that defines the operation of the RTC.
The Control register can reset the RTC, enabling operation to begin with all zeroes in the counter. The
RTC can be configured to clear when it is matched with the Match register, or it can continue to count
while still setting the match signal. To enable the SmartFusion device to power up at a specific time or at
periodic intervals, the RTC can be configured to turn on the 1.5 V voltage regulator.

Counter 0 Register
All 40 bits of the count are transferred to an internal capture register when the COUNTER0_REG register
is read. The second byte of the count (COUNTER1_REG) must be read prior to the next RTC clock.

Table 16-2 • CTRL_STAT_REG

Bit 
Number Name R/W

Reset 
Value Description

7 RTC_RST R/W 0 RTC Reset
1:  Writing a logic 1 to this bit causes an RTC reset.
0:  Writing a logic 0 to this bit will allow synchronous de-assertion
of reset after two clock cycles if VCC33UP = 1.

6 CNTR_EN R/W 0 Counter Enable
1: Enables the counter if the RTC is not in reset. It takes 64
RTCCLK positive edges (one-half of the prescaler division
factor), after reset is removed and CNTR_EN = 1, before the
counter is incremented.
0: A logic 0 in this bit resets the prescaler and therefore suspends
incrementing the counter, but the counter is not reset. Before
writing to the counter registers, the counter must be disabled.

5 VR_EN_MAT R/W 0 Voltage Regulator Enable on Match
1:  Allows the MATCH output port to go to logic 1 when a match
occurs between the 40-bit counter and 40-bit match register.
0:  Forces the MATCH to logic 0, which prevents the RTC from
enabling the voltage regulator.

4:3 Not used Reserved

2 RST_CNT_OMAT R/W 0 Reset Counter on Match
1: Allows the counter to clear itself when a match occurs. In this
situation, the 40-bit counter clears on the next rising edge of the
prescaled clock, approximately 4 ms  after the match occurs (the
prescaled clock toggles at a rate of 256 Hz, given a 32.768 KHz
external crystal).
0: Allows the counter to increment indefinitely while still enabling
match events to occur.

1 RSTB_CNT R/W 0 Counter Reset
1: Allows the counter to count.
0: Resets the 40-bit counter value to zero.

0 XTAL_EN R/W 0 Crystal Oscillator Enable: This bit enables the low-power crystal
oscillator.
1: If a logic 1 is written to this bit, the low-power crystal oscillator
is turned on.
0: If a logic 0 is written to this bit, the low-power crystal oscillator
is turned off.
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Therefore, software routines  to read the current RTC count should disable interrupts prior to reading the
count and re-enable interrupts (if needed), after all five count registers have been read.

Counter 1 Register

Counter 2 Register

Counter 3 Register

Counter 4 Register

Match Register 0 Register

Match Register 1 Register

Match Register 2 Register

Table 16-3 • COUNTER0_REG
Bit Number Name R/W Reset Value Description
7:0 CNT_7_0 R/W 0 Counter bits 7:0

Table 16-4 • COUNTER1_REG
Bit Number Name R/W Reset Value Description
7:0 CNT_15_8 R/W 0 Counter bits 15:8

Table 16-5 • COUNTER2_REG
Bit Number Name R/W Reset Value Description
7:0 CNT_23_16 R/W 0 Counter bits 23:16

Table 16-6 • COUNTER3_REG
Bit Number Name R/W Reset Value Description
7:0 CNT_31_24 R/W 0 Counter bits 31:24

Table 16-7 • COUNTER4_REG
Bit Number Name R/W Reset Value Description
7:0 CNT_39_32 R/W 0 Counter bits 39:32

Table 16-8 • MATCHREG0_REG
Bit Number Name R/W Reset Value Description
7:0 MATCH_7_0 R/W 0 Match bits 7:0

Table 16-9 • MATCHREG1_REG
Bit Number Name R/W Reset Value Description
7:0 MATCH_15_8 R/W 0 Match bits 15:8

Table 16-10 • MATCHREG2_REG
Bit Number Name R/W Reset Value Description
7:0 MATCH_23_16 R/W 0x000000 Match bits 23:16
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Match Register 3 Register

Match Register 4 Register

Individual Match Bits 0 Register

Individual Match Bits 1 Register

Individual Match Bits 2 Register

Individual Match Bits 3 Register

Individual Match Bits 4 Register

Table 16-11 • MATCHREG3_REG
Bit Number Name R/W Reset Value Description
7:0 MATCH_31_24 R/W 0x000000 Match bits 31:24

Table 16-12 • MATCHREG4_REG
Bit Number Name R/W Reset Value Description
7:0 MATCH_39_32 R/W 0 Match bits 39:32

Table 16-13 • MATCHBITS0_REG
Bit Number Name R/W Reset Value Description
7:0 IND_MATCH_7_0 R/W 0 Individual match bits 7:0

Table 16-14 • MATCHBITS1_REG
Bit Number Name R/W Reset Value Description
7:0 IND_MATCH_15_8 R/W 0 Individual match bits 15:8

Table 16-15 • MATCHBITS2_REG
Bit Number Name R/W Reset Value Description
7:0 IND_MATCH_23_16 R/W 0 Individual match bits 23:16

Table 16-16 • MATCHBITS3_REG
Bit Number Name R/W Reset Value Description
7:0 IND_MATCH_31_24 R/W 0 Individual match bits 31:24

Table 16-17 • MATCHBITS4_REG
Bit Number Name R/W Reset Value Description
7:0 IND_MATCH_39_32 R/W 00 Individual match bits 39:32
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17 – System Timer

Introduction
The System Timer consists of two programmable 32-bit decrementing counters that generate interrupts
to the ARM Cortex-M3 microcontroller and FPGA fabric or can be used in polled mode. 
Each counter has two possible modes of operation for generating interrupts: Periodic mode or One-Shot
mode. The two timers can be concatenated to create a 64-bit timer with Periodic and One-Shot modes.
The two 32-bit timers are identical. The letter "x" in register descriptions is used as a placeholder for 1 or
2, indicating Timer 1 or Timer 2.

Figure 17-1 • Block Diagram 32-Bit Mode
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System Timer
The System Timer is an APB_0 slave module that provides two programmable, interrupt-generating,
32-bit decrementing counters. The two 32-bit timers can be configured to behave as a single 64-bit timer
in which Timer 1 contains the lower 32 bits and Timer 2 contains the upper 32 bits of the 64-bit count. The
System Timer in dual 32-bit mode or 64-bit mode has two modes of operation. 

1. Periodic mode: In this mode the counter generates interrupts at constant intervals. On reaching
zero, the counter is reloaded with a value held in a register and begins counting down again.

2. One-Shot mode: The counter generates a single interrupt in this mode. On reaching zero, the
counter halts until reprogrammed by the user.

Each 32-bit counter in the System Timer is clocked with the PCLK0 input. With a PCLK frequency of 100
MHz, the maximum timeout period is approximately 42.9 seconds in 32-bit mode and 1.8 × 1011 seconds
in 64-bit mode or 5,845.5 years.
The 64-bit and 32-bit modes are mutually exclusive. 

Periodic Mode
Periodic mode is selected by setting the TIMxMODE bit in the TIMx_CTRL register to 0.
In Periodic mode, the counter continually counts down to zero when enabled. On reaching zero, an
interrupt is generated and the counter is reloaded with the value stored in the TIMxLOADVAL register.
The counter then continues to count down towards zero again, without waiting for the interrupt to be
cleared. The interrupt remains asserted until cleared by the processor. If the counter reaches zero again
without the previous interrupt having been cleared, the counter behaves as if it had just timed out
(reached zero). In effect, an interrupt has been lost. This situation can continue indefinitely as long as the
counter is enabled in Periodic mode and interrupts are not being cleared.
Writing to the TIMxLOADVAL register at any time causes the counter to be immediately loaded with the
value written and to continue counting down from the new value (if enabled). If the TIMxBGLOADVAL
register is written to, the value written is used to overwrite the TIMxLOADVAL register without affecting
the counter. When the counter next reaches zero, the new value in the TIMxLOADVAL register (which
was loaded via the TIMxBGLOADVAL register) will be used to reinitialize the counter. 

Figure 17-2 • Block Diagram 64-Bit Mode
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One-Shot Mode
One-Shot mode is selected by setting the TIMxMODE bit in the TIMx_CTRL register to 1.
In One-Shot mode, the counter will stop on reaching zero and a single interrupt will be generated. When
the counter is stopped in One-Shot mode, it can be restarted by writing a non-zero value to the
TIMxLOADVAL register. Alternatively, the counter can be restarted by clearing the TIMxMODE bit. This
will cause the counter to be loaded with the value held in the TIMxLOADVAL register and to begin
operating in Periodic mode.
While the counter is counting down, it is possible to change the value of the TIMxMODE bit at any time
without immediately affecting the operation. For example, if the counter is decrementing in One-Shot
mode and the TIMxMODE bit is cleared before the counter reaches zero, the counter will begin to
operate in Periodic mode on reaching zero.
Writing to the TIMxLOADVAL register at any time causes the counter to be loaded immediately with the
value written and to continue counting down from the new value (if enabled).
Writing to the TIMxBGLOADVAL register in One-Shot mode has no real effect unless you intend to
switch to Periodic mode when (or before) the next interrupt occurs. When in One-Shot mode, the value
written to TIMxBGLOADVAL will be loaded into the TIMxLOADVAL register as normal, but when the
counter reaches zero, it will generate a single interrupt and stop, without making use of the value written
to TIMxBGLOADVAL. Only a subsequent write to the TIMxLOADVAL register will initiate another One-
Shot count-down sequence. However, if the counter is restarted by changing the operating mode to
Periodic (by clearing the TIMxMODE bit), then the value previously written to the TIMxBGLOADVAL
register is relevant because this will be the start value (taken from the TIMxLOADVAL register) used to
initialize the counter in Periodic mode.

64-Bit Mode
Timers 1 and 2 can be concatenated into a single 64-bit timer that operates either in Periodic mode or
One-Shot mode. Writing a 1 to the TIM64_MODE register bit location 0 sets the timers in 64-bit mode.
Whenever the TIM64MODE bit changes state, the timers are re-initialized to their default reset values.
Timer 1 contains the lower 32-bit count of the 64-bit count value. Consequently, when updating or
initializing the state of the counter, the upper 32 bits of the 64-bit counter must be written to first, followed
by the lower 32 bits. You must ensure that when updating the background load value registers,
TIM64_BGLOAD_VAL_U is followed by a write to TIM64_BGLOAD_VAL_L; and when updating the load
value registers, TIM64_LOADVAL_U is followed by a write to TIM64_LOADVAL_L. When the lower 32-
bit write occurs, the 64-bit counter is updated as one 64-bit value. There are temporary holding registers
in the System Timer block that are used to facilitate proper loading of the System Timer in 64-bit mode.
These registers are not readable by the user.

System Dependencies

Clocks
The System Timer is clocked by PCLK0 on APB Bus 0. PLCLK0 is a free running version of FCLK (the
main clock driving the entire microcontroller subsystem) that is derived from the MSS_CCC output. Refer
to the "PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators" section on page 109 for more
information.

Resets
The System Timer resets to zero on power-up and is held in reset until you enable it. You have the option
under software control to reset the System Timer by writing to the System Register, located on the
Private Peripheral Bus of the Cortex-M3 microcontroller. Specifically, this System Register is
SOFT_RST_CR, located at address 0xE0042030. The TIMER_SOFTRESET control bit is encoded in bit
location 6 as follows:

b6: Function
Revision 3 307



System Timer
0: System Timer reset released
1: System Timer held in reset (reset value)

Note that setting bit 6 to 0 allows the System Timer to count, but does not cause it to count. You must
enable the System Timer by setting the appropriate TIMxENABLE bits in the TIM1_CTRL, TIM2_CTRL,
or TIM64_CTRL registers.

Interrupts
There are two interrupt signals from the System Timer Block: the TIMER1INT and TIMER2INT signals.
The TIMER1INT signal is mapped to IRQ20 and the TIMER2INT signal is mapped to IRQ21 in the
Cortex-M3 NVIC controller. Both interrupt enable bits within the NVIC are located at address
0xE000E100; IRQ20 and IRQ21 correspond to bit locations 20 and 21, respectively. You must also
enable interrupts in the System Timer by setting the appropriate TIMxINTEN bits in TIM1_CTRL,
TIM2_CTRL, or TIM64_CTRL registers.
When the System Timer is in 64-bit mode and the counter counts down to zero, TIMER1INT and
TIMER2INT signals assert. Consequently IRQ20 and IRQ21 interrupts are asserted. Both interrupt
signals are identical in that they both represent the 64-bit timer interrupt. In other words, TIMER1INT is
not the interrupt signal asserted when Timer 1 counts down to zero while in 64-bit mode. You must
disable one of the interrupts in the NVIC controller or you will get two interrupts for the same event. 
In 32-bit mode you must clear the TIMxRIS bit, in the respective interrupt service routine, to prevent a
reassertion of the interrupt. Likewise, in 64-bit mode you must clear the TIM64RIS bit in the respective
interrupt service routine to prevent a reassertion of the interrupt.

GPIO
There are no requirements to configure a GPIO for the System Timer to operate properly.
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System Timer Register Map 
The System Timer base address resides at 0x40005000 and extends to address 0x40005FFF in the
Cortex-M3 memory map. 

Table 17-1 • System Timer Register Map 

Register Name Address R/W
Reset 
Value Description

TIM1_VAL (TIMx_VAL) 0x40005000 R 0x0 Current value of Timer 1

TIM1_LOADVAL (TIMx_LOADVAL) 0x40005004 R/W 0x0 Load value for Timer 1

TIM1_BGLOADVAL (TIMx_BGLOADVAL) 0x40005008 R/W 0x0 Background load value for Timer 1

TIM1_CTRL (TIMx_CTRL) 0x4000500C R/W 0x0 Timer 1 Control register

TIM1_RIS (TIMx_RIS) 0x40005010 R/W 0x0 Timer 1 raw interrupt status

TIM1_MIS (TIMx_MIS) 0x40005014 R 0x0 Timer 1 masked interrupt status

TIM2_VAL (TIMx_VAL) 0x40005018 R 0x0 Current value of Timer 2

TIM2_LOADVAL (TIMx_LOADVAL) 0x4000501C R/W 0x0 Load value for Timer 2

TIM2_BGLOADVAL (TIMx_BGLOADVAL) 0x40005020 R/W 0x0 Background load value for Timer 2

TIM2_CTRL (TIMx_CTRL) 0x40005024 R/W 0x0 Timer 2 Control register

TIM2_RIS (TIMx_RIS) 0x40005028 R/W 0x0 Timer 2 raw interrupt status

TIM2_MIS (TIMx_MIS) 0x4000502C R 0x0 Timer 2 masked interrupt status

TIM64_VAL_U 0x40005030 R 0x0 Upper 32-bit word in 64-bit mode

TIM64_VAL_L 0x40005034 R 0x0 Lower 32-bit word in 64-bit mode

TIM64_LOADVAL_U 0x40005038 R/W 0x0 Upper 32-bit load value word in 64-bit
mode

TITM64_LOADVAL_L 0x4000503C R/W 0x0 Lower 32-bit load value word in 64-bit
mode

TIM64_BGLOADVAL_U 0x40005040 R/W 0x0 Upper 32-bit background load value in 64-
bit mode

TIM64_BGLOADVAL_L 0x40005044 R/W 0x0 Lower 32-bit background load value in 64-
bit mode

TIM64_CTRL 0x40005048 R/W 0x0 Control register in 64-bit mode

TIM64_RIS 0x4000504C R/W 0x0 Raw interrupt status in 64-bit mode

TIM64_MIS 0x40005050 R 0x0 Masked interrupt status in 64-bit mode

TIM64_MODE 0x40005054 R/W 0x0 System Timer dual 32-bit or 64-bit mode
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Timer x Value Register

Timer x Load Value Register

Timer x Background Load Value Register

Table 17-2 • TIMx_VAL

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIMx_VAL R 0x0 This register holds the current value of the counter for Timer x.
Reading this register while the System Timer is set to 64-bit mode
returns the reset value.

Table 17-3 • TIMx_LOADVAL

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIMx_LOADVAL R/W 0x0 This register holds the value to load into the counter for Timer x.
When this register is written to, the value written is immediately
loaded into the counter, regardless of which mode Timer x is in
(Periodic or One-Shot). If Timer x is enabled, the counter starts
decrementing from this value. When operating in Periodic mode, the
value in this register is used to reload the counter when the counter
decrements to zero. This register is overwritten with the value in
TIMxBGLOADVAL when you write to TIMxBGLOADVAL. In Periodic
mode, TIMxLOADVAL always stores the value which is loaded into
the counter. Writing or reading this register while the System Timer is
set to 64-bit mode has no effect.

Table 17-4 • TIMx_BGLOADVAL

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIMx_BGLOADVAL R/W 0x0 When this register is written to, the value written is loaded into the
TIMxLOADVAL register without updating the counter itself. This
allows a new value to be loaded into the respective counter without
interrupting the current count cycle. The counter is updated with the
new value in TIMxLOADVAL when the counter decrements to 0.
Writing/reading this register while the System Timer is set to 64-bit
mode has no effect. 
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Timer x Control Register
Table 17-5 • TIMx_CTRL

Bit 
Number Name R/W

Reset 
Value Description

31:3 Reserved R/W 0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation. 

2 TIMxINTEN R/W 0x0 Timer x Interrupt Enable. When the counter reaches zero, an interrupt is
signaled to the Cortex-M3 Nested Vectored Interrupt Controller; IRQ20
for Timer x, IRQ21 for Timer 2.
0 = Timer x interrupt disabled
1 = Timer x interrupt enabled
Writing this register while the System Timer is set to 64-bit mode has no
effect. Reading this register while the System Timer is set to 64-bit mode
returns the reset value.

1 TIMxMODE R/W 0x0 Timer x Mode.
 0 = Timer x in Periodic Mode. If TIMxENABLE = 1 when the counter
reaches zero the counter is reloaded from the value in the
TIMxLOADVAL register and begins counting down immediately.
1 = Timer x in One-Shot mode. If TIMxENABLE = 1 when the counter
reaches zero the counter stops counting. To start the counter again, the
user must load TIMxLOADVAL with a non-zero value or set the Timer to
Periodic mode by clearing TIMxMODE to 0.
Writing this register while the System Timer is set to 64-bit mode has no
effect. Reading this register while the System Timer is set to 64-bit mode
returns the reset value.

0 TIMxENABLE R/W 0x0 Timer x Enable
0 = Timer x disabled
1 = Timer x enabled
Setting to 1 enables the timer and starts it counting from the current
value in TIMx_VAL unless TIMx_VAL is 0, in which case TIMx_VAL is
loaded from TIMx_LOADVAL.
Writing this register while the System Timer is set to 64-bit mode has no
effect. Reading this register while the System Timer is set to 64-bit mode
returns the reset value.
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Timer x Raw Interrupt Status Register

Timer x Masked Interrupt Status Register

Timer 64 Value Upper Register

Timer 64 Value Lower Register

Table 17-6 • TIMx_RIS

Bit 
Number Name R/W

Reset 
Value Description

31:1 Reserved R/W 0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation. 

0 TIMx_RIS R/W 0x0 Timer x Raw Interrupt Status
0 = Timer x has not reached zero
1 = Timer x has reached zero at least once since this bit was last cleared
(by a reset or by writing 1 to this bit).
Writing a 1 to this bit clears the bit and the interrupt, writing a zero has no
effect.

Table 17-7 • TIMx_MIS

Bit 
Number Name R/W

Reset 
Value Description

31:1 Reserved R 0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation. 

0 TIMx_MIS R 0x0 Timer x masked interrupt status
This read only bit is a logical AND of the TIMxRIS and TIMxINTEN
bits. The TIMERxINT output from the timer has the same value as this
bit. Writing to this bit has no effect.

Table 17-8 • TIM64_VAL_U

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIM64_VAL_U R 0x0 This register holds the current value of the upper 32 bits of the 64-bit
count value for the System Timer. This register is read only; writes
have no effect. Reading this register while the System Timer is set to
32-bit mode returns the reset value.

Table 17-9 • TIM64_VAL_L

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIM64_VAL_L R 0x0 This register holds the current value of the lower 32 bits of the 64-bit
count value for the System Timer. This register is read only; writes have
no effect. When reading from this register, the upper 32 bits of the 64-
bit counter is stored into TIM64_VAL_U. To properly read the 64-bit
counter value, the user must read from this register first; then the
TIM64_VAL_U. Reading this register while the System Timer is set to
32-bit mode returns the reset value.
312 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
Timer 64 Load Value Upper Register

Timer 64 Load Value Lower Register

Timer 64 Background Load Value Upper Register

Table 17-10 • TIM64_LOADVAL_U

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIM64_LOADVAL_U R/W 0x0 This register holds the upper 32-bit value to load into the System
Timer when in 64-bit mode. When this register is written to, the
value written is immediately loaded into a temporary register. The
value in the temporary register is only written to the System Timer
when the lower 32-bit word TIM64_LOADVAL_L is written.
Writing this register while the System Timer is set to 32-bit mode
has no effect. Reading this register while the System Timer is set
to 32-bit mode returns the reset value.

Table 17-11 • TITM64_LOADVAL_L

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIM64_LOADVAL_L R/W 0x0 When this register is written to, the value written is immediately
loaded into the lower 32 bits of the 64-bit counter along with the
value previously written in register TIM64_LOADVAL_U. This
applies in both Periodic and One-Shot mode. The value stored in
this register is also used to reload the counter when the count
reaches zero and the counter is operating in Periodic mode. This
register will be overwritten if the TIM64BGLOADVAL register is
written to, but the counter will not be updated with the new value.
The TIM64BGLOADVAL register is an internal register to the
System Timer, used to concatenate the two 32-bit values from
TIM64_BGLOAD_VAL_U and TIM64_BGLOAD_VAL_L. If
Periodic mode is selected, the values in the TIM64_LOADVAL_L
and the TIM64_LOADVAL_U are loaded into the counter when
the counter decrements to zero. Writing this register while the
System Timer is set to 32-bit mode has no effect. Reading this
register while the System Timer is set to 32-bit mode returns the
reset value.

Table 17-12 • TIM64_BGLOADVAL_U

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIM64_BGLOADVAL_U R/W 0x0 This register holds the upper 32-bit background value to load into
the System Timer when in 64-bit mode. The value in this register
is written to the internal TIM64LOADVAL register when the lower
32-bit word TIM64_BGLOADVAL_L is written. Writing this
register while the System Timer is set to 32-bit mode has no
effect. Reading this register while the System Timer is set to 32-
bit mode returns the reset value. 
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Timer 64 Background Load Value Lower Register

Timer 64 Control Register

Table 17-13 • TIM64_BGLOADVAL_L

Bit 
Number Name R/W

Reset 
Value Description

31:0 TIM64_BGLOADVAL_L R/W 0x0 Background load value for the lower 32 bits of 64-bit System
Timer. When this register is written to, both the upper and lower
words are written into an internal 64-bit TIM64LOADVAL register
without updating the counter itself. The TIM64LOADVAL register
is an internal register to the System Timer used in 64-bit mode
for concatenating the two 32-bit registers, TIM64_LOADVAL_U
and TIM64_LOADVAL_L. The new 64-bit load value is loaded
into the counter when the counter reaches zero. Writing this
register while the System Timer is set to 32-bit mode has no
effect. Reading this register while the System Timer is set to 32-
bit mode returns the reset value.

Table 17-14 • TIM64_CTRL

Bit 
Number Name R/W

Reset 
Value Description

31:3 Reserved R/W 0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

2 TIM64INTEN R/W 0x0 Timer 64 Interrupt Enable. When the counter reaches zero, an interrupt is
signaled to the Cortex-M3 Nested Vectored Interrupt Controller.
0 = Timer 64 interrupt disabled
1 = Timer 64 interrupt enabled

1 TIM64MODE R/W 0x0 Timer 64 Mode
0 = Timer 64 in Periodic mode
If TIM64ENABLE = 1 when the counter reaches zero, the counter is
reloaded from the value in the TIM64_LOADVAL_U and
TIM64_LOADVAL_L registers and begins counting down immediately.
1 = Timer 64 in One-Shot mode
If TIM64ENABLE = 1 when the counter reaches zero, the counter stops
counting. To start the counter again, load TIM64_LOADVAL_U and
TIM64_LOADVAL_L with a non-zero value or set the Timer to Periodic
mode by clearing TIM64MODE to 0.

0 TIM64ENABLE R/W 0x0 Timer 64 Enable
0 = Timer 64 disabled
1 = Timer 64 enabled
Writing this register while the System Timer is set to 32-bit mode has no
effect. Reading this register while the System Timer is set to 32-bit mode
returns the reset value.
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Timer 64 Raw Interrupt Status Register

Timer 64 Masked Interrupt Status Register

Timer 64 Mode Register

Table 17-15 • TIM64_RIS

Bit 
Number Name R/W

Reset 
Value Description

31:1 Reserved R/W 0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation. 

0 TIM64_RIS R/W 0x0 Timer x raw interrupt status
0 = Timer 64 has not reached zero
1 = Timer 64 has reached zero at least once since this bit was last cleared
(by a reset or by writing 1 to this bit)
Writing a 1 to this bit clears the bit and the interrupt; writing a zero has no
effect.

Table 17-16 • TIM64_MIS

Bit 
Number Name R/W

Reset 
Value Description

31:1 Reserved R 0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation. 

0 TIM64_MIS R 0x0  Timer 64 masked interrupt status
This read only bit is a logical AND of the TIM64RIS and TIM64INTEN bits.
The TIMER1INT and TIMER2INT outputs from the timer both have the
same value as this bit when the timer is set to 64-bit mode. Writing to this bit
has no effect.

Table 17-17 • TIM64_MODE

Bit 
Number Name R/W

Reset 
Value Description

31:1 Reserved R/W 0x0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0 TIM64_MODE R/W 0x0 Timer 64 mode
0 = Timer 64 disabled; two separate 32-bit timers
1 = Timer 64 enabled; one 64-bit timer
Changing the state of this bit has the effect of reinitializing the System
Timer register map to its default power-up state. 
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SmartFusion MSS Timer Application Development 
The SmartFusion MSS System Timer peripherals provide two 32-bit decrementing counters which can
be used to implement two 32-bit timers or one 64-bit timer. This section provides a high level overview of
the design flow in order to facilitate fast and straightforward MSS Timer application development. The
timers generate an interrupt that can be used by the MSS or the FPGA fabric to trigger a user-defined
action. Using the MSS Timer peripherals primarily requires configuring the MSS peripherals in use and
developing user firmware. Using the MSS Timer does not require the FPGA fabric or the Libero design
flow if there are no FPGA fabric resources required by the user application. The SmartFusion MSS must
be configured to setup the MSS clocking scheme and configure any additional MSS peripherals desired
to process a Timer interrupt. The user firmware will then control these active peripherals so that they can
perform the tasks required by the user application.
User application code can be developed and debugged using any of the three supported embedded
software development tools: SoftConsole, Keil Microcontroller Development Kit (MDK) µVision,® and
IAR Embedded Workbench®. Microsemi provides a set of MSS Timer drivers that can be generated from
the MSS configurator or from the Firmware Catalog. These drivers are common for all three tool flows.
However, the Cortex Microcontroller Software Interface Standard (CMSIS) access layer is dependent on
the tool flow selected and should be chosen based on the specific tool flow being utilized.
The MSS Timer drivers enable application code development without having to manually read and write
the MSS System Registers to initialize, configure, and operate the timers. The MSS configurator and
Firmware Catalog also provide sample projects depicting the MSS Timer usage. The MSS Timer drivers
contain functions that allow the user to set up Timer1 and Timer2 independently or as a single 64-bit
timer. For additional driver-specific details, refer to the SmartFusion MSS Configurators and Drivers
User’s Guides.

Developing User Application Code with MSS Timer Drivers 
When creating Timer application code using the SmartFusion MSS Timer drivers, the mss_timer.h
header file must be included in the C code, as shown below.

Example
#include "mss_timer.h"

Before an MSS Timer can be used, it must first be initialized to operate in a specific mode. As described
in the "Introduction" section on page 305, each timer can operate in periodic mode or one-shot mode. In
the firmware these are MSS_TIMER_PERIODIC_MODE and MSS_TIMER_ONE_SHOT_MODE. 
The functions MSS_TIM1_init(), MSS_TIM2_init(), and MSS_TIM64_init() are used to initialize 32-bit
Timer1, 32-bit Timer2, or the 64-bit combination of Timer1 and Timer2. It is important to note that the
SmartFusion MSS Timer cannot be used as both a 64-bit and 32-bit timer. Calling the MSS_TIM64_init()
function will overwrite any previous configuration of the MSS Timer1 or Timer2 as a 32-bit timer. Similarly,
calling MSS_TIM1_init() or MSS_TIM2_init()will overwrite any previous configuration of the MSS Timer
as a 64-bit timer. For example, to initialize Timer1 as a 32-bit periodic timer, the code below would be
used:
MSS_TIM1_init( MSS_TIMER_PERIODIC_MODE );

Once the desired timer is initialized, the 32-bit or 64-bit count value must be loaded into the timer down
counter. There are two ways to load the timer value: the immediate load and the background load. 
In the immediate load method, the load_value is the value from which the timer will start counting down
to zero immediately after being enabled. If the timer was already enabled when an immediate load
occurred, the counter value will be set to the new load value and immediately start counting down. The
functions used to perform an immediate timer load are called MSS_TIM1_load_immediate(),
MSS_TIM2_load_immediate(), and MSS_TIM64_load_immediate() for each respective timer (Timer1,
Timer2 or 64-bit Timer). From this point on, functions will be shown for Timer1, since the Timer2 and
64-bit functions are similar in usage.
For example, to load a timer start value equal to 1 second, the user can use the CMSIS-PAL global
variable, g_FrequencyPCLK0, which provides the timer input frequency. Thus, counting down from this
value to zero will take 1 second after the timer is enabled. 
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…
SystemCoreClockUpdate(); //CMSIS Func - updates global freq variables
MSS_TIM1_load_immediate( g_FrequencyPCLK0 );
…

In contrast, the background load method loads the timer with the value that will be reloaded into the timer
down-counter the next time the counter reaches zero. When the timer is operating in periodic mode,
background loading is typically used to change the delay period between the timer interrupts without
stopping the timer.
Note that the MSS_TIM64_load_immediate function takes two 32-bit load values for the upper and lower
32-bit values which comprise the 64-bit down-counter start value.
After the timer value has been loaded, the timer can be started, as shown in the example below:
…
MSS_TIM1_start();
…

In order to generate timer interrupts to the Cortex-M3 processor, the timer interrupts must be enabled, as
shown in the example below:
…
MSS_TIM1_enable_irq();
…

Processing a Timer Interrupt
Once the timer is initialized, loaded with the down-counter start value, started and interrupts are enabled,
the Timer will generate a Timer1, Timer2, or Timer64 interrupt. In order to process the timer interrupt, the
corresponding Timer Interrupt Service Routine (ISR) or Interrupt Handler function must be defined. 
The SmartFusion MSS Timer Interrupt Handler function prototypes have been defined in the
SmartFusion CMSIS-PAL; thus, the user timer interrupt handlers must follow the pre-defined function
prototypes listed below:
void Timer1_IRQHandler( void );
void Timer2_IRQHandler( void );

To add a Timer1 interrupt handler, the Timer1_IRQHandler() function must be defined by the user
application code. Similarly, for the Timer2 interrupt handler, the Timer2_IRQHandler() function must be
defined by the user. Lastly, when using the MSS Timer as a 64-bit timer, only the Timer1_IRQHandler()
function must be defined by the user application code because the Timer2 interrupt is not used when the
MSS Timer is configured as a 64-bit timer.
The example below shows a Timer1 interrupt handler function that sends a message from the MSS
UART when the Timer1 interrupt occurs. Notice that the last operation in the interrupt handler is the call
to MSS_TIM1_clear_irq() to clear the Timer1 interrupt.
void Timer1_IRQHandler( void )
{
  /* Print a message */
  MSS_UART_polled_tx( &g_mss_uart0, tx_buff, sizeof(tx_buff) );

  /* Clear TIM1 interrupt */
  MSS_TIM1_clear_irq();
}

The SmartFusion MSS Timer application development overview provided in this section should enable
the user to rapidly and easily utilize the SmartFusion MSS Timer peripherals within the embedded
application. For additional details on the three tool flows and application development examples, refer to
the SmartFusion tutorials available at http://www.microsemi.com/soc/products/smartfusion/docs.aspx.
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18 – General Purpose I/O Block (GPIO)

The microcontroller subsystem (MSS) general purpose I/O (GPIO) block is an APB slave to 32 general
purpose I/Os. Each GPIO bit is configurable as an input or an output with configurable interrupt
generation. GPIOs can be routed to dedicated I/O buffers (MSSIOBUF) or in some cases to the FPGA
fabric interface through an IOMUX. The number of GPIOs available to package pins varies with device
size and package type. The MSS peripherals are not multiplexed with each other; they are
multiplexed only with the GPIO block.
A block diagram showing the arrangement of the GPIO, the IOMUX, and the I/O buffer is shown in
Figure 18-1. This particular example shows the UART_0 transmit signal multiplexed with GPIO bit 20. 
GPIOs 31 through 16 are shared with peripheral signals via an IOMUX and through an alternate sourcing
input, these GPIOs can be shared with the fabric Interface, while GPIOs 15 through 0 are shared with I/O
interface tiles from the FPGA fabric. The GPIO block is mapped to address 0x40013000 in the memory
map.

Features of MSS General Purpose I/Os
The features of MSS I/Os are described in Table 18-1 and Table 18-2 on page 320.

Figure 18-1 • GPIO, IOMUX, and I/O Buffer Arrangement
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Table 18-1 • MSS I/O Voltage Standards and Drive Strengths

I/O Bank Direction Single-Ended I/O Standards Drive Strength

Bank 4 West LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V 8 mA

LVCMOS 1.8 V 4 mA

LVCMOS 1.5 V 2 mA

Bank 2 East LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V 8 mA

LVCMOS 1.8 V 4 mA

LVCMOS 1.5 V 2 mA
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MSS GPIO Functional Description
Figure 18-2 depicts the GPIO block diagram. The GPIO block consists of one 32-bit input register, GPI;
one 32-bit output register, GPO; one 32-bit interrupt register, GPIO_INTR; and 32 configuration registers
(one register for each GPIO bit), GPIOCFG_x_REG (where x can range from 0 to 31). The
GPIOCFG_x_REG register, per bit, sets the input/output direction, enables the relevant bit of each 32-bit
register (GPINEN for GPI, GPOUTEN for GPO), and sets the interrupt mask of each individual bit in the
GPIO_INTR register. Interrupts can be level-sensitive or edge-triggered.

Table 18-2 • MSS I/O Features

I/O Bank Direction Hot Insertion Cold Sparing
Output 

Enable Skew
Pull-Up/

Pull-Down*
Schmitt 
Trigger*

Bank 4 West Yes Yes No Yes Yes

Bank 2 East Yes Yes No Yes Yes

Note: * Selection of these occurs in the I/O editor in the MSS Configurator within SmartDesign.

Figure 18-2 • GPIO Block Diagram
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GPIO Register Map 
The GPIO block is mapped to address 0x40013000 in the memory map. Registers referred to in this
document are defined in Table 18-3.

MSS GPIO Register
Table 18-4 gives bit definitions for the GPIOCFG_x_REG registers.

To enable the GPIO as an input, set the GPINEN bit to a 1. This allows the synchronized input from the
MSSIOBUF to be available in the GPI register, as shown in Figure 18-2 on page 320. When the user
disables the input path by setting the GPINEN bit to a 0, the value read at the respective bit location of
the GPI input register will be 0.

Table 18-3 • MSS GPIO Register Map

Register Name Address R/W
Reset 
Value Description

GPIO_x_CFG (x = 0) 0x40013000 R/W 0x0 GPIO Configuration register for bit 0

GPIO_x_CFG (x = 1) 0x40013004 R/W 0x0 GPIO Configuration register for bit 1

. . . . .

. . . . .

. . . . .

GPIO_x_CFG (x = 31) 0x4001307C R/W 0x0 GPIO Configuration register for bit 31

GPIO_IRQ 0x40013080 R/W 0x0 Interrupt Status register

GPIO_IN 0x40013084 R 0x0 Read only bits for ports configured as inputs

GPIO_OUT 0x40013088 R/W 0x0 Read/write bits for ports configured as outputs

MSS_IO_BANK_CR 0xE0042078 R/W 0x0 Configures logic thresholds for the MSS I/O banks

GPIN_SOURCE_CR 0xE004207C R/W 0x0 Provides for alternate sourcing of input to GPIOs 16–31

IOMUX_n_CR 0xE0042100 R/W 0x0 Configures the various IOMUXes 

Table 18-4 • GPIO_x_CFG

Bit 
Number Name R/W

Reset 
Value Description

7:5 GPIOINT_TYPE R/W 0b000 See Table 18-5 on page 322.

4 Reserved R/W 0b0 Reserved

3 GPINTEN R/W 0b0 0 = Interrupt disabled.
1= Interrupt enabled.

2 GPO_OUTBUFEN R/W 0b0 0 = Disable output buffer if signal routed through IOMUX to
IOBUF (dependent on IOMUX setting).
1 = Enable output buffer if signal routed through IOMUX to
IOBUF (dependent on IOMUX setting).

1 GPINEN R/W 0b0 0 = Input register disabled.
1 = Input register enabled.

0 GPOUTEN R/W 0b0 0 = Output register disabled.
1 = Output register enabled.
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To enable the GPIO as an output, set the GPOUTEN bit to a 1. This allows the output from the GPO
register to pass to the MSSIOBUF, as shown in Figure 18-2 on page 320. If the user wishes to disable
the output path by setting the GPOUTEN to a 0, a logical 0 will drive the MSSIOBUF and the respective
bit in the GPO register will retain its state.
To use a GPIO as a general purpose interrupt, the GPINTEN bit must be set to a 1 for that bit. Level
interrupts clear automatically, but edge interrupts must be cleared manually by writing a 1 to the
respective bit location in the GPIO_INTR register. If attempting to clear an edge interrupt at the same
time as an edge occurs, the edge wins. Table 18-5 depicts the bit settings needed to generate a
particular type of interrupt. GPIO interrupts 0 to 31 are mapped to ARM Cortex-M3 NVIC interrupts 32 to
63. The 32 GPIO interrupts are ORed into a single interrupt signal, which is available to the FPGA fabric
interface as MSSINT[1].

The output buffer can be tristated by setting the MSSIOBUFOE bit to a 0. Setting MSSIOBUFOE to a 1
enables the output driver in the MSSIOBUF. Pull-ups, pull-downs, and Schmitt Trigger controls are
associated with the respective IOMUX and are described in the "Fabric Interface and IOMUX" section on
page 343.

MSS GPIO Logic Thresholds
For the east bank and west bank of MSS GPIO pads, the logic threshold of these MSS I/Os are
programmable on a per bank basis. The MSS_IO_BANK_CR is located within the SYSREG block at
address 0xE0042078. This register controls the east and west bank I/O thresholds according to
Table 18-7.

Table 18-5 • Input Interrupt Type Configuration

GPIOINT_TYPE

DefinitionBit 7 Bit 6 Bit 5

0 0 0 Level High

0 0 1 Level Low

0 1 0 Positive edge

0 1 1 Negative edge

1 0 0 Both edges

Table 18-6 • MSS_IO_BANK_CR

Bit 
Number Name R/W

Reset 
Value Function

3:2 BTWEST R/W 0 Logic threshold selection for MSS I/O west bank. See
Table 18-7.

1:0 BTEAST R/W 0 Logic threshold selection for MSS I/O east bank. See
Table 18-7.

Table 18-7 •  MSS GPIO Logic Threshold

BTWEST BTEAST

Logic Threshold for Each Bank, Set IndividuallyBit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 I/O threshold = LVTTL/LVCMOS 3.3 V – default state

0 1 0 1 I/O threshold = LVCMOS 2.5 V

1 0 1 0 I/O threshold = LVCMOS 1.8 V

1 1 1 1 I/O threshold = LVCMOS 1.5 V output threshold configured as 1.8 V
LVCMOS
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GPIN Source Select Register
For the A2F200, GPIOs 16 through 31 are multiplexed between two IOMUXes. This allows these GPIOs
access to user signals from the fabric interface. The GPIN_SOURCE_CR steers the user’s signal from
the fabric interface through the secondary IOMUX, as shown in Figure 18-3 on page 324.
For example, for GPIN_16_SRC, the input can be sourced from IOMUXCELL 0 or 41. Figure 18-3 on
page 324 shows how two IOMUXes are configured in relation to bit GPIN_16_SRC. This topology allows
a user’s logic signal from the fabric, F2M[25] for instance, to be read by the Cortex-M3 processor via the
GPIO16 input. Table 18-8 lists the bit definitions for the GPIN_SOURCE_CR register. F2M in this case
means fabric-to-MSS signal direction and M2F describes a signal sourced from the MSS driving into the
FPGA fabric.  

Table 18-8 • GPIN_SOURCE_CR

Bit Number Name R/W Reset Value Function

0 GPIN_16_SRC R/W 0 0 = IOMUX 0; 1 = IOMUX 41

1 GPIN_17_SRC R/W 0 0 = IOMUX 1; 1 = IOMUX 42

2 GPIN_18_SRC R/W 0 0 = IOMUX 2; 1 = IOMUX 43

3 GPIN_19_SRC R/W 0 0 = IOMUX 3; 1 = IOMUX 44

4 GPIN_20_SRC R/W 0 0 = IOMUX 4; 1 = IOMUX 45

5 GPIN_21_SRC R/W 0 0 = IOMUX 5; 1 = IOMUX 46

6 GPIN_22_SRC R/W 0 0 = IOMUX 6; 1 = IOMUX 47

7 GPIN_23_SRC R/W 0 0 = IOMUX 7; 1 = IOMUX 48

8 GPIN_24_SRC R/W 0 0 = IOMUX 8; 1 = IOMUX 49

9 GPIN_25_SRC R/W 0 0 = IOMUX 9; 1 = IOMUX 50

10 GPIN_26_SRC R/W 0 0 = IOMUX 10; 1 = IOMUX 51

11 GPIN_27_SRC R/W 0 0 = IOMUX 11; 1 = IOMUX 52

12 GPIN_28_SRC R/W 0 0 = IOMUX 12; 1 = IOMUX 53

13 GPIN_29_SRC R/W 0 0 = IOMUX 13; 1 = IOMUX 54

14 GPIN_30_SRC R/W 0 0 = IOMUX 14; 1 = IOMUX 55

15 GPIN_31_SRC R/W 0 0 = IOMUX 15; 1 = IOMUX 56
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Figure 18-3 • Example of GPIN Source Selection from Two IOMUXes
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IOMUXes Associated with GPIOs
IOMUXes 0 – 15 and 25 – 56 are used to multiplex MSS peripherals, GPIOs, and fabric interface signals
to MSSIOBUFs. The individual signal mapping for each IOMUX is listed in Table 18-9 through
Table 18-56 on page 340.

IOMUX 0

IOMUX 1

IOMUX 2

Table 18-9 •  IOMUX 0

Pad Name
Pad 

Ports IOMUX_0_CR

IOMUX 0 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_DO/GPIO_16 I GPI_16

O SPI_0_DO GPO_16

OE SPI_0_DEN GPOE_16

PU IOMUX_0_PU

PD IOMUX_0_PD

ST IOMUX_0_ST

Table 18-10 • IOMUX 1

Pad Name
Pad 

Ports IOMUX_1_CR

IOMUX 1 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_DI/GPIO_17 I SPI_0_DI GPI_17

O GND GPO_17

OE GND GPOE_17

PU IOMUX_1_PU

PD IOMUX_1_PD

ST IOMUX_1_ST

Table 18-11 • IOMUX 2

Pad Name
Pad 

Ports IOMUX_2_CR

IOMUX 2 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_CLK/GPIO_18 I SPI_0_CLKI GPI_18

O SPI_0_CLKO GPO_18

OE SPI_0_MODE GPOE_18

PU IOMUX_2_PU

PD IOMUX_2_PD

ST IOMUX_2_ST
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IOMUX 3

IOMUX 4

IOMUX 5

Table 18-12 • IOMUX 3

Pad Name
Pad 

Ports IOMUX_3_CR

IOMUX 3 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_0_SS[0]/GPIO_19 I SPI_0_SSI GPI_19

O SPI_0_SSO GPO_19

OE SPI_0_MODE GPOE_19

PU IOMUX_3_PU

PD IOMUX_3_PD

ST IOMUX_3_ST

Table 18-13 • IOMUX 4

Pad Name
Pad 

Ports IOMUX_4_CR

IOMUX 4 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_TXD/GPIO_20 I GPI_20

O UART_0_TXD GPO_20

OE High GPOE_20

PU IOMUX_4_PU

PD IOMUX_4_PD

ST IOMUX_4_ST

Table 18-14 • IOMUX 5

Pad Name
Pad 

Ports IOMUX_5_CR

IOMUX 5 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_0_RXD/GPIO_21 I UART_0_RXD GPI_21

O GND GPO_21

OE GND GPOE_21

PU IOMUX[5]_PU

PD IOMUX[5]_PD

ST IOMUX[5]_ST
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IOMUX 6

IOMUX 7

IOMUX 8

Table 18-15 • IOMUX 6

Pad Name
Pad 

Ports IOMUX_6_CR

IOMUX 6 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_0_SDA/GPIO_22 I I2C_0_SDAI GPI_22

O GND GPO_22

OE ~(I2C_0_SDAO) GPOE_22

PU IOMUX_6_PU

PD IOMUX_6_PD

ST IOMUX_6_ST

Table 18-16 • IOMUX 7

Pad Name
Pad 

Ports IOMUX_7_CR

IOMUX 7 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_0_SCL/GPIO_23 I I2C_0_SCLI GPI_23

O GND GPO_23

OE ~(I2C_0_SCLO) GPOE_23

PU IOMUX_7_PU

PD IOMUX_7_PD

ST IOMUX_7_ST

Table 18-17 • IOMUX 8

Pad Name
Pad 

Ports IOMUX_8_CR

IOMUX 8 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_DO/GPIO_24 I GPI_24

O SPI_1_DO GPO_24

OE SPI_1_DEN GPOE_24

PU IOMUX_8_PU

PD IOMUX_8_PD

ST IOMUX_8_ST
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IOMUX 9

IOMUX 10

IOMUX 11

Table 18-18 • IOMUX 9

Pad Name
Pad 

Ports IOMUX_9_CR

IOMUX 9 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_DI/GPIO_25 I SPI_1_DI GPI_25

O GND GPO_25

OE GND GPOE_25

PU IOMUX_9_PU

PD IOMUX_9_PD

ST IOMUX_9_ST

Table 18-19 • IOMUX 10

Pad Name
Pad 

Ports IOMUX_10_CR

IOMUX 10 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_CLK/GPIO_26 I SPI_1_CLKI GPI_26

O SPI_1_CLKO GPO_26

OE SPI_1_MODE GPOE_26

PU IOMUX_10_PU

PD IOMUX_10_PD

ST IOMUX_10_ST

Table 18-20 • IOMUX 11

Pad Name
Pad 

Ports IOMUX_11_CR

IOMUX 11 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

SPI_1_SS[0]/GPIO_27 I SPI_1_SSI GPI_27

O SPI_1_SSO GPO_27

OE SPI_1_MODE GPOE_27

PU IOMUX_11_PU

PD IOMUX_11_PD

ST IOMUX_11_ST
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IOMUX 12

IOMUX 13

IOMUX 14

Table 18-21 • IOMUX 12

Pad Name
Pad 

Ports IOMUX_12_CR

IOMUX 12 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_TXD/GPIO_28 I GPI_28

O UART_1_TXD GPO_28

OE GND GPOE_28

PU IOMUX_12_PU

PD IOMUX_12_PD

ST IOMUX_12_ST

Table 18-22 • IOMUX 13

Pad Name
Pad 

Ports IOMUX_13_CR

IOMUX 13 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

UART_1_RXD/GPIO_29 I UART_1_RXD GPI_29

O GND GPO_29

OE GND GPOE_29

PU IOMUX_13_PU

PD IOMUX_13_PD

ST IOMUX_13_ST

Table 18-23 • IOMUX 14

Pad Name
Pad 

Ports IOMUX_14_CR

IOMUX 14 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_1_SDA/GPIO_30 I I2C_1_SDAI GPI_30

O GND GPO_30

OE ~(I2C_1_SDAO) GPOE_30

PU IOMUX_14_PU

PD IOMUX_14_PD

ST IOMUX_14_ST
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IOMUX 15

IOMUX 25

IOMUX 26

Table 18-24 • IOMUX 15

Pad Name
Pad 

Ports IOMUX_15_CR

IOMUX 15 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

I2C_1_SCL/GPIO_31 I I2C_1_SCLI GPI_31

O GND GPO_31

OE ~(I2C_1_SCLO) GPOE_31

PU IOMUX_15_PU

PD IOMUX_15_PD

ST IOMUX_15_ST

Table 18-25 • IOMUX 25

Name
Pad 

Ports IOMUX_25_CR

IOMUX 25 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_0/ioUXWbYvZ I GPI_0 M2F[9]

O GPO_0 F2M[9]

OE GPOE_0 F2M_OE[9]

PU IOMUX_25_PU

PD IOMUX_25_PD

ST IOMUX_25_ST

Table 18-26 • IOMUX 26

Name
Pad 

Ports IOMUX_26_CR

IOMUX 26 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_1/ioUXWbYvZ I GPI_1 M2F[10]

O GPO_1 F2M[10]

OE GPOE_1 F2M_OE[10]

PU IOMUX_26_PU

PD IOMUX_26_PD

ST IOMUX_26_ST
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IOMUX 27

IOMUX 28

IOMUX 29

Table 18-27 • IOMUX 27

Name
Pad 

Ports IOMUX_27_CR

IOMUX 27 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_2/ioUXWbYvZ I GPI_2 M2F[11]

O GPO_2 F2M[11]

OE GPOE_2 F2M_OE[11]

PU IOMUX_27_PU

PD IOMUX_27_PD

ST IOMUX_27_ST

Table 18-28 • IOMUX 28

Name
Pad 

Ports IOMUX_28_CR

IOMUX 28 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_3/ioUXWbYvZ I GPI_3 M2F[12]

O GPO_3 F2M[12]

OE GPOE_3 F2M_OE[12]

PU IOMUX_28_PU

PD IOMUX_28_PD

ST IOMUX_28_ST

Table 18-29 • IOMUX 29

Name
Pad 

Ports IOMUX_29_CR

IOMUX 29 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_4/ioUXWbYvZ I GPI_4 M2F[13]

O GPO_4 F2M[13]

OE GPOE_4 F2M_OE[13]

PU IOMUX_29_PU

PD IOMUX_29_PD

ST IOMUX_29_ST
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IOMUX 30

IOMUX 31

IOMUX 32

Table 18-30 • IOMUX 30

Name
Pad 

Ports IOMUX_30_CR

IOMUX 30 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_5/ioUXWbYvZ I GPI_5 M2F[14]

O GPO_5 F2M[14]

OE GPOE_5 F2M_OE[14]

PU IOMUX_30_PU

PD IOMUX_30_PD

ST IOMUX_30_ST

Table 18-31 • IOMUX 31

Name
Pad 

Ports IOMUX_31_CR

IOMUX 31 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_6/ioUXWbYvZ I GPI_6 M2F[15]

O GPO_6 F2M[15]

OE GPOE_6 F2M_OE[15]

PU IOMUX_31_PU

PD IOMUX_31_PD

ST IOMUX_31_ST

Table 18-32 • IOMUX 32

Name
Pad 

Ports IOMUX_32_CR

IOMUX 32 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_7/ioUXWbYvZ I GPI_7 M2F[16]

O GPO_7 F2M[16]

OE GPOE_7 F2M_OE[16]

PU IOMUX_32_PU

PD IOMUX_32_PD

ST IOMUX_32_ST
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IOMUX 33

IOMUX 34

IOMUX 35

Table 18-33 • IOMUX 33

Name
Pad 

Ports IOMUX_33_CR

IOMUX 33 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_8/ioUXWbYvZ I GPI_8 M2F[17]

O GPO_8 F2M[17]

OE GPOE_8 F2M_OE[17]

PU IOMUX_33_PU

PD IOMUX_33_PD

ST IOMUX_33_ST

Table 18-34 • IOMUX 34

Name
Pad 

Ports IOMUX_34_CR

IOMUX 34 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_9/ioUXWbYvZ I GPI_9 M2F[18]

O GPO_9 F2M[18]

OE GPOE_9 F2M_OE[18]

PU IOMUX_34_PU

PD IOMUX_34_PD

ST IOMUX_34_ST

Table 18-35 • IOMUX 35

Name
Pad 

Ports IOMUX_35_CR

IOMUX 35 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_10/ioUXWbYvZ I GPI_10 M2F[19]

O GPO_10 F2M[19]

OE GPOE_10 F2M_OE[19]

PU IOMUX_35_PU

PD IOMUX_35_PD

ST IOMUX_35_ST
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IOMUX 36

IOMUX 37

IOMUX 38

Table 18-36 • IOMUX 36

Name
Pad 

Ports IOMUX_36_CR

IOMUX 36 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_11/ioUXWbYvZ I GPI_11 M2F[20]

O GPO_11 F2M[20]

OE GPOE_11 F2M_OE[20]

PU IOMUX_36_PU

PD IOMUX_36_PD

ST IOMUX_36_ST

Table 18-37 • IOMUX 37

Name
Pad 

Ports IOMUX_37_CR

IOMUX 37 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_12/ioUXWbYvZ I GPI_12 M2F[21]

O GPO_12 F2M[21]

OE GPOE_12 F2M_OE[21]

PU IOMUX_37_PU

PD IOMUX_37_PD

ST IOMUX_37_ST

Table 18-38 • IOMUX 38

Name
Pad 

Ports IOMUX_38_CR

IOMUX 38 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_13/ioUXWbYvZ I GPI_13 M2F[22]

O GPO_13 F2M[22]

OE GPOE_13 F2M_OE[22]

PU IOMUX_38_PU

PD IOMUX_38_PD

ST IOMUX_38_ST
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IOMUX 39

IOMUX 40

IOMUX 41

Table 18-39 • IOMUX 39

Name
Pad 

Ports IOMUX_39_CR

IOMUX 39 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_14/ioUXWbYvZ I GPI_14 M2F[23]

O GPO_14 F2M[23]

OE GPOE_14 F2M_OE[23]

PU IOMUX_39_PU

PD IOMUX_39_PD

ST IOMUX_39_ST

Table 18-40 • IOMUX 40

Name
Pad 

Ports IOMUX_40_CR

IOMUX 40 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_15/ioUXWbYvZ I GPI_15 M2F[24]

O GPO_15 F2M[24]

OE GPOE_15 F2M_OE[24]

PU IOMUX_40_PU

PD IOMUX_40_PD

ST IOMUX_40_ST

Table 18-41 • IOMUX 41

Name
Pad 

Ports IOMUX_41_CR

IOMUX 41 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_16/ioUXWbYvZ I GPI_16 M2F[25]

O GPO_16 F2M[25]

OE GPOE_16 F2M_OE[25]

PU IOMUX_41_PU

PD IOMUX_41_PD

ST IOMUX_41_ST
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IOMUX 42

IOMUX 43

IOMUX 44

Table 18-42 • IOMUX 42

Name
Pad 

Ports IOMUX_42_CR

IOMUX 42 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_17/ioUXWbYvZ I GPI_17 M2F[26]

O GPO_17 F2M[26]

OE GPOE_17 F2M_OE[26]

PU IOMUX_42_PU

PD IOMUX_42_PD

ST IOMUX_42_ST

Table 18-43 • IOMUX 43

Name
Pad 

Ports IOMUX_43_CR

IOMUX 43 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_18/ioUXWbYvZ I GPI_18 M2F[27]

O GPO_18 F2M[27]

OE GPOE_18 F2M_OE[27]

PU IOMUX_43_PU

PD IOMUX_43_PD

ST IOMUX_43_ST

Table 18-44 • IOMUX 44

Name
Pad 

Ports IOMUX_44_CR

IOMUX 44 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_19/ioUXWbYvZ I GPI_19 M2F[28]

O GPO_19 F2M[28]

OE GPOE_19 F2M_OE[28]

PU IOMUX_44_PU

PD IOMUX_44_PD

ST IOMUX_44_ST
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IOMUX 45

IOMUX 46

IOMUX 47

Table 18-45 • IOMUX 45

Name
Pad 

Ports IOMUX_45_CR

IOMUX 45 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_20/ioUXWbYvZ I GPI_20 M2F[29]

O GPO_20 F2M[29]

OE GPOE_20 F2M_OE[29]

PU IOMUX_45_PU

PD IOMUX_45_PD

ST IOMUX_45_ST

Table 18-46 • IOMUX 46

Name
Pad 

Ports IOMUX_46_CR

IOMUX 46 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_21/ioUXWbYvZ I GPI_21 M2F[30]

O GPO_21 F2M[30]

OE GPOE_21 F2M_OE[30]

PU IOMUX_46_PU

PD IOMUX_46_PD

ST IOMUX_46_ST

Table 18-47 • IOMUX 47

Name
Pad 

Ports IOMUX_47_CR

IOMUX 47 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_22/ioUXWbYvZ I GPI_22 M2F[31]

O GPO_22 F2M[31]

OE GPOE_22 F2M_OE[31]

PU IOMUX_47_PU

PD IOMUX_47_PD

ST IOMUX_47_ST
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IOMUX 48

IOMUX 49

IOMUX 50

Table 18-48 • IOMUX 48

Name
Pad 

Ports IOMUX_48_CR

IOMUX 48 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_23/ioUXWbYvZ I GPI_23 M2F[32]

O GPO_23 F2M[32]

OE GPOE_23 F2M_OE[32]

PU IOMUX_48_PU

PD IOMUX_48_PD

ST IOMUX_48_ST

Table 18-49 • IOMUX 49

Name
Pad 

Ports IOMUX_49_CR

IOMUX 49 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_24/ioUXWbYvZ I GPI_24 M2F[33]

O GPO_24 F2M[33]

OE GPOE_24 F2M_OE[33]

PU IOMUX_49_PU

PD IOMUX_49_PD

ST IOMUX_49_ST

Table 18-50 • IOMUX 50

Name
Pad 

Ports IOMUX_50_CR

IOMUX 50 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_25/ioUXWbYvZ I GPI_25 M2F[34]

O GPO_25 F2M[34]

OE GPOE_25 F2M_OE[34]

PU IOMUX_50_PU

PD IOMUX_50_PD

ST IOMUX_50_ST
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IOMUX 51

IOMUX 52

IOMUX 53

Table 18-51 • IOMUX 51

Name
Pad 

Ports IOMUX_51_CR

IOMUX 51 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_26/ioUXWbYvZ I GPI_26 M2F[35]

O GPO_26 F2M[35]

OE GPOE_26 F2M_OE[35]

PU IOMUX_51_PU

PD IOMUX_51_PD

ST IOMUX_51_ST

Table 18-52 • IOMUX 52

Name
Pad 

Ports IOMUX_52_CR

IOMUX 52 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_27/ioUXWbYvZ I GPI_27 M2F[36]

O GPO_27 F2M[36]

OE GPOE_27 F2M_OE[36]

PU IOMUX_52_PU

PD IOMUX_52_PD

ST IOMUX_52_ST

Table 18-53 • IOMUX 53

Name
Pad 

Ports IOMUX_53_CR

IOMUX 53 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_28/ioUXWbYvZ I GPI_28 M2F[37]

O GPO_28 F2M[37]

OE GPOE_28 F2M_OE[37]

PU IOMUX_53_PU

PD IOMUX_53_PD

ST IOMUX_53_ST
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IOMUX 54

IOMUX 55

IOMUX 56

Table 18-54 • IOMUX 54

Name
Pad 

Ports IOMUX_54_CR

IOMUX 54 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_29/ioUXWbYvZ I GPI_29 M2F[38]

O GPO_29 F2M[38]

OE GPOE_29 F2M_OE[38]

PU IOMUX_54_PU

PD IOMUX_54_PD

ST IOMUX_54_ST

Table 18-55 • IOMUX 55

Name
Pad 

Ports IOMUX_55_CR

IOMUX 55 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_30/ioUXWbYvZ I GPI_30 M2F[39]

O GPO_30 F2M[39]

OE GPOE_30 F2M_OE[39]

PU IOMUX_55_PU

PD IOMUX_55_PD

ST IOMUX_55_ST

Table 18-56 • OMUX 56

Name
Pad 

Ports IOMUX_56_CR

IOMUX 56 Ports

IN_A OUT_A OE_A IN_B OUT_B OE_B

GPIO_31/ioUXWbYvZ I GPI_31 M2F[40]

O GPO_31 F2M[40]

OE GPOE_31 F2M_OE[40]

PU IOMUX_56_PU

PD IOMUX_56_PD

ST IOMUX_56_ST
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SmartFusion MSS GPIO Application Development
This section provides an overview of the design flow for SmartFusion devices to facilitate application
development using GPIOs. The 32 bits of the GPIO block are shared among MSS peripherals and MSS
user I/Os as summarized in Table 18-57. Using the MSS GPIO peripheral requires minimal configuration
of the GPIO and MSS I/O blocks in MSS configurator and I/O assignment in Libero SoC. The user
application would then use predefined functions in GPIO drivers to perform the general purpose I/O
functions with the configured I/Os.

Developing User Application Code with GPIO Drivers 
User application code can be developed and debugged using any of the three supported embedded
software development tools, SoftConsole, Keil Microcontroller Development Kit (MDK) µVision, and IAR
Embedded Workbench. Microsemi provides a set of GPIO Drivers that can be generated from the MSS
configurator or from the Firmware Catalog. These drivers are common for all three tool flows. However,
the Cortex Microcontroller Software Interface Standard (CMSIS) access layer is dependent on the tool
flow selected and should be chosen based on the specific tool flow user is implementing.
The MSS GPIO drivers allow quick application code development using the SmartFusion MSS GPIO
without having to manually read and write the MSS System Registers. MSS GPIO Drivers are efficient
and flexible. For specific details on drivers, refer to the SmartFusion MSS Configurators and Drivers
User’s Guides.

Steps for Application Development Using MSS GPIO Drivers
As a first step, tool-specific CMSIS files need to be imported into the project along with GPIO drivers. The
mss_gpio.h header file, which defines GPIO function prototypes, must be included in the application
code to obtain access to the GPIO functions, as shown below:

Example
#include "mss_gpio.h"

Using the GPIO driver functions involves four distinct stages: initialization, configuration, reading and
setting GPIO state, and Interrupt control. 

Initializing GPIOs
The MSS GPIO driver is initialized through a call to the function MSS_GPIO_init(). This function must be
called before any other GPIO driver functions can be called.

Example
MSS_GPIO_init()

Configuring GPIOs
Each GPIO port is individually configured through a call to the MSS_GPIO_config() function. This
function sets the direction of the I/O as input, output, or inout. 

Table 18-57 • GPIO Block Multiplexing

GPIO[0:15] Multiplexed with MSS User I/Os 

GPIO[16:19] Multiplexed with SPI0

GPIO[20:21] Multiplexed with UART0

GPIO[22:23] Multiplexed with I2C0

GPIO[24:25] Multiplexed with SPI1

GPIO[26:29] Multiplexed with UART1

GPIO[30:31] Multiplexed with I2C1
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General Purpose I/O Block (GPIO)
Example
MSS_GPIO_config(MSS_GPIO_25 , MSS_GPIO_OUTPUT_MODE);

If the GPIO is configured as input, then the associated interrupt can also be configured as either level or
edge sensitive. For level sensitive the option is to be high or low. For edge it is either rising, falling or
both.

Example
MSS_GPIO_config( MSS_GPIO_16 , MSS_GPIO_INPUT_MODE | MSS_GPIO_IRQ_LEVEL_LOW );

Example
MSS_GPIO_config( MSS_GPIO_22 , MSS_GPIO_INPUT_MODE | MSS_GPIO_IRQ_EDGE_NEGATIVE);

Reading GPIO State
The state of the GPIO ports configured as inputs or outputs can be read using the functions
MSS_GPIO_get_inputs() and MSS_GPIO_get_outputs().

Example
uint32_t gpio_inputs;
gpio_inputs = MSS_GPIO_get_inputs();

Note: The ability to read the current state of outputs is useful in control applications where the value
driven on output need to be modulated.

Setting GPIO State
The state of GPIO ports configured as outputs or inout can be set using the functions
MSS_GPIO_set_output(), MSS_GPIO_set_outputs(), and MSS_GPIO_drive_inout().The inout port can
be driving high or low or can be in high impedance states.

Example
MSS_GPIO_set_output(MSS_GPIO_26,0); // Sets GPIO26 Low

Example
uint32_t gpio_outputs;
gpio_outputs = MSS_GPIO_get_outputs(); // Get current output state
gpio_outputs &= ~( MSS_GPIO_2_MASK | MSS_GPIO_4_MASK ); // Flip states of GPIO2 & 4
MSS_GPIO_set_outputs(  gpio_outputs ); // Write new value to GPIO

Example
MSS_GPIO_drive_inout( MSS_GPIO_7, MSS_GPIO_HIGH_Z );

GPIO Generated Interrupt Control
For GPIOs that are configured as inputs with interrupts defined, functions MSS_GPIO_enable_irq(),
MSS_GPIO_disable_irq(), and MSS_GPIO_clear_irq() help manage the interrupts.

Example
MSS_GPIO_enable_irq( MSS_GPIO_8 );//Would enable the interrupt generation for input
GPIO_8

Example
MSS_GPIO_disable_irq() // To disable interrupt generation for the specified GPIO
input

Example
MSS_GPIO_clear_irq() //The function clears the GPIO interrupt as well as the
Cortex-M3 interrupt controller 

The SmartFusion MSS GPIO application development overview provided in this section should enable
the user to rapidly and easily adopt the SmartFusion MSS GPIO peripheral in their embedded
application. For additional details on the three tool flows, refer to the SmartFusion tutorials available at
http://www.microsemi.com/soc/products/smartfusion/docs.aspx.
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19 – Fabric Interface and IOMUX

The fabric interface consists of the fabric interface controller (FIC), the fabric interface interrupt controller
(FIIC), IOMUXes, and signals from the analog compute engine (ACE), the signal conditioning blocks
(SCBs), the voltage regulator power supply monitor (VR/PSM), and a handful of miscellaneous signals.
The blocks and signals of the fabric interface are shown in Figure 19-1.

Figure 19-1 • Fabric Interfaces
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Fabric Interface and IOMUX
Fabric Interface Controller
The fabric interface controller (FIC) is part of the microcontroller subsystem (MSS) and performs an AHB
to AHB or AHB to APB bridging function between the AHB bus matrix and an AHB or APB bus in the
FPGA fabric. The FIC consumes no FPGA resources. It provides two bus interfaces between the (MSS)
and the fabric. The first is mastered by the MSS and has slaves in the fabric and the second has a
master in the fabric and slaves in the MSS, as depicted in Figure 19-2. 
The interfaces to the fabric can be 32-bit AHB, 32-bit APB, or 16-bit APB. The address and data buses
between the FIC and the FPGA fabric are common to both the AHB and APB interfaces; hence only one
type of interface can be enabled at any time. However, separate groups of signals are used for the AHB
and APB control signals. The type of interface chosen is determined at design time.
In addition to the choice of AHB or APB interfaces between the MSS and the fabric, a number of options
related to relative clock frequencies and pipelining of transactions are available. In pipelined mode, the
ratio between the MSS FCLK frequency and the frequency of the AHB/APB circuitry in the FPGA fabric
can be 1:1, 2:1, or 4:1. If the interfaces are configured as AHB and the clock ratio is 1:1, it is possible to
select a bypass mode in which signals to and from the fabric are not registered. In bypass mode, fewer
clock cycles are required to complete each transaction but the overall system frequency may be lower
than is possible in pipelined mode.

As shown in Figure 19-4 on page 346, on the MSS side of the FIC there are two (master and slave) AHB
interfaces to the AHB bus matrix. On the FPGA side of the FIC, the master and slave interfaces can be

Figure 19-2 • Fabric Interface Controller System Overview
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SmartFusion Microcontroller Subsystem User’s Guide
either AHB or APB. Both interfaces on the fabric side always use the same protocol. In other words, one
cannot be AHB while the other is APB, as shown in Figure 19-3.

When implementing peripherals in the fabric, these are the choices available, but the first case is the
most common. 

1. If you are using APB (or APB3) peripherals—for example, CoreUARTapb—use CoreAPB3
connected to the fabric interface.

2. If you are using AHB peripherals, use CoreAHBLite connected to the fabric interface.
3. If you are using mixed AHB and APB peripherals, use CoreAHBLite – CoreAHB2APB3 –

CoreAPB3.

Figure 19-3 • Mismatched FIC Interfaces
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Fabric Interface and IOMUX
Figure 19-4 • Fabric Interface Control Signal List
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Fabric Interface and IOMUX Register Map
Table 19-1 gives descriptions for the registers mentioned throughout this document.

Table 19-1 • Fabric Interface and IOMUX Register Map

Register Name Address R/W
Reset 
Value Description

MSSIRQ_EN_0 0x40007000 R/W 0 Enables/disables interrupt sources for MSSINT[0]

MSSIRQ_EN_1 0x40007004 R/W 0 Enables/disables interrupt sources for MSSINT[1]

MSSIRQ_EN_2 0x40007008 R/W 0 Enables/disables interrupt sources for MSSINT[2]

MSSIRQ_EN_3 0x4000700C R/W 0 Enables/disables interrupt sources for MSSINT[3]

MSSIRQ_EN_4 0x40007010 R/W 0 Enables/disables interrupt sources for MSSINT[4]

MSSIRQ_EN_5 0x40007014 R/W 0 Enables/disables interrupt sources for MSSINT[5]

MSSIRQ_EN_6 0x40007018 R/W 0 Enables/disables interrupt sources for MSSINT[6]

MSSIRQ_EN_7 0x4000701C R/W 0 Enables/disables interrupt sources for MSSINT[7]

MSSIRQ_SRC_0 0x40007020 R/W 0 Source of interrupt for MSSINT[0]

MSSIRQ_SRC_1 0x40007024 R/W 0 Source of interrupt for MSSINT[1]

MSSIRQ_SRC_2 0x40007028 R/W 0 Source of interrupt for MSSINT[2]

MSSIRQ_SRC_3 0x4000702C R/W 0 Source of interrupt for MSSINT[3]

MSSIRQ_SRC_4 0x40007030 R/W 0 Source of interrupt for MSSINT[4]

MSSIRQ_SRC_5 0x40007034 R/W 0 Source of interrupt for MSSINT[5]

MSSIRQ_SRC_6 0x40007038 R/W 0 Source of interrupt for MSSINT[6]

MSSIRQ_SRC_7 0x4000703C R/W 0 Source of interrupt for MSSINT[7]

FIIC_MR 0x40007040 R/W 0 Fabric interface interrupt controller mode register

FAB_IF_CR 0xE004206C R/W 0xC Controls the functionality of the fabric interface
controller

FAB_APB_HIWORD_DR 0xE0042070 R 0x0 16-bit APB holding register within the FIC

IOMUX _n_CR (n = 0) 0xE0042100 R/W 0x0 Configures IOMUX 0

. . . . .

. . . . .

. . . . .

IOMUX _n_CR (n = 82) 0xE0042248 R/W 0x0 Configures IOMUX 82
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Fabric Interface Controller Register
The FAB_IF_CR is used to select the type of the interfaces on the fabric side of the FIC, and to select
bypass mode or not. This register is located in the SYSREG block at address 0xE004206C. Individual bit
descriptions are given in Table 19-2. Table 19-3 lists the truth table for selecting the appropriate bus type
on the FPGA side of the FIC. 

If the MSS FCLK to FPGA fabric clock ratio is 1:1 and the FIC is configured to operate in 32-bit AHB
mode, as described in Table 19-3, the FIC can be configured to operate in bypass mode. Signals to and
from the fabric are not registered in bypass mode. If, however, the FIC is configured in APB mode (16- or
32-bit) or the clock ratio between the MSS and the fabric is not 1:1, the user must set the FIC to pipeline
mode, as outlined in Table 19-4. The configuration of FAB_IF_CR and FAB_AHB_BYPASS should not be
performed dynamically. The MSS configurator creates the system boot initialization code that initializes
the state of these fields to the user’s desired configuration.

Table 19-2 • FAB_IF_CR

Bit 
Number Name R/W

Reset 
Value Function

31:4 Reserved R/W  – Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the
value of a reserved bit should be preserved across
a read-modify-write operation.

3 FAB_APB32 R/W 1 See Table 19-3.

2 FAB_AHBIF R 1 See Table 19-3.

1 Reserved R/W – Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the
value of a reserved bit should be preserved across
a read-modify-write operation.

0 FAB_AHB_BYPASS R/W 0 0 = FIC is in pipeline mode.
1 = FIC is in bypass mode.

Table 19-3 • Bus Type Selection

FAB_IF_CR

FAB_APB32 FAB_AHBIF 

InterfaceBit 3 Bit 2

0 0 16-bit APB

0 1 32-bit AHB

1 0 32-bit APB

1 1 32-bit AHB (default state)

Table 19-4 • FIC Bypass Mode Selection

FAB_IF_CR

FAB_AHB_BYPASS

InterfaceBit 0

0 The fabric interface is configured in pipeline mode; that is, registered mode
(default state).

1 The fabric interface is configured for bypass mode.
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Fabric Interface Clocks
All logic within the FIC is clocked by the main MSS system clock, FCLK. The AHB/APB logic within the
FPGA fabric can be clocked by GLA or GLB, which are generated by the MSS_CCC. Refer to the "PLLs,
Clock Conditioning Circuitry, and On-Chip Crystal Oscillators" section on page 109.
The rising edges of GLB must occur at the same time as a rising edge of FCLK. This lining up of the
rising edges of GLB and FCLK is controlled by configuring a delay element within the MSS_CCC. The
delay value is factory calibrated.

MSS Master Interface
The MSS master interface side of the FIC can communicate with either an FPGA fabric AHB slave or an
APB v3.0 compliant slave, as described below. Microsemi provides numerous AHB and APB v3.0
compliant cores for easy instantiation into the FPGA fabric. Users must first instantiate either the
CoreAHBLite or CoreAPB3 soft IP into the fabric to allow further instantiation of soft FPGA AHB/APB
masters or slaves.

MSS Master to FPGA AHB Slave Interface
The fabric interface controller allows the AHB masters in the MSS to communicate with AHB compliant
slaves in the FPGA fabric, as shown in Figure 19-5. The MSS Master AHB interface passes all incoming
AHB transactions to the fabric with no error checking. FPGA AHB slaves must handle any error
conditions. The least significant 20 bits of the MSS address bus are passed to the FPGA fabric, along
with the 32-bit read and write data buses. MSS AHB masters can perform byte, halfword, and word
accesses to an FPGA fabric AHB slave. 
Misaligned accesses are not supported and result in invalid data transfers in registered mode. The data
transfer to the fabric proceeds as normal, but HRESP is asserted to the MSS AHB master at the end of
the transfer. HRESP is not asserted if in bypass mode and the transfer proceeds as normal.
When no AHB slaves are programmed in the fabric, MSSHREADY must be tied high. SmartDesign will
automatically tie this high if needed.

Figure 19-5 • MSS Master to AHB Fabric Slave
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Fabric Interface and IOMUX
MSS Master to FPGA APB Slave Interface
The fabric interface allows AHB masters in the MSS to communicate with the fabric as an APB v3.0
compliant slave, as shown in Figure 19-6.
The MSS master APB interface provides an interface to the fabric which, on its own, is suitable for
connection to a single APB slave. Users that require multiple APB slaves in the fabric must use the single
MSSPSEL select signal provided to enable an additional address decoder to generate additional PSEL
select signals, one for each slave. In addition, the user is required to perform multiplexing of the APB
PRDATA, PSLVERR, and PREADY signals from each instantiated slave to drive the single
MSSPRDATA, MSSPSLVERR, and MSSPREADY input ports of the MSS master APB interface.
Microsemi provides CoreAPB3 to perform these functions.
The least significant 20 bits of the MSS address bus are passed to the FPGA fabric, along with either 16-
bit or 32-bit read and write data buses (depending on the setting of the FAB_AHB32 and FAB_AHBIF bits
in FAB_IF_CR).
In the case where the interfaces to the fabric are configured as 16-bit APB, an MSS master can perform
byte or halfword accesses to 16-bit APB slaves in the fabric. These accesses can be performed only on
word-aligned addresses. Byte or halfword accesses to 16-bit APB slaves on non-word aligned addresses
are not supported and result in invalid data transfers. Word accesses to 16-bit APB slaves are not
supported and result in invalid data transfers.
In the case where the interfaces to the fabric are configured as 32-bit APB, an MSS master can perform
byte, halfword, or word accesses to 32-bit APB slaves in the fabric. These accesses can be performed
only on word-aligned addresses. Byte, halfword, or word accesses to 32-bit APB slaves on non-word
aligned addresses are not supported and result in invalid data transfers.

Figure 19-6 • MSS AHB Master to APB Slave
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Fabric Master Interface
The fabric master interface of the FIC allows either an AHB or an APB v3.0 compliant master in the
FPGA fabric to communicate with AHB and APB slaves in the MSS, as described below.
The AHB_MATRIX_CR, FAB_PROT_BASE_CR, and FAB_PROT_SIZE_CR system registers, which are
only accessible by the ARM Cortex-M3 processor, can be used to limit access by a fabric-based master
to some or all of the slaves in the MSS. See the "AHB Bus Matrix" section on page 15 for more details.

Fabric Master AHB Interface
The fabric master AHB interface allows a user-instantiated AHB compliant master in the fabric to
communicate with slaves in the MSS, as shown in Figure 19-7. The fabric master AHB interface passes
all incoming AHB transactions to the MSS; all transactions are passed with no error checking performed.
The fabric master AHB interface provides for a 32-bit address, a 32-bit read, and a 32-bit write data bus
into the MSS.
An AHB master in the fabric can perform byte, halfword, and word accesses to MSS AHB slaves.
Misaligned accesses are not supported and result in invalid data transfers when in pipeline mode. In
bypass mode, there is no indication of an invalid transfer. 
If accessing an MSS APB peripheral, a fabric-based AHB master should use only word-aligned
addresses, because all locations in the APB peripherals are at word-aligned offsets. Non-word-aligned
addresses are not supported and result in invalid data transfers.

Figure 19-7 • Fabric Master to MSS Slave
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Fabric Master APB Interface
The fabric master APB interface allows a user-instantiated APB v3.0 compliant master in the FPGA
fabric to communicate with AHB slaves in the MSS, as shown in Figure 19-8 on page 353. The fabric
master APB interface passes all incoming APB transactions that are transfer size aligned to the MSS; all
transactions are passed with no error checking performed. The fabric master APB interface provides for
a 32-bit address, and a 32-bit or 16-bit read/write data bus into the MSS. Data bus width is dependent on
FAB_APB32 and FAB_AHBIF bit settings, as described in Table 19-3 on page 348.
When the data width of the fabric master APB interface is set to 16 bits, a register named
APB16_XHOLD will be used to hold the upper halfword of the 32-bit AHB transactions to/from the AHB
bus matrix. All transfers initiated by a fabric APB master result in 32-bit AHB transactions on the MSS
side of the FIC. The APB16_XHOLD register is located at address 0x40030000 and is accessible only by
a fabric master. 
When issuing a write from a 16-bit APB fabric master, the master must first ensure that the
APB16_XHOLD register is loaded with a valid upper halfword before writing the lower halfword to the
actual (word aligned) address which is the destination of the write.
When issuing a read from a 16-bit APB fabric master, the master should read from the (word-aligned)
address that is the source of the read. The lower halfword will be read by the fabric master APB interface
during this transfer and the upper halfword will be stored in the APB16_XHOLD register. The fabric
master APB interface can then subsequently read the upper halfword from the APB16_XHOLD register
in a following transfer, if required.
To aid debugging, the Cortex-M3 processor can observe the value stored in the APB16_XHOLD register
via the FAB_APB_HIWORD_DR system register located at address 0xE0042070, as shown in
Table 19-1 on page 347 and Table 19-5. FAB_APB_HIWORD_DR contains the state of the
APB16_XHOLD register. It is read only from the Cortex-M3 processor. The contents of this register
depends on whether the last operation from the fabric master APB interface was a read or a write. If it
was a read, this register contains the upper 16 bits of the read data. If it was a write, this register contains
the upper 16 bits of the write data.

Table 19-5 • FAB_APB_HIWORD_DR

Bit 
Number Name R/W

Reset 
Value Function

31:16 Reserved R/W 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value
of a reserved bit should be preserved across a read-
modify-write operation.

15:0 APB16_XHOLD R/W 0 This signal contains the state of the APB16 holding
register within the fabric interface block. It is read only
from the Cortex-M3 processor. The contents of this
register depend on whether the last operation from the
APB fabric master was a read or a write. If it was a
read, then this register contains the upper 16 bits of the
read data. If it was a write, then this register contains
the upper 16 bits of the write data.
352 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
All transfers initiated by a fabric APB master, other than those addressed to the APB16_XHOLD register,
result in 32-bit AHB transactions to the AHB bus matrix. When addressing locations in the MSS other
than the APB16_XHOLD register, a fabric APB master must always provide a word-aligned address.
Non-word-aligned addresses are not supported and result in invalid data transfers.

Locked Transactions
The fabric master must always perform a non-locked read of an MSS slave (whether internal slave or
fabric slave) immediately after completing a locked sequence. Failure to do so will cause the debugger to
hang.

16-Bit Fabric Master
Masters that can provide only a 16-bit address (such as Core8051s and CoreABC) need some means of
creating the 32-bit address required to access the SmartFusion MSS peripherals. CoreAPB3 has an
indirect addressing mode that can be used for this purpose. Refer to the "Memory Map (programmer’s
view)" section of the CoreAPB3 Handbook for a description of the indirect addressing mode with some
examples. 

Figure 19-8 • Fabric APB Master
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Fabric Interface Interrupt Controller 
There are 128 interrupt sources within the microcontroller subsystem (MSS). There are a finite number of
signal resources that exist at the boundary between the MSS and the FPGA fabric. The fabric interface
interrupt controller (FIIC) manages a subset of the total available MSS interrupts and maps those to a
finite number of input ports along the FPGA fabric edge, as shown in Figure 19-9.

FIIC Functional Description
The FIIC receives 128 interrupt sources from the MSS as inputs. These interrupt source inputs are level-
sensitive active high inputs. These interrupt sources are combined, in a predetermined fashion, into the 8
MSSINT interrupts. There is also a pass through of the watchdog timer interrupt to WDINT. As shown in
Figure 19-10, all interrupt processing is combinatorial; that is, the paths from the interrupt source inputs
to the MSSINT[7:0] and WDINT outputs contain no flip-flops. Peripherals which drive the interrupt source
inputs must ensure that their interrupts remain asserted until they are serviced. The FIIC performs no
synchronization of source inputs nor does it synchronize the output interrupt signals to the fabric.

In addition to having enabling/masking capability at each interrupt source peripheral, the FIIC also
contains enable registers, to provide another level of masking, because some interrupts may need to be
active in the MSS, but not in the FPGA fabric. All interrupt inputs to the FIIC are active high. Once
asserted, they are guaranteed to be held asserted until cleared by firmware (via a write of a 1 to clear the
peripheral). The exceptions to this are the SMBALERT and SMBUS interrupts from the I2C peripherals.
While these are held asserted, they are cleared by the sending I2C device, after a remote firmware-
initiated sequence of operations (rather than clearing the interrupt in the local I2C itself).
WDOGTIMEOUTINT is always passed straight through the block as WDINT.

Figure 19-9 • Fabric Interface Interrupt Controller Block Diagram

Figure 19-10 • FICC Combinatorial Interrupt Processing
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There are two modes of operation in the FIIC: ACE mode and non-ACE mode. In ACE mode, ACE
interrupt sources along with some MSS interrupt sources are processed by the FIIC. In non-ACE mode,
only MSS interrupts are processed by the FIIC. ACE mode interrupt mapping is depicted in Table 19-6
and non-ACE mode is depicted in Table 19-7. ACE mode is selected by setting the MODE bit in the
FIIC_MR to a 0.
To assert the SOFTINTERRUPT (MSSINT[2]), the user must write a 1 to the SOFT_IRQ_CR in bit
location 0 at address 0xE004202C. SOFTINTERRUPT stays asserted (1) as long as bit 0 of
SOFT_IRQ_CR is a 1. Clearing bit 0 of SOFT_IRQ_CR deasserts the SOFTINTERRUPT (MSSINT[2])
signal.

Table 19-6 • ACE Mode Interrupt Mapping

Sources Interrupt

WDOGWAKEUPINT, BROWNOUT1_5VINT, BROWNOUT3_3VINT, 
RTCMATCHEVENT, RTCIF_PUBINT, MAC_INT, IAP_INT, ENVM_[1:0]_INT, 
DMAINTERRUPT, UART_0_INT, UART_1_INT, SPI_0_INT, SPI_1_INT, I2C_0_INT, 
I2C_0_SMBALERT, I2C_0_SMBSUS, I2C_1_INT, I2C_1_SMBALERT, 
I2C_1_SMBSUS, TIMER1INT, TIMER2INT, PLLLOCKINT, PLLLOCKLOSTINT, 
SOFTINTERRUPT

MSSINT[0]

MSS_GPIO[31:0] MSSINT[1]

ACE comparators MSSINT[2]

ACE sample sequence engine events MSSINT[3]

ACE post processing engine threshold events MSSINT[4]

ACE ADC events MSSINT[5]

ACE ADC FIFO Full / Almost Full events MSSINT[6]

ACE ADC FIFO Not Empty events MSSINT[7]

Table 19-7 • Non-ACE Mode Interrupt Mapping

Sources Interrupt

WDOGWAKEUPINT, BROWNOUT1_5VINT, BROWNOUT3_3VINT, 
RTCMATCHEVENT, RTCIF_PUBINT, IAP_INT, ENVM_[1:0]_INT, DMAINTERRUPT, 
UART_0_INT, SPI_0_INT, I2C_0_INT, I2C_0_SMBALERT, I2C_0_SMBSUS, 
I2C_1_SMBALERT, I2C_1_SMBSUS, TIMER1INT, PLLLOCKINT, 
PLLLOCKLOSTINT

MSSINT[0]

MSS_GPIO[31:0] MSSINT[1]

SOFTINTERRUPT MSSINT[2]

TIMER2INT MSSINT[3]

MAC_INT MSSINT[4]

UART_1_INT MSSINT[5]

I2C_1_INT MSSINT[6]

SPI_1_INT MSSINT[7]
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FIICMSSIRQ_EN_0

FIIC MSSIRQ_EN_1

Table 19-8 • MSSIRQ_EN_0

Bit Number Name R/W
Reset 
Value Function

31:25 Reserved R/W 0 Software should not rely on the value of
a reserved bit. To provide compatibility
with future products, the value of a
reserved bit should be preserved
across a read-modify-write operation.

24 SOFTINT R/W 0 1 = Enable; 0 = Mask

23 PLLLOCKLOST R/W 0 1 = Enable; 0 = Mask

22 PLLLOCK R/W 0 1 = Enable; 0 = Mask

21 TIMER2 R/W 0 1 = Enable; 0 = Mask

20 TIMER1 R/W 0 1 = Enable; 0 = Mask

19 I2C_1_SMBSUS R/W 0 1 = Enable; 0 = Mask

18 I2C_1_SMBALERT R/W 0 1 = Enable; 0 = Mask

17 I2C_1 R/W 0 1 = Enable; 0 = Mask

16 I2C_0_SMBSUS R/W 0 1 = Enable; 0 = Mask

15 I2C_0_SMBALERT R/W 0 1 = Enable; 0 = Mask

14 I2C_0 R/W 0 1 = Enable; 0 = Mask

13 SPI_1 R/W 0 1 = Enable; 0 = Mask

12 SPI_0 R/W 0 1 = Enable; 0 = Mask

11 UART_1 R/W 0 1 = Enable; 0 = Mask

10 UART_0 R/W 0 1 = Enable; 0 = Mask

9 DMA R/W 0 1 = Enable; 0 = Mask

8 ENVM_1 R/W 0 1 = Enable; 0 = Mask

7 ENVM_0 R/W 0 1 = Enable; 0 = Mask

6 IAP R/W 0 1 = Enable; 0 = Mask

5 MAC R/W 0 1 = Enable; 0 = Mask

4 RTCIF_PUB R/W 0 1 = Enable; 0 = Mask

3 RTCMATCHEVENT R/W 0 1 = Enable; 0 = Mask

2 BROWNOUT3_3V R/W 0 1 = Enable; 0 = Mask

1 BROWNOUT1_5V R/W 0 1 = Enable; 0 = Mask

0 WDOGWAKEUP R/W 0 1 = Enable; 0 = Mask

Table 19-9 • MSSIRQ_EN_1

Bit Number Name R/W Reset Value Function

31:0 MSS_GPIO R/W 0 1 = Enable; 0 = Mask
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FIIC MSSIRQ_EN_2
Table 19-10 • MSSIRQ_EN_2

Bit 
Number Name R/W

Reset 
Value Function

31:24 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

23 CMP_11_R R/W 0 1 = Enable; 0 = Mask

22 CMP_10_R R/W 0 1 = Enable; 0 = Mask

21 CMP_9_R R/W 0 1 = Enable; 0 = Mask

20 CMP_8_R R/W 0 1 = Enable; 0 = Mask

19 CMP_7_R R/W 0 1 = Enable; 0 = Mask

18 CMP_6_R R/W 0 1 = Enable; 0 = Mask

17 CMP_5_R R/W 0 1 = Enable; 0 = Mask

16 CMP_4_R R/W 0 1 = Enable; 0 = Mask

15 CMP_3_R R/W 0 1 = Enable; 0 = Mask

14 CMP_2_R R/W 0 1 = Enable; 0 = Mask

13 CMP_1_R R/W 0 1 = Enable; 0 = Mask

12 CMP_0_R R/W 0 1 = Enable; 0 = Mask

11 CMP_11_F R/W 0 1 = Enable; 0 = Mask

10 CMP_10_F R/W 0 1 = Enable; 0 = Mask

9 CMP_9_F R/W 0 1 = Enable; 0 = Mask

8 CMP_8_F R/W 0 1 = Enable; 0 = Mask

7 CMP_7_F R/W 0 1 = Enable; 0 = Mask

6 CMP_6_F R/W 0 1 = Enable; 0 = Mask

5 CMP_5_F R/W 0 1 = Enable; 0 = Mask

4 CMP_4_F R/W 0 1 = Enable; 0 = Mask

3 CMP_3_F R/W 0 1 = Enable; 0 = Mask

2 CMP_2_F R/W 0 1 = Enable; 0 = Mask

1 CMP_1_F R/W 0 1 = Enable; 0 = Mask

0 CMP_0_F R/W 0 1 = Enable; 0 = Mask
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FIIC MSSIRQ_EN_3

FIIC MSSIRQ_EN_4

Table 19-11 • MSSIRQ_EN_3

Bit Number Name R/W Reset Value Function

31:12 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

11 PC2_FLAG_3 R/W 0 1 = Enable; 0 = Mask

10 PC2_FLAG_2 R/W 0 1 = Enable; 0 = Mask

9 PC2_FLAG_1 R/W 0 1 = Enable; 0 = Mask

8 PC2_FLAG_0 R/W 0 1 = Enable; 0 = Mask

7 PC1_FLAG_3 R/W 0 1 = Enable; 0 = Mask

6 PC1_FLAG_2 R/W 0 1 = Enable; 0 = Mask

5 PC1_FLAG_1 R/W 0 1 = Enable; 0 = Mask

4 PC1_FLAG_0 R/W 0 1 = Enable; 0 = Mask

3 PC0_FLAG_3 R/W 0 1 = Enable; 0 = Mask

2 PC0_FLAG_2 R/W 0 1 = Enable; 0 = Mask

1 PC0_FLAG_1 R/W 0 1 = Enable; 0 = Mask

0 PC0_FLAG_0 R/W 0 1 = Enable; 0 = Mask

Table 19-12 • MSSIRQ_EN_4

Bit Number Name R/W Reset Value Function

31:0 PPE_THRESH R/W 0 1 = Enable; 0 = Mask
358 Revision 3



SmartFusion Microcontroller Subsystem User’s Guide
FIIC MSSIRQ_EN_5

FIIC MSSIRQ_EN_6

Table 19-13 • MSSIRQ_EN_5

Bit 
Number Name R/W Reset Value Function

31:9 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write
operation.

8 ADC_2_CAL_R R/W 0 1 = Enable; 0 = Mask

7 ADC_1_CAL_R R/W 0 1 = Enable; 0 = Mask

6 ADC_0_CAL_R R/W 0 1 = Enable; 0 = Mask

5 ADC_2_CAL_F R/W 0 1 = Enable; 0 = Mask

4 ADC_1_CAL_F R/W 0 1 = Enable; 0 = Mask

3 ADC_0_CAL_F R/W 0 1 = Enable; 0 = Mask

2 ADC_2_DV_R R/W 0 1 = Enable; 0 = Mask

1 ADC_1_DV_R R/W 0 1 = Enable; 0 = Mask

0 ADC_0_DV_R R/W 0 1 = Enable; 0 = Mask

Table 19-14 • MSSIRQ_EN_6

Bit Number Name R/W Reset Value Function

31:6 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

5 ADC2_AFULL R/W 0 1 = Enable; 0 = Mask

4 ADC2_FULL R/W 0 1 = Enable; 0 = Mask

3 ADC1_AFULL R/W 0 1 = Enable; 0 = Mask

2 ADC1_FULL R/W 0 1 = Enable; 0 = Mask

1 ADC0_AFULL R/W 0 1 = Enable; 0 = Mask

0 ADC0_FULL R/W 0 1 = Enable; 0 = Mask
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FIIC MSSIRQ_EN_7
Table 19-15 • MSSIRQ_EN_7

Bit Number Name R/W Reset Value Function

31:3 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved
bit should be preserved across a read-
modify-write operation.

2 ADC2_NOTEMPTY R/W 0 1 = Enable; 0 = Mask

1 ADC1_NOTEMPTY R/W 0 1 = Enable; 0 = Mask

0 ADC0_NOTEMPTY R/W 0 1 = Enable; 0 = Mask
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FIIC MSSIRQ_SRC_0 

FIIC MSSIRQ_SRC_1

Table 19-16 • MSSIRQ_SRC_0

Bit Number Name R/W Reset Value Function

31:25 Reserved R 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

24 SOFTINT R 0 1 = Interrupt asserted and enabled

23 PLLLOCKLOST R 0 1 = Interrupt asserted and enabled

22 PLLLOCK R 0 1 = Interrupt asserted and enabled

21 TIMER2 R 0 1 = Interrupt asserted and enabled

20 TIMER1 R 0 1 = Interrupt asserted and enabled

19 I2C_1_SMBSUS R 0 1 = Interrupt asserted and enabled

18 I2C_1_SMBALERT R 0 1 = Interrupt asserted and enabled

17 I2C_1 R 0 1 = Interrupt asserted and enabled

16 I2C_0_SMBSUS R 0 1 = Interrupt asserted and enabled

15 I2C_0_SMBALERT R 0 1 = Interrupt asserted and enabled

14 I2C_0 R 0 1 = Interrupt asserted and enabled

13 SPI_1 R 0 1 = Interrupt asserted and enabled

12 SPI_0 R 0 1 = Interrupt asserted and enabled

11 UART_1 R 0 1 = Interrupt asserted and enabled

10 UART_0 R 0 1 = Interrupt asserted and enabled

9 DMA R 0 1 = Interrupt asserted and enabled

8 ENVM_1 R 0 1 = Interrupt asserted and enabled

7 ENVM_0 R 0 1 = Interrupt asserted and enabled

6 IAP R 0 1 = Interrupt asserted and enabled

5 MAC R 0 1 = Interrupt asserted and enabled

4 RTCIF_PUB R 0 1 = Interrupt asserted and enabled

3 RTCMATCHEVENT R 0 1 = Interrupt asserted and enabled

2 BROWNOUT3_3V R 0 1 = Interrupt asserted and enabled

1 BROWNOUT1_5V R 0 1 = Interrupt asserted and enabled

0 WDOGWAKEUP R 0 1 = Interrupt asserted and enabled

Table 19-17 • MSSIRQ_SRC_1

Bit Number Name R/W Reset Value Function

31:0 MSS_GPIO R 0 1 = Interrupt asserted and enabled
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FIIC MSSIRQ_SRC_2 
Table 19-18 • MSSIRQ_SRC_2

Bit Number Name R/W Reset Value Function

31:24 Reserved R 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

23 CMP_11_R R 0 1 = Interrupt asserted and enabled

22 CMP_10_R R 0 1 = Interrupt asserted and enabled

21 CMP_9_R R 0 1 = Interrupt asserted and enabled

20 CMP_8_R R 0 1 = Interrupt asserted and enabled

19 CMP_7_R R 0 1 = Interrupt asserted and enabled

18 CMP_6_R R 0 1 = Interrupt asserted and enabled

17 CMP_5_R R 0 1 = Interrupt asserted and enabled

16 CMP_4_R R 0 1 = Interrupt asserted and enabled

15 CMP_3_R R 0 1 = Interrupt asserted and enabled

14 CMP_2_R R 0 1 = Interrupt asserted and enabled

13 CMP_1_R R 0 1 = Interrupt asserted and enabled

12 CMP_0_R R 0 1 = Interrupt asserted and enabled

11 CMP_11_F R 0 1 = Interrupt asserted and enabled

10 CMP_10_F R 0 1 = Interrupt asserted and enabled

9 CMP_9_F R 0 1 = Interrupt asserted and enabled

8 CMP_8_F R 0 1 = Interrupt asserted and enabled

7 CMP_7_F R 0 1 = Interrupt asserted and enabled

6 CMP_6_F R 0 1 = Interrupt asserted and enabled

5 CMP_5_F R 0 1 = Interrupt asserted and enabled

4 CMP_4_F R 0 1 = Interrupt asserted and enabled

3 CMP_3_F R 0 1 = Interrupt asserted and enabled

2 CMP_2_F R 0 1 = Interrupt asserted and enabled

1 CMP_1_F R 0 1 = Interrupt asserted and enabled

0 CMP_0_F R 0 1 = Interrupt asserted and enabled
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FIIC MSSIRQ_SRC_3

FIIC MSSIRQ_SRC_4

Table 19-19 • MSSIRQ_SRC_3

Bit Number Name R/W Reset Value Function

31:12 Reserved R 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

11 PC2_FLAG_3 R 0 1 = Interrupt asserted and enabled

10 PC2_FLAG_2 R 0 1 = Interrupt asserted and enabled

9 PC2_FLAG_1 R 0 1 = Interrupt asserted and enabled

8 PC2_FLAG_0 R 0 1 = Interrupt asserted and enabled

7 PC1_FLAG_3 R 0 1 = Interrupt asserted and enabled

6 PC1_FLAG_2 R 0 1 = Interrupt asserted and enabled

5 PC1_FLAG_1 R 0 1 = Interrupt asserted and enabled

4 PC1_FLAG_0 R 0 1 = Interrupt asserted and enabled

3 PC0_FLAG_3 R 0 1 = Interrupt asserted and enabled

2 PC0_FLAG_2 R 0 1 = Interrupt asserted and enabled

1 PC0_FLAG_1 R 0 1 = Interrupt asserted and enabled

0 PC0_FLAG_0 R 0 1 = Interrupt asserted and enabled

Table 19-20 • MSSIRQ_SRC_4

Bit Number Name R/W Reset Value Function

31:0 PPE_THRESH R 0 1 = Interrupt asserted and enabled
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FIIC MSSIRQ_SRC_5

FIIC MSSIRQ_SRC_6

Table 19-21 • MSSIRQ_SRC_5

Bit Number Name R/W Reset Value Function

31:9 Reserved R 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

9 ADC_2_CAL_R R 0 1 = Interrupt asserted and enabled

8 ADC_1_CAL_R R 0 1 = Interrupt asserted and enabled

7 ADC_0_CAL_R R 0 1 = Interrupt asserted and enabled

6 ADC_2_CAL_F R 0 1 = Interrupt asserted and enabled

5 ADC_1_CAL_F R 0 1 = Interrupt asserted and enabled

4 ADC_0_CAL_F R 0 1 = Interrupt asserted and enabled

3 ADC_2_DV_R R 0 1 = Interrupt asserted and enabled

2 ADC_1_DV_R R 0 1 = Interrupt asserted and enabled

1 ADC_0_DV_R R 0 1 = Interrupt asserted and enabled

Table 19-22 • MSSIRQ_SRC_6

Bit Number Name R/W Reset Value Function

31:6 Reserved R 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

5 ADC2_AFULL R 0 1 = Interrupt asserted and enabled

4 ADC2_FULL R 0 1 = Interrupt asserted and enabled

3 ADC1_AFULL R 0 1 = Interrupt asserted and enabled

2 ADC1_FULL R 0 1 = Interrupt asserted and enabled

1 ADC0_AFULL R 0 1 = Interrupt asserted and enabled

0 ADC0_FULL R 0 1 = Interrupt asserted and enabled
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FIIC MSSIRQ_SRC_7

FIIC_MR

Table 19-23 • MSSIRQ_SRC_7

Bit Number Name R/W Reset Value Function

31:3 Reserved R 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

2 ADC2_NOTEMPTY R 0 1 = Interrupt asserted and enabled

1 ADC1_NOTEMPTY R 0 1 = Interrupt asserted and enabled

0 ADC0_NOTEMPTY R 0 1 = Interrupt asserted and enabled

Table 19-24 • FIIC_MR

Bit Number Name R/W Reset Value Function

31:1 Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with
future products, the value of a reserved bit
should be preserved across a read-modify-
write operation.

0 MODE R/W 0 0 = ACE mode
1 = Non-ACE mode
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IOMUX Functional Description
The MSS contains I/O multiplexers that are involved in the reuse of some MSS-related I/O pads and in
providing a number of options for multiplexing GPIO, peripheral signals, and fabric interface signals to
the I/O pad. IOMUXes are associated with the GPIO block, fabric interface, and all MSS communications
peripherals (UARTS 0 and 1, SPI 0 and 1, I2C 0 and 1, and the Ethernet MAC). It is important to note that
all available hard peripherals in the MSS are available to MSS I/O pads; the peripherals are not
multiplexed with other peripherals at the I/O pad. Table 19-28 on page 369 lists the IOMUXes associated
with each peripheral. Refer to each peripheral’s section of the user’s guide to determine how those
individual IOMUXes are associated to the peripheral.
For every reusable MSS I/O pad there is an IOMUX. The IOMUX is intended to provide flexibility in the
allocation of MSS I/O pads. If the user is not using a particular interface, the corresponding I/O pads can
be reallocated to another interface. Also, if certain I/O pads are not being used (or are not present in
some devices) then the IOMUX allows the signals to be connected within the IOMUX internally, as shown
in Figure 19-12 on page 367. The IOMUX is composed of 4 multiplexers: M0, M1, M2, and M3, as shown
in Figure 19-11.

Figure 19-11 • IOMUX Block Diagram
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Figure 19-12 • Example of IOMUX Signals Routed Internal to the IOMUX
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IOMUX Register Map 
The IOMUX_n_CR (where n can range from 0 to 82) registers are located within the SYSREG block at
address 0xE0042100 and continuing for 83 32-bit register locations or 332 bytes. There are 83
IOMUX_n_CR control registers; one for each IOMUX. 
Figure 19-25 on page 368 lists the bit definitions of these control registers. 

Table 19-25 •  IOMUX _n_CR

Bit 
Number Name R/W

Reset 
Value Function

9 IOMUX_n_ST R/W 0 0 = Schmitt Trigger of IOMUX n is disabled.
1 = Enabled

8 IOMUX_n_PD R/W 0 0 = Weak pull-down of IOMUX n is disabled. 
1 = Enabled

7 IOMUX_n_PU R/W 0 0 = Weak pull-up of IOMUX n is disabled.
1 = Enabled

6 Reserved R/W 0 Reserved

5 IOMUX_n_M3_S R/W 0 MUX M3 select
0 = IN_B = IO_I
1 = IN_B = OUT_A

4:3 IOMUX_n_M2_S[1:0] R/W 0 See Table 19-26.

2:1 IOMUX_n_M1_S[1:0] R/W 0 See Table 19-27.

0 IOMUX_n_M0_S R/W 0 MUX M0 select
0 = IN_A = IO_I.
1 = IN_A = OUT_B.

Table 19-26 • IOMUX MUX M2 Configuration

IOMUX_n_M2_S[1] IOMUX_n_M2_S[0] Function

0 0 OE_A drives IO_OE

0 1 IO_OE driven to 0

1 0 OE_B drives IO_OE

1 1 IO_OE driven to 1

Table 19-27 • IOMUX MUX M1 Configuration

IOMUX_n_M1_S[1] IOMUX_n_M1_S[0] Function

0 0 OUT_A drives IO_O

0 1 IO_O driven to 0

1 0 OUT_B drives IO_O

1 1 IO_O driven to 1
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ACE Thresholds
There are 32 threshold signals (ACEFLAGS[31:0]) output directly from the ACE post processing engine
and one signal (FABACETRIG) sourced from the FPGA fabric that can be used to trigger the start of the
sample sequence engine (SSE) in the ACE. These are described in more detail in the SmartFusion
Programmable Analog User’s Guide.

Table 19-28 • IOMUX to Peripheral Association

Peripheral Associated IOMUXes

SPI_0 0, 1, 2, 3

UART_0 4, 5, 64-69

I2C_0 6, 7

SPI_1 8, 9, 10, 11, 70-76

UART_1 12, 13, 77-82

I2C_1 14, 15

EMAC 16-24

GPIO_0 25

. .

. .

. .

GPIO_15 40

GPIO_16 0, 41

. .

. .

. .

GPIO_31 15, 56
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SCB Signals
Signals coming from and going to the signal conditioning block (SCB) are described in Table 19-29.
These signals and functionality are available for instantiation by the Libero SoC design tool.

Table 19-29 • 32 SCB to FPGA Fabric Interface Signals

Name 
Input To / Output From 

FPGA Fabric Function

LVTTL0 Input Direct ADC input used as LVTTL 0 input

LVTTL1 Input Direct ADC input used as LVTTL 1 input

LVTTL2 Input Direct ADC input used as LVTTL 2 input

LVTTL3 Input Direct ADC input used as LVTTL 3 input

LVTTL4 Input Direct ADC input used as LVTTL 4 input

LVTTL5 Input Direct ADC input used as LVTTL 5 input

LVTTL6 Input Direct ADC input used as LVTTL 6 input

LVTTL7 Input Direct ADC input used as LVTTL 7 input

LVTTL0EN Output Enable for LVTTL0 input

LVTTL1EN Output Enable for LVTTL1 input

LVTTL2EN Output Enable for LVTTL2 input

LVTTL3EN Output Enable for LVTTL3 input

LVTTL4EN Output Enable for LVTTL4 input

LVTTL5EN Output Enable for LVTTL5 input

LVTTL6EN Output Enable for LVTTL6 input

LVTTL7EN Output Enable for LVTTL7 input

CMP0 Input Comparator 0 output

CMP1 Input Comparator 1 output

CMP2 Input Comparator 2 output

CMP3 Input Comparator 3 output

CMP4 Input Comparator 4 output

CMP5 Input Comparator 5 output

CMP6 Input Comparator 6 output

CMP7 Input Comparator 7 output
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DAC Signals
As shown in Table 19-30, for each DAC there is a single-bit data input and its associated clock. Users
can provide a custom input waveform to the first order SDD based on user logic. The A2F200 device has
two DACs and the A2F500 device has three DACs. The DAC inputs are also capable of being driven
from within the ACE as well. Refer to the SmartFusion Programmable Analog User’s Guide for more
details.

VR/PSM Signals
Table 19-31 lists the interface signals between the VR/PSM and the FPGA fabric. The functionality of
these signals is described in the "Voltage Regulator (VR), Power Supply Monitor (PSM), and Power
Modes" section on page 151.

Table 19-30 • DAC Interface Signals

Name 
Input To/ Output 

From FPGA Fabric Function

FABSDD0D Output Data out from FPGA fabric driving the input to the SDD_0

FABSDD0CLK Output Clock for FABSDD0D

FABSDD1D Output Data out from FPGA fabric driving the input to the SDD_1

FABSDD1CLK Output Clock for FABSDD1D

FABSDD2D Output Data out from FPGA fabric driving the input to the SDD_2

FABSDD2CLK Output Clock for FABSDD2D

Table 19-31 • Voltage Regulator / Power Supply Monitor Signals

Name 
Input To/ Output 

From FPGA Fabric Function

PUFAB_N Input Push-button, inverted version of PU_N pin

FPGAVRON Output FPGA signal to turn on and off the VREG. This bit is qualified by
the FPGAVRONENABLE field in the VRPSM_CR, which is
controlled by the Cortex-M3 processor. This prevents false
triggering of FPGAVRON when the FPGA fabric is
unprogrammed.
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Miscellaneous Signals
Table 19-32 lists miscellaneous control and status signals connecting the MSS and the FPGA fabric.
These signals are available for instantiation by the Libero SoC design tool.

Table 19-32 • Miscellaneous Interface Signals  

Name 

Input To/ Output 
From FPGA 

Fabric Function

TXEV Input Event transmitted as a result of Cortex-M3 SEV (send
event) instruction. This is a single-cycle pulse equal to 1
FCLK period.

RXEV Output Causes the Cortex-M3 processor to wake up from a WFE
instruction. The event input, RXEV, is registered even when
not waiting for an event, and so affects the next WFE.

SLEEPING Input This signal is asserted when the Cortex-M3 processor is in
sleep-now or sleep-on-exit mode, and indicates that the
clock to the processor can be stopped.

DEEPSLEEP Input This signal is asserted when the Cortex-M3 processor is in
sleep-now or sleep-on-exit mode when the SLEEPDEEP bit
of the System Control Register is set.

M2F_RESET_N Input MSS reset signal driven into the FPGA fabric. Controlled by
the reset manager.

F2M_RESET_N Output Fabric reset signal driven into the MSS reset manager.
Controlled by the user.

FABINT Output Interrupt signal sourced by user logic to the NVIC on the
Cortex-M3 processor, which is INTISR[31].
This interrupt goes straight into the Cortex-M3 NVIC block
without any synchronization; thus its timing must be
synchronous to the clock being used in the fabric for the
FIC32 AHB/APB interface, which in turn is aligned, but
possibly at a lower frequency, to the processor clock, FCLK.
The NVIC supports configuring interrupts as either level
sensitive or edge sensitive. If level sensitive, then FABINT
must be held asserted until cleared by some means via the
ISR. If configured as edge sensitive, then FABINT may be
just a pulse, as short as one FCLK period. This is all that the
NVIC needs to detect the interrupt. It may be reasserted
during the ISR and will be interpreted as a new interrupt. 

DMAREADY0 Output Indicates that a soft IP is ready to be serviced. This signal is
logic active High. The minimum pulse width of this signal
generated by soft IP is one clock cycle of FAB_CLK. To
make sure the PDMA services soft IP running with the
slowest possible FAB_CLK (i.e., FCLK/4), the user must set
the Write_Adj parameter in the PDMA driver to a value of
greater than 4.

DMAREADY1 Output Indicates that a soft IP is ready to be serviced. This signal is
logic active High. The minimum pulse width of this signal
generated by soft IP is one clock cycle of FAB_CLK. To
make sure the PDMA services soft IP running with the
slowest possible FAB_CLK (i.e., FCLK/4), the user must set
the Write_Adj parameter in the PDMA driver to a value of
greater than 4.
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I2C0SMBSUSNO Input Output Suspend Mode signal. This signal is used if I2C is
the master/host. 
Note: Not a Wired-AND signal.

I2C0SMBALERTNO Input Output Wired-AND interrupt signal. This signal is used in
slave/device mode if the I2C wants to force communication
with a host.

I2C0SMBSUSNI Output Input Suspend Mode signal. This signal is used if I2C is
slave/device. 
Note: Not a Wired-AND signal.

I2C0SMBALERTNI Output Input Wired-AND interrupt signal. This signal is used in
master/host mode to monitor if slave/devices want to force
communication with the host.

I2C0BCLK Output Alternate clock for I2C_0.

I2C1SMBSUSNO Input Output Suspend Mode signal. This signal is used if I2C is
the master/host.
Note: Not a Wired-AND signal.

I2C1SMBALERTNO Input Output Wired-AND interrupt signal. This signal is used in
slave/device mode if the I2C wants to force communication
with a host.

I2C1SMBSUSNI Output Input Suspend Mode signal. This signal is used if I2C is
slave/device. NOTE: Not a Wired-AND signal.

I2C1SMBALERTNI Output Input Wired-AND interrupt signal. This signal is used in
master/host mode to monitor if slave/devices want to force
communication with the host.

I2C1BCLK Output Alternate clock for I2C_1.

Table 19-32 • Miscellaneous Interface Signals (continued)  (continued)

Name 

Input To/ Output 
From FPGA 

Fabric Function
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20 – SmartFusion Master Register Map

Table 20-1 lists all registers in the SYSREG space.

Table 20-1 • Registers in the SYSREG Space 

Register Name Address R/W Width Description

ESRAM_CR 0xE0042000 R/W 1 Controls address mapping of the eSRAMs

ENVM_CR 0xE0042004 R/W 7 Configures eNVM parameters

ENVM_REMAP_SYS_CR 0xE0042008 R/W 20 Configures where eNVM is mapped in system space

ENVM_REMAP_FAB_CR 0xE004200C R/W 20 Configures where eNVM is mapped in fabric master
space

FAB_PROT_SIZE_CR 0xE0042010 R/W 5 Defines the size of the memory that is inaccessible by a
fabric Master

FAB_PROT_BASE_CR 0xE0042014 R/W 32 The absolute memory address of the memory region
protected from Fabric Access

AHB_MATRIX_CR 0xE0042018 R/W 4 AHB Bus matrix Control Register

MSS_SR 0xE004201C R 11 MSS Status registers

CLR_MSS_SR 0xE0042020 W 11 Clear the DSS status bits

EFROM_CR 0xE0042024 R/W 4 Configures FROM bus timing

IAP_CR 0xE0042028 R/W 3 Configures IAP bus timing 

SOFT_IRQ_CR 0xE004202C R/W 1 SOFTINTERRUPT in FIIC Control (MSSINT2 mapping)

SOFT_RST_CR 0xE0042030 R/W 20 Generates software control interrupts to the DSS
peripherals

DEVICE_SR 0xE0042034 R 7 Various Device Status bits

SYSTICK_CR 0xE0042038 R/W 29 Configures SysTick Timer STCALIB inputs

EMC_MUX_CR 0xE004203C R/W 1 External Memory Controller MUX Configuration

EMC_CS_x_CR (x = 0) 0xE0042040 R/W 22 EMC Timing Parameters for Chip Select 0

EMC_CS_x_CR (x = 1) 0xE0042044 R/W 22 EMC Timing Parameters for Chip Select 1

MSS_CLK_CR 0xE0042048 R/W 13 Clock Configuration for MSS Clock Dividers

MSS_CCC_DIV_CR 0xE004204C R/W 32 Control bits for the MSS_CCC Dividers

MSS_CCC_MUX_CR 0xE0042050 R/W 32 Control bits for the MSS_CCC Multiplexors

MSS_CCC_PLL_CR 0xE0042054 R/W 32 Control bits for the MSS_CCC PLL

MSS_CCC_DLY_CR 0xE0042058 R/W 32 Control bits for the MSS_CCC Delay Elements

MSS_CCC_SR 0xE004205C R 1 Status of MSS_CCC

Reserved Register 0xE0042060 Do not write to this register.

VRPSM_CR 0xE0042064 R/W 5 Controls Band Gap Enable, Fabric Vreg qualifier, clears
PU_N interrupts

Reserved 0xE0042068 – – Reserved

FAB_IF_CR 0xE004206C R/W 7 Fabric Interface Control register
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Table 20-2 provides a listing of all registers referred to in the SmartFusion Microcontroller Subsystem
User’s Guide, including cross-references to the sections where each register is defined in detail.

FAB_APB_HIWORD_DR 0xE0042070 R 16 Configures fabric interface as either APB or AHB.

LOOPBACK_CR 0xE0042074 R/W 5 Loopback control for MSS peripherals

MSS_IO_BANK_CR 0xE0042078 R/W 4 Set I/O standard for MSS I/O Banks

GPIN_SOURCE_CR 0xE004207C R/W 16 Alternate GPIN source select

Reserved 0xE0042080 – – Reserved

…

– –

…

Reserved 0xE00420FC – – Reserved

IOMUX _n_CR (n = 0) 0xE0042100 R/W 10 I/O MUX Cell 0 control register

… … …

–

…

IOMUX _n_CR (n = 82) 0xE0042248 R/W 10 I/O MUX Cell 82 control register

Table 20-1 • Registers in the SYSREG Space  (continued)

Register Name Address R/W Width Description

Table 20-2 • SmartFusion Master Register Map 

Register Name Address R/W Reset Value Description

"Cortex-M3 SysTick Timer"

SYSTICK_CR 0xE0042038 R/W 0x32000000 Provides firmware control of
the STCALIB[25:0] pins of
Cortex-M3 microcontroller.

SysTick Reload Value 0xE000E014 R/W Unpredictable Value to load in Current Value
register when 0 is reached

SysTick Current Value 0xE000E018 R/W Unpredictable The current value of the count
down

SysTick Calibration Value 0xE000E01C R STCALIB Contains the number of ticks to
generate a 10 ms interval.

SysTick Control and Status 0xE000E010 R/W 0x0 Basic control of SysTick,
including enable, clock source,
interrupt, or poll

Interrupts The interrupt numbers
(corresponding to the NVIC
input pins of the Cortex-M3
processor), their sources, and
which functions assert the
interrupt for the SmartFusion
family of custommizable
system-on-chip devices.
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"PDMA Register Map"

RATIO_HIGH_LOW 0x40004000 R/W 0 Ratio of high priority transfers
versus low priority transfers

BUFFER_STATUS (x = 0 0x40004004 R/W 0 Indicates when buffers have
drained

CHANNEL_x_CONTROL (x = 0) 0x40004020 R/W 0 Channel 0 control register

CHANNEL_x_STATUS (x = 0) 0x40004024 R 0 Channel 0 status register

CHANNEL_x_BUFFER_A_SRC_ADDR 
(x = 0)

0x40004028 R/W 0 Channel 0 buffer A source
address

CHANNEL_x_BUFFER_A_DST_ADDR 
(x = 0)

0x4000402C R/W 0 Channel 0 buffer A destination
address

CHANNEL_x_BUFFER_A_TRANSFER_COUNT
(x = 0)

0x40004030 R/W 0 Channel 0 buffer A transfer
count

CHANNEL_x_BUFFER_B_SRC_ADDR 
(x = 0)

0x40004034 R/W 0 Channel 0 buffer B source
address

CHANNEL_x_BUFFER_B_DST_ADDR
(x = 0)

0x40004038 R/W 0 Channel 0 buffer B destination
address

CHANNEL_x_BUFFER_B_TRANSFER_COUNT
(x = 0)

0x4000403C R/W 0 Channel 0 buffer B transfer
count

CHANNEL_1_CONTROL 0x40004040 R/W 0 Channel 1 control register

… …

R/W

… …

CHANNEL_1_BUFFER_B_TRANSFER_COUNT 0x4000405C R/W 0 Channel 1 buffer B transfer
count

… …

R/W

… …

CHANNEL_7_BUFFER_B_TRANSFER_COUNT 0x4000411C R/W 0 Channel 7 buffer B transfer
count

"eNVM Controller Register Map"

ENVM_STATUS_REG 0x60100000 R/W 0x0 Returns the status of the last
commanded operation.

ENVM_CONTROL_REG 0x60100004 R/W 0x0 Control register used for all
eNVM commands

ENVM_ENABLE_REG 0x60100008 R/W 0x0 eNVM interrupt enable register 

Reserved 0x6010000C R/W 0x0 Reserved

ENVM_0_CR 0x6010000C R/W 0x0 eNVM 0 configuration register 

ENVM_1_CR 0x60100010 R/W 0x0 eNVM 1 configuration register 

ENVM_PAGE_STATUS_0_REG 0x60100014 R 0x0 eNVM 0 page status register 

ENVM_PAGE_STATUS_1_REG 0x60100018 R 0x0 eNVM 1 page status register 

"EFROM_CR Register Map" on page 77

EFROM_CR 0xE0042024 R/W 0x00000009 Used to set eFROM APB
interface controller timing
options

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description
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"External Memory Controller Register Map"

EMC_MUX_CR 0xE004203C R/W 0x0 External memory controller
MUX configuration

EMC_CS_x_CR (x = 0) 0xE0042040 R/W 0x0 EMC timing parameters for
chip select 0

EMC_CS_x_CR (x = 1) 0xE0042044 R/W 0x0 EMC timing parameters for
chip select 1

"Watchdog Register Interface Summary"

WDOGVALUE 0x40006000 R 0x20000000 Current value of counter

WDOGLOAD 0x40006004 R/W 0x20000000 Load value for counter

WDOGMVRP 0x40006008 R/W 0xFFFFFFFF Maximum value for which
refreshing is permitted

WDOGREFRESH 0x4000600C W N/A Writing the value 0xAC15DE42
to this register causes the
counter to be updated with the
value in WDOGLOAD register.

WDOGENABLE 0x40006010 R/W 0x1 Watchdog enable register

WDOGCONTROL 0x40006014 R/W 0x0 Control register

WDOGSTATUS 0x40006018 R 0x1 Status register

WDOGRIS 0x4000601C R/W 0x0 Raw interrupt status

WDOGMIS 0x40006020 R 0x0 Masked interrupt status

MSS_SR 0xE004201C R 0x0 MSS Status register

"Ethernet MAC Control and Status Register Addressing"

CSR0 0x40003000 R/W 0xFE000000 Bus mode

CSR1 0x40003008 W 0 Transmit poll demand

CSR2 0x40003010 W 0 Receive poll demand

CSR3 0x40003018 R/W 0xFFFFFFFF Receive list base address

CSR4 0x40003020 R/W 0xFFFFFFFF Transmit list base address

CSR5 0x40003028 R/W 0xF0000000 Status and control

CSR6 0x40003030 R/W 0x32000040 Operation mode

CSR7 0x40003038 R/W 0xF3FE0000 Interrupt enable

CSR8 0x40003040 R/W 0xE0000000 Missed frames and overflow
counters

CSR9 0x40003048 R/W 0xFFF483FB RMII management

CSR10 0x40003050 N/A 0 Reserved 

CSR11 0x40003058 R/W 0xFFFE0000 Timer and interrupt mitigation
control

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description
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"SPI Register Interface Summary" (addresses for SPI_0 shown; SPI_1 begins at 0x40011x00)

CONTROL 0x40001000 R/W 0x0000102 Control register 

TXRXDF_SIZE 0x40001004 R/W 0x04 Transmit and receive data
frame size

STATUS 0x40001008 R 0x2440 Status register

INT_CLEAR 0x4000100C W 0x00 Interrupt Clear register

RX_DATA 0x40001010 R Unknown Receive Data register

TX_DATA 0x40001014 W 0x00000000 Transmit Data register

CLK_GEN 0x40001018 R/W 0x07 Output Clock Generator 
(master mode)

SLAVE_SELECT 0x4000101C R/W 0x00 Specifies slave selected 
(master mode)

MIS 0x40001020 R 0x00 Masked interrupt status

RIS 0x40001024 R 0x00 Raw interrupt status

The following registers apply only to A2F060 and A2F500.

CONTROL2 0x40001028 R/W 0x00 Control bits for enhanced
mode

COMMAND 0x4000102C R/W 0x00 Command register

PKTSIZE 0x40001030 R/W 0x00 Packet size

Reserved 0x40001034 R/W 0x00 Reserved

Reserved 0x40001038 R/W 0x00 Reserved

STAT8 0x4000103C R 0x44 Status register (reduced width)

CTRL0 (CTRL) 0x40001040 R/W 0x02 Aliased control register – read
and write bits 7:0

CTRL1 (CTRL) 0x40001044 R/W 0x01 Aliased control register – read
and write bits 15:8

CTRL2 (CTRL) 0x40001048 R/W 0x00 Aliased control register – read
and write bits 23:16

CTRL3 (CTRL) 0x4000104C R/W 0x00 Aliased control register – read
and write bits 25:24

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description
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"I2C_x Register Map" (addresses for I2C_0 shown; I2C_1 begins at 0x40012000)

CTRL 0x40002000 R/W 0 Used to configure the I2C
peripheral.

STATUS 0x40002004 R 0xF8 Read-only value which
indicates the current state of
the I2C peripheral

DATA 0x40002008 R/W 0 Read/write data to/from the
serial interface

ADDR 0x4000200C R/W 0 Contains the primary
programmable address of the
I2C peripheral

SMBUS 0x40002010 R/W 0b01X1X000 Configuration register for
SMBus timeout reset condition
and for the optional SMBus
signals SMBALERT_N and
SMBSUS_N

FREQ 0x40002014 R/W 0x08 Necessary for configuring real-
time timeout logic. Can be set
to the PCLK frequency for 25
ms SMBus timeouts, or may be
changed to increase/decrease
the timeout value.

GLITCHREG 0x40002018 R/W 0x03 Number of registers in the
glitch filter. Can be set to value
from 3 to 6. Correct value to
meet I2C fast mode 50 ns
spike suppression will depend
on the PCLK frequency.

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description
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"UART_x Register Map" (UART_0 addresses are shown; UART_1 begins at 0x40010000)

RBR 0x40000000 R – Buffer Register

THR 0x40000000 W – Transmit Holding Register

DLR 0x40000000 R/W 0x01 Divisor Latch (LSB) Register 

DMR 0x40000004 R/W 0 Divisor Latch (MSB) Register

IER 0x40000004 R/W 0 Interrupt Enable Register

IIR 0x40000008 R 0xC1 Interrupt Identification Register

FCR 0x40000008 W 0 FIFO Control Register

LCR 0x4000000C R/W 0 Line Control Register

MCR 0x40000010 R/W 0 Modem Control Register

LSR 0x40000014 R 0x60 Line Status Register

MSR 0x40000018 R 0 Modem Status Register

SR 0x4000001C R/W 0 Scratch Register

"Real-Time Counter Register Map" on page 301

COUNTER0_REG 0x40014100 R/W 0 Counter bits 7:0

COUNTER1_REG 0x40014104 R/W 0 Counter bits 15:8

COUNTER2_REG 0x40014108 R/W 0 Counter bits 23:16

COUNTER3_REG 0x4001410C R/W 0 Counter bits 31:24

COUNTER4_REG 0x40014110 R/W 0 Counter bits 39:32

MATCHREG0_REG 0x40014120 R/W 0 Match Register bits 7:0

MATCHREG1_REG 0x40014124 R/W 0 Match Register bits 15:8

MATCHREG2_REG 0x40014128 R/W 0 Match Register bits 23:16

MATCHREG3_REG 0x4001412C R/W 0 Match Register bits 31:24

MATCHREG4_REG 0x40014130 R/W 0 Match Register bits 39:32

MATCHBITS0_REG 0x40014140 R/W 0 Individual Match bits 7:0

MATCHBITS1_REG 0x40014144 R/W 0 Individual Match bits 15:8

MATCHBITS2_REG 0x40014148 R/W 0 Individual Match bits 23:16

MATCHBITS3_REG 0x4001414C R/W 0 Individual Match bits 31:24

MATCHBITS4_REG 0x40014150 R/W 0 Individual Match bits 39:32

CTRL_STAT_REG 0x40014160 R/W 0 Control (write) / status (read)
bits 7:0

"System Timer Register Map" (addresses for TIM1 are shown; TIM2 begins at 0x40005018)

TIMx_VAL (x = 1) 0x40005000 R 0x0 Current value of Timer 1

TIMx_LOADVAL (x = 1) 0x40005004 R/W 0x0 Load value for Timer 1

TIMx_BGLOADVAL (x = 1) 0x40005008 R/W 0x0 Background load value for
Timer 1

TIMx_CTRL (x = 1) 0x4000500C R/W 0x0 Timer 1 Control Register

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description
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TIMx_RIS (x = 1) 0x40005010 R/W 0x0 Timer 1 raw interrupt status

TIMx_MIS (x = 1) 0x40005014 R 0x0 Timer 1 masked interrupt
status

TIMx_VAL (x = 2) 0x40005018 R 0x0 Current value of Timer 2

TIMx_LOADVAL (x = 2) 0x4000501C R/W 0x0 Load value for Timer 2

TIMx_BGLOADVAL (x = 2) 0x40005020 R/W 0x0 Background load value for
Timer 2

TIMx_CTRL (x = 2) 0x40005024 R/W 0x0 Timer 2 Control Register

TIMx_RIS (x = 2) 0x40005028 R/W 0x0 Timer 2 raw interrupt status

TIMx_MIS (x = 2) 0x4000502C R 0x0 Timer 2 masked interrupt
status

TIM64_VAL_U 0x40005030 R 0x0 Upper 32-bit word in 64-bit
mode

TIM64_VAL_L 0x40005034 R 0x0 Lower 32-bit word in 64-bit
mode

TIM64_LOADVAL_U 0x40005038 R/W 0x0 Upper 32-bit load value word in
64-bit mode

TITM64_LOADVAL_L 0x4000503C R/W 0x0 Lower 32-bit load value word in
64-bit mode

TIM64_BGLOADVAL_U 0x40005040 R/W 0x0 Upper 32-bit background load
value in 64-bit mode

TIM64_BGLOADVAL_L 0x40005044 R/W 0x0 Lower 32-bit background load
value in 64-bit mode

TIM64_CTRL 0x40005048 R/W 0x0 Control Register in 64-bit mode

TIM64_RIS 0x4000504C R/W 0x0 Raw interrupt status in 64-bit
mode

TIM64_MIS 0x40005050 R 0x0 Masked interrupt status in 64-
bit mode

TIM64_MODE 0x40005054 R/W 0x0 System Timer dual 32-bit or
64-bit mode

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description
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"GPIO Register Map"

GPIO_x_CFG (x = 0) 0x40013000 R/W 0x0 GPIO Configuration register for
bit 0

… …

R/W

… …

GPIO_x_CFG (x = 31) 0x4001307C R/W 0x0 GPIO Configuration register for
bit 31

GPIO_IRQ 0x40013080 R/W 0x0 Interrupt Status Register 

GPIO_IN 0x40013084 R 0x0 Read only bits for ports
configured as inputs

GPIO_OUT 0x40013088 R/W 0x0 Read/write bits for ports
configured as outputs

"Fabric Interface and IOMUX Register Map"

MSSIRQ_EN_0 0x40007000 R/W 0 Enables/disables interrupt
sources for MSSINT[0]

MSSIRQ_EN_1 0x40007004 R/W 0 Enables/disables interrupt
sources for MSSINT[1]

MSSIRQ_EN_2 0x40007008 R/W 0 Enables/disables interrupt
sources for MSSINT[2]

MSSIRQ_EN_3 0x4000700C R/W 0 Enables/disables interrupt
sources for MSSINT[3]

MSSIRQ_EN_4 0x40007010 R/W 0 Enables/disables interrupt
sources for MSSINT[4]

MSSIRQ_EN_5 0x40007014 R/W 0 Enables/disables interrupt
sources for MSSINT[5]

MSSIRQ_EN_6 0x40007018 R/W 0 Enables/disables interrupt
sources for MSSINT[6]

MSSIRQ_EN_7 0x4000701C R/W 0 Enables/disables interrupt
sources for MSSINT[7]

MSSIRQ_SRC_0 0x40007020 R/W 0 Source of interrupt for
MSSINT[0]

MSSIRQ_SRC_1 0x40007024 R/W 0 Source of interrupt for
MSSINT[1]

MSSIRQ_SRC_2 0x40007028 R/W 0 Source of interrupt for
MSSINT[2]

MSSIRQ_SRC_3 0x4000702C R/W 0 Source of interrupt for
MSSINT[3]

MSSIRQ_SRC_4 0x40007030 R/W 0 Source of interrupt for
MSSINT[4]

MSSIRQ_SRC_5 0x40007034 R/W 0 Source of interrupt for
MSSINT[5]

MSSIRQ_SRC_6 0x40007038 R/W 0 Source of interrupt for
MSSINT[6]

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description
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MSSIRQ_SRC_7 0x4000703C R/W 0 Source of interrupt for
MSSINT[7]

FIIC_MR 0x40007040 R/W 0 Fabric interface interrupt
controller mode register

ADC Register Map

SSE_TS_CTRL 0x40020004 R/W 0 Sample sequence engine time
slot control

ADC_SYNC_CONV 0x40020008 R/W 0 Synchronized ADC control

ANA_COMM_CTRL 0x4002000C R/W 1 Common analog block control

ADC0_CONV_CTRL 0x40020050 R/W 0 ADC 0 conversion control

ADC0_STC 0x40020054 R/W 0 ADC 0 sample time control

ADC0_TVC 0x40020058 R/W 0 ADC 0 time division control

ADC0_MISC_CTRL) 0x4002005C R/W 0 ADC 0 control register

ADC1_CONV_CTRL 0x40020090 R/W 0 ADC 1 conversion control

ADC1_STC 0x40020094 R/W 0 ADC 1 sample time control

ADC1_TVC 0x40020098 R/W 0 ADC 1 time division control

ADC1_MISC_CTRL 0x4002009C R/W 0 ADC 1 control register

ADC2_CONV_CTRL 0x400200D0 R/W 0 ADC 2 conversion control

ADC2_STC 0x400200D4 R/W 0 ADC 2 sample time control

ADC2_TVC 0x400200D8 R/W 0 ADC 2 time division control

ADC2_MISC_CTRL 0x400200DC R/W 0 ADC 2 control register

ADC0_STATUS 0x40021000 R 0 Status of ADC 0

ADC1_STATUS 0x40021004 R 0 Status of ADC 1

ADC2_STATUS 0x40021008 R 0 Status of ADC 2

PPE_CTRL 0x40021404 R/W 0 Post processing engine control

Table 20-2 • SmartFusion Master Register Map  (continued)

Register Name Address R/W Reset Value Description



A – List of Changes

The following table lists critical changes that were made in each revision of the SmartFusion MSS User’s
Guide.

Revision Changes Page

Revision 3
(September 2012)

The following information was added to the "ARM Cortex-M3 Microcontroller" section
(SAR 35987): "A2F060 and A2F500 allow debug at up to 10 MHz, as limited by the
debugger."

8

Table 5-1 • eFROM Read/Write Capabilities by Access Mode was revised to clarify
that IAP can program eFROM in A2F060 and A2F500 only (SAR 38827).

76

Values for A2F060 were added to Table 6-1 • eSRAM Address Locations (SAR
36912).

79

The second instance of LPXIN was corrected to LPXOUT in Figure 16-1 • Real-Time
Counter System Block Diagram (SAR 38421).

299

Figure 9-2 • MSS_RESET_N Output Buffer Configuration was modified to show the
MSS_RESET_N is pulled up to 3.3 V (SAR 38750).

146

The "The MSS_RESET_N Pin" section is new (SAR 37407). 146

The reference to Sleep mode was changed to Standby mode in the "Time Keeping
Mode" section (SAR 36365).

156

The names and descriptions for bits 1 and 0 were exchanged in Table 11-9 •
WDOGRIS (SAR 29407). 

169

The "SPD", "DBO", and "BLE" bits in Table 12-18 • CSR0 were corrected from R/W to
W because they are not readable (SAR 30561).

197

The register addresses were corrected in Table 13-4 • SPI Register Summary. The
CMDSIZE and HWSTATUS registers were changed to Reserved. (SAR 31898).

232

The description of the CLKMODE bit (bit 28) in Table 13-5 • CONTROL was revised
(SAR 31898).

233

The following bit definitions were added to tables in the "SPI Register Interface
Details" section (SAR 31898):
Table 13-7 • STATUS, [14:12]
Table 13-8 • INT_CLEAR, [5:4]
Table 13-11 • CLK_GEN, [7:4]
Table 13-13 • MIS, [5:4]
Table 13-14 • RIS, [5:4]

233

The CMDINT bit in Table 13-8 • INT_CLEAR was changed to Reserved. It is used for
the command system (SAR 31898).

237

Bit descriptions in Table 13-11 • CLK_GEN, Table 13-13 • MIS, and Table 13-14 • RIS
were updated for clarity and accuracy. The reset value of bits [6:0] in Table 13-16 •
COMMAND were changed from 0x00 to 0 (SAR 31898).

238 – 
240

Table 13-18 • CMDSIZE and Table 13-19 • HWSTATUS were deleted (SAR 31898). N/A

Notes were added to Table 13-18 • STAT8 and Table 13-19 • CTRL to indicate that
R/W and Reset Value are the same as the corresponding Control register bits (SAR
31898).

243
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List of Changes
Revision 3
(continued)

The reference to Standby and Sleep modes was changed to Standby and Time
Keeping modes in the introduction to the "Real-Time Counter (RTC) System" section
(SAR 36365).

299

Table 18-1 • MSS I/O Voltage Standards and Drive Strengths was expanded to clarify
the drive strengths for different I/O standards (SAR 37523).

319

The "Locked Transactions" section is new (SAR 28771). 353

The "16-Bit Fabric Master" section is new (SAR 25759). 353

The reset value and description for "SYSTICK_CR" were corrected in Table 20-2 •
SmartFusion Master Register Map (SAR 30564).

376

The fax number has been changed to 408.643.6913 in the "Customer Service"
section. 

393

Revision 2
(December 2011)

The "ARM Cortex-M3 Microcontroller" section was revised to add "for the A2F200
device only" to this sentence: "SWV operates at 98 KHz for the A2F200 device only"
(SAR 30680, SAR 27097). The example for generating a 10 ms tick in the "Cortex-M3
SysTick Timer" section was qualified as applicable to a –1 speed device (SAR 30845).

8

ACE interrupt numbers were added to Table 1-5 • SmartFusion Interrupt Sources
(SAR 24908).

10

The register addresses in Table 2-2 • AHB Bus Matrix Register Map were changed
from the form 0xE000XXXX to 0xE004XXXX (SAR 24522, 32736).

24

The "AHB Bus Matrix Register Bit Definitions" section was revised to change the
register address range to "0xE0042000 to 0xE004FFFF" for the AHB bus matrix
control registers (SAR 26760).

24

In the "AHB Bus Matrix Register Map" section, several reset values were corrected:
The reset value for ESRAM_CR was changed from 0x0 to 0x00000010. 
The reset value for ENVM_CR was changed from 0x00000092 to 0x00000072. 
The reset value for ENVM_REMAP_SYS_CR was changed from 0x00080001 to
0x00000001.
The reset value for AHB_MATRIX_CR was changed from 0x0 to 0x00000007 (SAR
35089).

24

Table 2-6 • Bit Combination Definitions for ENVM_PIPE_BYPASS and
ENVM_SIX_CYCLE was corrected. References to frequencies were removed; a
reference to the eNVM section of the SmartFusion cSoC datasheet was included to
assist in determining frequency (SAR 33219).

26

The function for WRITE_ADJ was revised in Table 3-5 • CHANNEL_x_CONTROL
(SAR 26076).

43

The "Memory Organization" section was revised to add information about user eNVM
pages. The information was added just before Table 4-3 • eNVM Section Sizes (SAR
24302).

53

Table 4-4 • Latencies Corresponding to ENVM_SIX_CYCLE and
ENVM_PIPE_BYPASS and Figure 4-8 • eNVM Read: ENVM_SIX_CYCLE = 0 and
ENVM_PIPE_BYPASS = 0, SEQ or NONSEQ Block Address (6:1:1:1) were
significantly revised (SARs 26238, 27584).

54, 55

The titles of Figure 4-7 • eNVM Read: ENVM_SIX_CYCLE = 0 and
ENVM_PIPE_BYPASS = 1, SEQ or NONSEQ Block Address (5:1:1:1) and Figure 4-8
• eNVM Read: ENVM_SIX_CYCLE = 0 and ENVM_PIPE_BYPASS = 0, SEQ or
NONSEQ Block Address (6:1:1:1) were revised to correct the block address in each
(SAR 25341).

55
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In Table 6-2 • ESRAM_CR Register Map, the ESRAM_CR address was changed to
0xE0042000 and the AHB_MATRIX_CR address was changed to 0xE0042018 (SAR
26760). The reset value for ESRAM_CR was changed from 0x0 to 0x00000010. The
reset value for AHB_MATRIX_CR was changed from 0x0 to 0x00000007 (SAR
35089).

79

The statement, 'In all devices the MSS has been designed to operate at up to
100 MHz" was added to the "Functional Description" section. Clarification of how the
FCLK divides down within the MSS was added: "Within the MSS, FCLK can be
further divided down via APB clock dividers and within those peripherals that
will further divide down the APB clock" (SAR 25925).

109

In Table 8-4 • Main Oscillator Operational Modes, the function for Low Gain was
revised, changing "0.32 to 0.20 MHz" to "32 to 200 KHz" (SAR 26033).

121

The following note was added to the "On-Chip RC Oscillator" section: "The accuracy
of the on-chip RC oscillator makes it unsuitable as a clock source for the
Ethernet MAC" (SAR 28099).

120

The opening section in the "Reset Controller" chapter was revised, adding information
that the MSS_RESET_REQ signal from the Cortex-M3 processor is controlled by the
SYSRESETREQ bit in the Application Interrupt and Reset Control register. In the
same section, Figure 9-1 • Reset Controller Block Diagram was revised to move the
location of M3_PORESET_N to the signal above its previous location.

143

The "Analog Reset" section is new and explains what occurs when the analog block is
reset by the MSS (SAR 30664).

148

Table 9-3 • ANA_COMM_CTRL is now included in the "Reset Controller" chapter.
Previously it existed only in the "Analog-to-Digital Converter" chapter of the
SmartFusion Programmable Analog User’s Guide (SAR 23724).

148

RTM_MATCH was corrected to RTC_MATCH in Figure 10-1 • VR and PSM Block
Diagram (SAR 27179). A 1.5 V output label was placed above the capacitor. 

151

The following note was added to the "VR Init" section: "Changing the programmed
state of the PUPO flash bits results in a change in behavior only if VCC33 and VBAT
are both off (removed) following programming" (SAR 28441). 

152

Figure 10-3 • VR Block Diagram was revised to show the power supplies that
generate the control signals (SAR 31446).

153

The "Sleep Mode" and "Power-Down" sections were deleted from the "SmartFusion
Power Modes" section and Figure 10-5 • Power State Diagram was modified
accordingly (SAR 29479).

155

In Table 10-2 • VR and PSM Control Registers, the address for DEVICE_SR was
changed to 0xE0042034 (SAR 26760).

156

The names and descriptions for bits 1 and 0 were exchanged in Table 11-7 •
WDOGCONTROL and Table 11-10 • WDOGMIS (SAR 29407).

168, 169

The second occurrence of RDES2 was changed to RDES3 in Table 12-2 • Receive
Descriptors (RDESx) (SAR 28179).

179

Figure 12-12 • MAC I/O Interaction with Fabric was replaced by Figure 12-12 •
Example of Ethernet MAC Interaction with FPGA Fabric via an IOMUX (SAR 26540).

214

Additional SPI registers and CONTROL register information for A2F060 and A2F500
was added to the "SPI Register Interface Summary" section and "SPI Register
Interface Details" section. The "Control Bits SPS, SPO, and SPH (A2F060 and
A2F500)" section is new (SARs 33040, 31898).

232, 233
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The third bullet in the Slave mode "Transfer Example" was changed from "I2C
peripheral generates interrupt request; STATUS register = 0x00 (Table 14-6 on
page 261)" to "I2C peripheral generates interrupt request; STATUS register = 0x60
(Table 14-8 on page 265" (SAR 35352).

254

The "Clockstretching" section is new (SAR 35833). 255

Table 15-10 • FCR was modified to change the descriptions for bits 1 and 2.
Previously these stated, "This shift register is not cleared." This sentence was
changed to "The transmit shift register is not cleared" and "The receive shift register is
not cleared." In Table 15-12 • MCR, the sentence reading, "The output of the
Transmitter Shift Register is looped back into the Receiver Shift Register" was revised
to read, "The output of the Transmitter is looped back into the Receiver" (SAR 24349).

283, 285

The following sentence was deleted from the description of bit 5 in Table 15-13 • LSR:
"Indicates that the UART is ready to transmit a new data byte" (SAR 24350).

286

The "System Timer" chapter was revised to remove inconsistencies of register naming
(some registers were formerly referred to with _REG at the end of the name) and to
note that the timers can be used in polled mode as well as in generating interrupts.
The description of TIMxENABLE in Table 17-5 • TIMx_CTRL was corrected and
augmented (SAR 30846).

305

The "Features of MSS General Purpose I/Os" section is new (SAR 24700). 319

Figure 19-2 • Fabric Interface Controller System Overview was corrected by
exchanging the Master and Slave labels in the FPGA fabric portion of the figure. A
similar correction was made to Figure 19-3 • Mismatched FIC Interfaces (SAR 26375,
SAR 25911).

344, 345

The "FIIC Functional Description" section was revised to state, "ACE mode is selected
by setting the MODE bit in the FIIC_MR to a 0." Previously the sentence stated to set
the MODE bit to a 1 (SAR 25652). The bit definitions for FIIC_MIR in Table 19-24 •
FIIC_MR were revised to match so that 0 is ACE mode and 1 is non-ACE mode (SAR
25653).

354, 365

The FABINT description in Table 19-32 • Miscellaneous Interface Signals was revised
to add information needed for generating this signal with user logic (SAR 33937).
Additional data was included in the DMAREADY0 and DMAREADY1 descriptions to
indicate logic level and duration (SAR 31331).

372

The address for SYSTICK_CR in Table 20-2 • SmartFusion Master Register Map was
corrected from 0xE000E010 to 0xE0042038 (SAR 30564).

376

Additional SPI registers and CONTROL register information for A2F060 and A2F500
was added to the Table 20-2 • SmartFusion Master Register Map (SARs 33040,
31898).

376

The "SmartFusion Programming" chapter was moved to the SmartFusion datasheet
(also resolves SAR 29572, 31390).

N/A

Revision 1
(April 2010)

The "SmartFusion MSS UART Application Development" section is new (SAR 25331). 295

The "SmartFusion MSS Timer Application Development" section is new (SAR 25331). 316

The "SmartFusion MSS GPIO Application Development" section is new (SAR 25331). 341

References to the SmartFusion MSS Firmware Drivers v2.0 User's Guide have been
changed to the website reference for SmartFusion MSS Configurators and Drivers
User’s Guides.

N/A
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The "ARM Cortex-M3 Microcontroller" section was revised to include the fact that
SWV operates at 98 KHz.

7

Figure 3-1 • PDMA Block Diagram was revised to change the APB Bus Matrix and
APB Interface blocks to AHB Bus Matrix and AHB Interface

35

Two bit-field names were corrected: WR_ADJUST was changed to WRITE_ADJ in the
"Clocks" section and PDMA_SOFTRESET was changed to PDMA_SR in the "Resets"
section.

38

Table 3-6 • PERIPHERAL_SEL was revised to exchange the definitions of the 1000
and 1001 bit combinations.

44

Table 3-7 • CHANNEL_x_STATUS was revised. The definitions of the bit numbers
changed.

45

The ENVM_CONFIG_0_REG and ENVM_CONFIG_1_REG registers were renamed
to ENVM_0_CR and ENVM_1_CR. References to them throughout the chapter and
datasheet were revised.

N/A

Captions were revised in Figure 4-1 • Block Diagram of eNVM Controller with Two
eNVM Blocks to make signal names consistent in format.

49

Figure 4-5 • Address Decoding for eNVM Read Operations was revised. 53

Bit 9 was changed to MSB and Bit 8 was changed to LSB in the headings for
Table 4-12 • ENVM_STATUS_x.

67

EMC_CONFIG_x_REG was replaced with EMC_CS_x_CR (x = 0 or 1). This was a
terminology change throughout the document.

N/A

The HWRITE signal was revised in Figure 7-3 • AHB Address/Data Phase for Write
Transfer.

83

The following sentence was removed from the "FCLK Cycles Required for Memory
Accesses" section: "When latencies are zero, the number of phases listed in Table 14-
4 represents the minimum number of FCLK cycles required for an EMD access."

89

Table 7-8 • EMC_MUX_CR is new. 95

Table 7-9 • EMC_CS_x_CR was revised to change the EMC_CSFEx field to
EMC_MEMTYPEx.

95

Table 7-13 • Mapping of AHB Transactions to EMC Accesses was revised. Values for
EMC_DB Bits were added for port size 8 and HSIZE Half. Values for EMC_AB were
added for port size 16 and HSIZE Word, and the other values in these rows adjusted
to their proper position in the table.

97

EMC_MRW_N was corrected to EMC_RW_N in figures where it occurred throughout
the document. 

N/A

The "On-Chip RC Oscillator" section was revised to state that the RC oscillator is
always on. Previously this section stated that the on-chip RC oscillator could be
disabled by setting the RCOSCDISABLE bit in the MSS_RCOSC_CR. Reference to
MSS_ROCOSC_CR was removed.

120

The "Main Crystal Oscillator" section was revised to state that The main crystal
oscillator can be enabled and disabled by the Cortex-M3 processor via the
MSS_CCC_MUX_CR, bit 29 MAINOSCEN.

121

The "Low-Power 32 KHz Crystal Oscillator" section was revised to remove reference
to MSS_RCOSC_CR. CTRL_STAT_REG is referenced instead.

123

OSC_CTRL was removed from Table 8-5 • PLL/CCC Register Map, and the OSC
Control Register Bit Definitions was removed.

124
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The address for MSS_CCC_PLL_CR was changed from 0xE0040054 to
0xE0042054. 

124

The "Functional Description" section was revised to change the reference to the
MMS_STATUS_REG to its correct name: MSS_SR.

143

Table 9-2 • Reset Controller Memory Map was revised to change the register address
for SOFT_RST_CR from 0X0002030 to 0xE0042030.

148

The "1.5 V Voltage Detector (VCC15UP)" section and "3.3 V Voltage Detector
(VCC33UP)" section were revised.

151, 152

Captions in Figure 10-1 • VR and PSM Block Diagram and Figure 10-3 • VR Block
Diagram were revised to correct them from VCC3A and VDD33 to VCC33A.

151, 153

The "SmartFusion Power Modes" section was replaced. FPGA mode was deleted.
Table 10-2 • SmartFusion Power Modes, Table 10-3 • SmartFusion Wake-up
Transition Events, and Table 10-4 • SmartFusion Power-Down Transition Events were
replaced by Figure 10-5 • Power State Diagram.

155 
through 

156

Table 10-1 • VR and PSM Related Interrupts was revised to change the addresses for
CLR_MSS_SR and DEVICE_SR.

155

Table 10-2 • VR and PSM Control Registers was revised to remove
MSS_RCOSC_CR. The MSS_RCOSC_CR Bit Definitions table was removed.

156

The description for MSSVRON in Table 10-6 • VRPSM_CR was revised. 161

The AND gate above the WDOGRIS register was deleted in Figure 11-1 • Watchdog
Block Diagram.

163

The definitions and descriptions in Table 11-6 • WDOGENABLE were revised. 168

The R/W field values were changed to R in Table 11-8 • WDOGSTATUS. 168

Table 11-9 • WDOGRIS was corrected. The reserved bit numbers were changed from
1:2 to 31:2.

169

Table 11-11 • MSS_SR was revised to change SYSRESETn to
MSS_SYSTEM_RESET_N.

170

Instances in signal names of H2F and F2H were changed to M2F and F2M to indicate
"microcontroller subsystem to fabric" and "fabric to microcontroller subsystem."

N/A

In the "Receive FIFO (RFIFO)" section, the size of the receive FIFO was corrected to
1,024 × 32 bits.

175

The last two paragraphs were deleted from the "Descriptor / Data Buffer Architecture
Overview" section.

178

"Pull demand command" was changed to "Poll demand command" in Figure 12-6 •
Transmit Process Transitions and Figure 12-7 • Receive Process Transmissions. 

188, 189

Figure 12-12 • Example of Ethernet MAC Interaction with FPGA Fabric via an IOMUX
was revised to correct the internal signals in the MUX.

214

GND was changed to VDD in Table 12-43 • IOMUX 16 and Table 12-44 • IOMUX 17. 215

Reserved bits were added to bit definition tables in the "Serial Peripheral Interface
(SPI) Controller" section.

219

Figure 13-1 • SPI Controller Block Diagram was revised to change SPI_SS[0] to
SPI_x_SS[0].

219

The DMA Mode section was renamed to the "PDMA Mode" section. 220

A note regarding SPI_x_SS[7:1] was added to Table 13-1 • SPI Interface Signals. 221
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SPI_x_SS was changed to SPI_x_SS[0] in the "SPI Status at Reset" section. 222

The "SPI Clock Requirements" section was revised to state that the input clock to the
SPI controller (SPICLK) can not be faster than one twelfth of PCLK0 or PCLK1.

222

The definitions of the modes for timing diagrams in the "SPI Data Transfer Protocol
Details" section were revised. Table 13-2 • Motorola SPI Transfer Modes (A2F200
only) was revised accordingly.

223

The description was revised in Table 13-12 • SLAVE_SELECT and a note was added
to the table.

238

Table 13-20 • SPI Signal GPIO and Fabric Mapping was revised. 245

Signals were deleted for IOMUX 60 through IOMUX 63 in Table 13-21 • SPI Extra
Signal GPIO and Fabric Mapping. The signal names for IOMUX 70 through IOMUX 76
were changed from SPI_0_SS[x] to SPI_1_SS[x].

246

"IOMUX 60" through "IOMUX 63" were deleted. These buffers are not connected to
the MSS or fabric.

18-25–
18-26

Bit 3 in Table 15-10 • FCR was changed from reserved to ENABLE_TXRDY_RXRDY. 283

The GPIOCFG_x register was renamed to GPIO_x_CFG throughout the document. N/A

OE_A was changed from GND to High in Table 18-13 • IOMUX 4. 326

The "FIIC Functional Description" section was revised to include information about the
MSS to fabric soft interrupt assertion.

354

Table 19-28 • IOMUX to Peripheral Association was revised to remove IOMUXes 57-
63 from the SPI_0 row, as they were incorrectly included.

369

The SYSREG register table was added and duplicate information was removed from
Table 20-2 • SmartFusion Master Register Map. The format was changed to include
more information about each register. Some of the descriptions were updated.

N/A

The PDMA Register names were corrected and the real-time counter register map
was added in Table 20-2 • SmartFusion Master Register Map.

376

Draft B
(December 2009)

Nomenclature was revised for SmartFusion registers and interrupts. References to
AHB-Lite and AHBL were changed to AHB.

N/A

Figure 1-1 • Cortex-M3 R1P1 Block Diagram was revised. The implementation
specifics were also revised.

7

The reset values in Table 1-3 • SYSTICK_CR were revised. 9

Table 1-5 • SmartFusion Interrupt Sources was replaced. 10

Figure 2-1 • AHB Bus Matrix Masters and Slaves and Table 2-1 • AHB Bus Matrix
Connectivity were revised to change some of the terminology. The "Functional
Description" section was revised with terminology changes.

15, 16

The "Remapping Embedded SRAMs" section was revised significantly. 21

The "System Boot" section was revised to include the register address for the system
boot code.

23

Table 2-2 • AHB Bus Matrix Register Map was revised to change addresses from
E004xxxx to E000xxxx. The location of the AHB bus matrix control registers in the
system register space was changed to 0xE0004000 to 0xE0004FFF.

24

Table 2-4 • ENVM_CR was revised to change the reset value for ENVM_SIX_CYCLE
to 1.

25
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Several of the labels in Figure 4-1 • Block Diagram of eNVM Controller with Two
eNVM Blocks were revised. 

49

A brief explanation and definition of terms was added to better introduce Figure 4-2 •
Block Diagram for eNVM Controller.

50

Figure 4-3 • eNVM Organization was clarified by including notes that define block,
page, sector, and array.

51

The "Read Control" section and "Read Next Operation" section were modified. 53

Table 4-4 • Latencies Corresponding to ENVM_SIX_CYCLE and
ENVM_PIPE_BYPASS was revised.

54

Figure 4-6 • Five-Cycle Read Data Path, ENVM_SIX_CYCLE = 0 was revised. 54

Table 6-2 • ESRAM_CR Register Map was revised to change addresses from
E004xxxx to E000xxxx.

79

Table 9-2 • Reset Controller Memory Map was revised to change the address of
ANA_COMM_CTRL to 4002000C.

148

The address was changed for MSS_CR in Table 10-2 • VR and PSM Control
Registers.

156

Table 11-1 • Watchdog Register Interface was revised to change the address for
MSS_SR to E004201C from E0042000.

166

Figure 12-2 • RMII Management Interface and its explanatory text was moved toward
the beginning of the document.

174

The "SPI Controller Block Diagram" section was revised. 220

Table 15-9 • Interrupt Identification Bit Values is new. 282

Table 15-14 • MSR was revised to add more information to the descriptions. 287

The "Low-Power Crystal Oscillator Functional Description" section was revised to
remove reference to the OSC32KHZDISABLE bit.

299

Reference to the VCC3AP pin was changed to VCCLPXTAL in the "Battery Switching
Circuit Functional Description" section.

300

The description for RSTB_CNT in Table 16-2 • CTRL_STAT_REG was revised. 302

The "Fabric Interface Controller" section was revised to include information about
which interface(s) to use when implementing peripherals in the fabric.

344
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B – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more 
information and support. Many answers available on the searchable web resource include diagrams, 
illustrations, and links to other resources on the website. 

Website
You can browse a variety of technical and non-technical information on the SoC home page, at 
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.
The technical support email address is soc_tech@microsemi.com.
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Product Support
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My 
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms 
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select 
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR 
web page.
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