
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick
University of Michigan

Lecture 13: Review

21 February 2017

Slides inherited from Mark Brehob.

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

2

Context and review

• Memory
 Classes of volatile and nonvolatile memory.
 Physical operating principles.
 Internal structures.
 Strengths and weaknesses.

• PCBs
 How to design.
 Techniques for noise immunity.
 Power distribution.

3

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

4

Midterm evaluations: what to improve

• Homework: Some questions ambiguous.
• Lecture: Slower on examples.
• Slides: Avoid full sentences.

5

Lab 5 deadline, hours during break

• Extension: Lab 5 due 6pm on 6 March.
• 2pm-5pm on 3 or 4 March (Friday or Saturday).
• Decide.

6

Next topics

• Mechanical.
 Solenoids.
 Motors.
 Linear actuators.
 H-bridges.
 Shaft encoders.

• Circuits.
 Power, energy, temperature, reliability.
 Power supplies.
 Voltage regulators.
 Signal conditioning analog circuits.

• RTOSs.
• AFSM synthesis.

7

Breakpoints

• Hardware clock keeps running in breakpoints.
• C_DEBUGEN bit in the NVIC Debug Halting

Control and Status Register (DHCSR).
• Can only set with debugger.

8

Poll

9

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

10

Anatomy of a timer system

11

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Example timer problem

• Design a PWM LED controller.
• Crystal: 500 MHz.
• Divider: 12-bit.
• HW counter

 32-bit.
 Count-down only.
 One-shot only.

• LED
 Brightness highly non-linear in V.
 100 Ohm series R.
 100 nF C to ground.
 Phosphor decay halflife: 10 ms.

12

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

13

Serial buses

• Tristate vs. open collector.
 Advantages and disadvantages.
 How they work.

• Addressing methods.
• Full/half-duplex.
• Signaling.
• Timing diagrams.
• Stall cycles.
• Master/slave.
• Read/write.

14

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

15

 Race between variable transitions.
 May, but not must, produce a glitch.
 Glitch
 Static glitch: transient pulse of incorrect
value when output should be stable.

 Dynamic glitch: transient pulse of incorrect
value when output should be changing.

 Consider a minimal implementation of
 f(a, b, c) = a'b'c + a'bc + abc + abc'

Hazards

 Hazardous clock signal used to drive
special-purpose timer counter.

 Timer used for motor PWM.
 Two second watchdog timer on other

counter.
 Duty cycle constrained. Prevent arm

swinging out of safe zone in 2 seconds.
 Tested: safe.
 One day, T decreases by 10 degrees F.
 Code hangs, robot arm hits co-worker.

Hazards: what can go wrong

 Consider a minimal implementation of
 f(a, b, c) = a'b'c + a'bc + abc + abc'

 f(a, b, c) = a'c + ab
 What if b=1, c=1?

Hazards

 How to eliminate
 Limit logic to two levels
 Cover all transitions

 f(a, b, c) = a'c + ab + bc
 What if b=1, c=1?

Hazards

Effect of hazards

 Hazards can often be ignored in
synchronous systems.

 Only sampling on clock edges.
 Make clocks slow enough for

glitching to finish before next
edge.

 Still wastes power.
 Causes major problems in

asynchronous systems.
− Different design style

required.

When hazards need special attention

 Asynchronous resets
− Can use a flip-flop on the input.

 Should have used synchronous reset.
− Clocks

 Hazards can produce spurious clock edges.
Traditionally, CLR is used

to indicate async reset. “R”

or “reset” for sync. reset.

If clk is high and cond

glitches, you get extra

edges!

Simple design rules

 Don't use asynchronous resets unless
you understand the implications fully.

 Don't drive a clock with logic
containing hazards.

 Hazard-free guarantee.
 Only two levels.
 Cover transitions.

 Literal or complement, not both.

X

X

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

23

How does an assembly language program
get turned into a executable program image?

Assembly

files (.S)

Object

files (.o)

as

(assembler)

ld

(linker)

Memory

layout

Memory

layout

Linker

script (.ld)

Executable

image file

Binary program

file (.bin)

Disassembled

code (.lst)

ob
jc
op
y

objdump

What are the real GNU executable names for the ARM?

• Just add the prefix “arm-none-eabi-” prefix
• Assembler (as)

− arm-none-eabi-as

• Linker (ld)
− arm-none-eabi-ld

• Object copy (objcopy)
− arm-none-eabi-objcopy

• Object dump (objdump)
− arm-none-eabi-objdump

• Symbol table examiner (nl)
− arm-non-eabi-nm

• C Compiler (gcc)
− arm-none-eabi-gcc

• C++ Compiler (g++)
− arm-none-eabi-g++

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

arm-none-eabi-objcopy -Obinary example1.out example1.bin

arm-none-eabi-objdump -S example1.out > example1.lst

A simple (hardcoded) Makefile example

What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start

start:

movs r0, #10

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne loop

deadloop:

b deadloop

.end

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:

 0: 20000800 .word 0x20000800

 4: 00000000 .word 0x00000000

00000008 <start>:

 8: 200a movs r0, #10

 a: 2100 movs r1, #0

0000000c <loop>:

 c: 1809 adds r1, r1, r0

 e: 3801 subs r0, #1

 10: d1fc bne.n c <loop>

00000012 <deadloop>:

 12: e7fe b.n 12 <deadloop>

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

arm-none-eabi-objcopy -Obinary example1.out example1.bin

arm-none-eabi-objdump -S example1.out > example1.lst

.equSTACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */

/* _start label is the beginning */

/* ...of the program region */

.type start, %function /* Specifies start is a function */

/* start label is reset handler */

_start:

.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */

start:

movs r0, #10 /* We’ve seen the rest ... */

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne loop

deadloop:

b deadloop

.end

Elements of assembly language program?

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

How are assembly files assembled?

• $ arm-none-eabi-as
− Useful options

• -mcpu
• -mthumb
• -o

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly

files (.s)

Object

files (.o)

as

(assembler)

gcc

(compile

+ link)

Memory

layout

Memory

layout

Linker

script (.ld)

Executable

image file

Binary program

file (.bin)

Disassembled

Code (.lst)

ob
jc
op
y

objdump

ld

(linker)

Library object

files (.o)

C files (.c)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

