
Optical Encoder
Yiran Shen

What is an encoder?

What is an encoder?

converts the angular position

or motion of a shaft or axle

to an analog or digital code

https://en.wikipedia.org/wiki/Angle

Absolute and incremental encoder

Absolute and incremental encoder

• Absolute encoder

maintains position information when power is removed from the system

• Incremental encoder

can reports an incremental change in position of the encoder to the

counting electronics

Absolute Encoder

• Mechanical absolute encoders

• Optical absolute encoders

• Magnetic absolute encoders

• Capacitive absolute encoders

How does an encoder work?

Standard Binary Encoding

Gray Encoding

How does an encoder work?

How does an encoder work?

How does an encoder work?

• 3 bit

• 45 deg resolution

How does an encoder work?

• 8 bit

• 1.4 deg resolution

Questions?

References

• https://www.dfrobot.com/wiki/index.php/Micro_DC_Motor_with_Encod

er-SJ01_SKU:_FIT0450

• https://en.wikipedia.org/wiki/Rotary_encoder#Mechanical_absolute_encod

ers

https://www.dfrobot.com/wiki/index.php/Micro_DC_Motor_with_Encoder-SJ01_SKU:_FIT0450
https://en.wikipedia.org/wiki/Rotary_encoder#Mechanical_absolute_encoders

Power consumption in

Microprocessor

Yipeng Mou

Three source of Power Consumption

• Dynamic Power

• Static Power

• Short Circuit power

Dynamic Power Consumption: Input 1 -> 0

Energy from the power supply

Energy stored in the capacitor

Energy consumed by the PMOS

Dynamic Power Consumption: Input 0 -> 1

Clock Gating

Static Power Consumption

• Gate leakage

• Subthreshold leakage

Power Gating

Low Power Design
Jingyao Hu

Outline

uWhy is it important?

uWhat limits the design?

uHow to fix?

Why is low power design important?

Timeline of apple products

-1999

-G3

-233MHz

-2001-2003

-G4

-400MHz-

1GHz

-2003-2006

-G5

-1.6GHz-

2.7GHz

-2006

-First MacBook

-2GHz

-2016

- Latest MacBook

-2.7GHz

The limit of frequency

uP(dynamic) = C*V2*f

u f ~ V

u In fact, P (dynamic) = C*f3

uEnough heat to melt down

Old Technology

uMultiple cores

uSimple example:

u70% frequency

upower = 0.73 = 0.34 origin

uTwo cores = 140% work with 68% power

New Cool Technology

u2D transistor -> 3D transistor

uLess power, faster

THE BROKEN

INTERNET OF THINGS

SECURITY

PRIVACY

https://twitter.com/localbusinessco/status/839456634745176064

WHY?

PROBLEM:

‣ MANUFACTURERS’ AND CONSUMERS’

INCENTIVES DO NOT ALIGN

‣ NO INCENTIVE TO PROVIDE SUPPORT FOR

PRODUCTS WITH LOW PROFIT MARGINS

SOLUTIONS

Modular Design

and Smartphones
LUIS SOSA

EECS 373

Examples of Modular Design

 Modular design is super relevant in todays world

 Google Ara phone

 Arduinos

 Adafruit Raspberry Pi

 Adafruit offers several boards that make complicated

devices such as a smartphone relatively simple.

 Interfacing with cellphone towers

 Power management

 Protocol to send and receive messages/calls

 Most of the complications behind modular design is in
the software.

Picture Source: http://www.highpants.net/wp-content/uploads/2014/03/highpants-project-ara-progresses-Ara-Phone.jpg

Adafruit FONA uFL Version

 Connects to any 2GB network

 Provided you have a SIM card

 Make and receive phone calls

 Send and receive sms messages

 Buzzer vibrational motor

 PWM controlled

 LiPo battery charging circuit

 Just need to know UART

Example Smartphone Design

 Raspberry Pi A+ 256MB

 Brains of the device

 Connects all the devices together and runs the OS

 Adafruit FONA uFL Version

 All-in-one cellphone module

 Interfaces with SIM card for network connection

 TYOS

 OS that allows the user to send messages and make calls

 Created by the author of this DIY project

 Constantly being upgraded

 Powerboost 500 Basic

 Really just a TPS61090 boost converter

 Converts 1.8v+ to 5.2v

System Design Diagram

Source: https://hackaday.io/project/5083/logs

Relevance

 Modular design makes it easy to prototype projects

 Users want more flexibility in their devices

 Show and describe a project and the lay out this project uses.

 Replace the Raspberry Pi with the Smartfusion

 Introduce the Fona Adafruit board

 Show another example of what we can do with embedded

systems.

References

 Step by step guide

 http://www.instructables.com/id/Build-Your-Own-Smartphone/

 Project Overview

 https://hackaday.io/project/5083-diy-smartphone

 Youtube Demonstration

 https://www.youtube.com/watch?v=H2AY7ciEJvo

 FONA information

 https://learn.adafruit.com/adafruit-fona-mini-gsm-gprs-cellular-phone-
module/pinouts

Questions?

LCD
Interfacing

Josh 2iu

Relevance
● Inevitable part in almost all embedded projects
● Simple means of of adding visual appeal to embedded applications
● Usage

○ Applications: computer monitors, TVs, instrument panels, aircraft cockpit displays

○ Portable consumer devices: digital cameras, watches, calculators, smartphones

○ Consumer electronics: DVD players, video game devices, clocks

● Replaced bulky cathode ray tube (CRT) in nearly all applications
● LCD modules with integrated RS-232, I2C, and SPI serial interfaces

Introduction
● Thin, flat consume small amount of power
● Rod-shaped tiny molecules sandwiched between a flat piece of glass and an

opaque substrate
● Molecules align in two different physical positions based on electric charge

applied to them
○ Apply charge: molecules align to block light entering

○ No charge: molecules become transparent

Character vs. Graphic 2CDs
● Character LCD

○ Displays numbers, letters and fixed symbols

○ Used in old style industrial panel display where there’s a need to display a fixed number of

characters

● Graphic LCD
○ Instead of segments, has pixels in rows and columns

○ By energizing set of pixels any character can be displayed

Interfacing Ⱥ6xȻ 2CD
● Most common configuration used due to reduced cost and small footprint
● Displays 32 characters at a time in 2 rows (16 characters per row)

○ 40 character positions, remaining 24 only displayed with “scrolling” effect

Pin Configurations

Pin Configurations ʛcont’dʜ

Displaying data
Follow these simple steps for displaying a character or data

● E=1; enable pin should be high
● RS=1; Register select should be high
● R/W=0; Read/Write pin should be low

Sending a command
To send a command to the LCD just follows these steps:

● E=1; enable pin should be high
● RS=0; Register select should be low
● R/W=1; Read/Write pin should be high

Commands

Sources
● http://www.eeherald.com/section/design-guide/esmod17.html
● https://www.digikey.com/en/product-highlight/n/newhaven-display/lcd-serial-

displays
● http://www.electronicshub.org/interfacing-16x2-lcd-8051/
● http://embedjournal.com/interfacing-lcd-module-part-1/

http://www.eeherald.com/section/design-guide/esmod17.html
http://www.eeherald.com/section/design-guide/esmod17.html
https://www.digikey.com/en/product-highlight/n/newhaven-display/lcd-serial-displays
https://www.digikey.com/en/product-highlight/n/newhaven-display/lcd-serial-displays
https://www.digikey.com/en/product-highlight/n/newhaven-display/lcd-serial-displays
http://www.electronicshub.org/interfacing-16x2-lcd-8051/
http://www.electronicshub.org/interfacing-16x2-lcd-8051/
http://embedjournal.com/interfacing-lcd-module-part-1/
http://embedjournal.com/interfacing-lcd-module-part-1/

Thank you

Computer Vision in

Embedded Systems
By Rishi Bhuta

Computer Vision Introduction

 Computer Vision is an interdisciplinary field that deals with how computers

can be made for gaining high-level understanding from digital images or

videos.

 From a software standpoint, computer vision works to apply mathematical

theory to an input image to either modify it or extract meaning from it.

 This cannot be done without the embedded systems that provide input

images and processing power.

Sensors in CV

 Mono camera, Stereo camera, LIDAR, etc.

Specialized Processing for Images

 Specialized processor or GPU for parallelizing image matrix operations.

Examples of Computer Vision

 Object Recognition (Car detection, face detection, etc.)

Examples of Computer Vision

 Scene Recreation (Picture stitching, 3D reconstruction, structure from
motion, etc.)

Examples of Computer Vision

 Information Extraction (Emotional recognition, lane fitting, etc.)

Using CV in Your Project

Install OpenCV

It’s a well-
documented library
that contains a vast
array of functions
and useful classes.

• Built for C/C++ or
Python.

Try Tutorials

Try a few examples
from the OpenCV
website.

• AR Tag recognition

• Face Detection

• Finding Shapes

• All you need is your
laptop webcam!

Determine
Applications

Find a use for CV in
your project.

• Recognizing a change
in environmental
conditions

• Determining distances
between objects

Interface with
hardware

Run your CV
algorithm and
communicate
results via a serial
connection

• Output coordinates of
two objects relative to a
known map

References

 http://docs.opencv.org/

 https://www.embedded-vision.com/what-is-embedded-vision

 http://www.bdti.com/private/pubs/BDTI_ESC_Embedded_Vision.pdf

 http://www.embedded.com/design/system-

integration/4372167/Introduction-to-embedded-vision-and-the-OpenCV-

library

http://docs.opencv.org/
https://www.embedded-vision.com/what-is-embedded-vision
http://www.bdti.com/private/pubs/BDTI_ESC_Embedded_Vision.pdf
http://www.embedded.com/design/system-integration/4372167/Introduction-to-embedded-vision-and-the-OpenCV-library

Batteries and Power
Denny Zhang

Embedded systems
● Embedded systems will usually require some sort of portable power source.
● The easiest way to provide this will be with a battery.
● Other options available - Energy scavenging

○ Solar panels, Motion, Heat

● Plug it in

Design Considerations
● Power Consumption
● Power Density
● Voltage requirements
● Battery size, weight
● System battery life.

AA style
● Cheap and plentiful
● Consumer usually pays
● Alkaline AA is approx 2500mAh @ 1.5V
● Ni-MH AA is 1500-2500mAh @ 1.25V
● Used in many consumer electronics/gadgets
● Ni-MH as higher discharge
● Discharge at 0.5C - 1C

CRȝ0Ȟȝ + coin cells
● Chemistry varies - Lithium, Alkaline, Silver Oxide
● Small size, for small electronics
● Typical uses are watches, hearing aids, laser pointers.
● CR2032 is Lithium 240mAh @ 3.0V
● An LR44 is 105mAh @ 1.5V
● Very low discharge

Lithium
● Battery shape and size varies widely
● Typically used in smartphones and newer gadgets.
● Nominal voltage is 3.7V with mAh capacity depending on size
● A typical phone contains a 2500mAh - 3000mAh battery.
● Light, and high power density
● Discharge at 2C - 10C or higher.

Runtime
● Find the application’s average power consumption mA or mW
● Divide capacity by power consumption mAh / mA or mWh / mW
● Ex: a 2000mAh battery with 200mA drain will last 2000/200 = 10 hours

Runtime Complications
● A 1.5V alkaline cell (2500mAh) with a 100mA drain will run about 25 hours

However, with a 2.5A drain, will run for much less than 1 hour
● The culprit? Internal resistance
● Generally, higher drain will reduce battery capacity and battery life.

Multithreading for Dummies
Brandon Waggoner

March 23, 2017

MotiƔation
● Speed up code execution
● Reduce redundancy
● Squeeze out extra “performance”

Can you sew with it?
● A thread is a stream of execution, complete

with its own stack pointer, local variables, and
context

● Threads often run out of order, and can give
the appearance of running two functions
simultaneously

Embedded Systems and You
● Multithreading isn’t always the best solution

○ “Among competing hypotheses, the one with the fewest assumptions should be selected. “
(Occam’s Razor)

○ Often, determinism is more valued than throughput

● Threading requires a significant effort
○ Timing and exclusivism are up in the air
○ More places for things to go wrong
○ Debugging becomes a headache

Then Why
● It’s fun
● Automate remedial tasks
● Prevent busy loops

How to get started
● Pthread Library in C/thread library in C++

○ Thread create
○ Thread join/wait
○ Locks/Monitors
○ Condition Variables

● Python also has a thread library!

Smart Cities
Rohan Dasika

Agenda

• What are smart cities?

• Is there a need?

• Benefits of smart cities

• Challenges ahead

• Key players

What are smart cities?

• A city that collects and bases its decisions on vast amounts of data to
best utilize their resources, improve living conditions, and manage
infrastructure

• Data collection (massive sensor network)

• Connectivity (5G, IoT, etc)

• Analysis (Data analytics, machine learning, etc)

• Sustainable policy

Is there a need?

• YES!

• Motivations behind the movement

• Climate change

• Public health crises

• Congested commutes

• High costs of living

• Fossil fuel dependency

• A new set of technologies — connectivity, real-time sensors, precise location
services, autonomous systems — can collectively transform city life

Benefits of smart cities

• Mobility

• Analyze population flow/transportation to better public transport

• Solve the problem of never having enough parking

• Smart roads – energy harvesting, alert cars/municipalities of their condition

• Environment

• Green buildings

• Smart water systems/irrigation methods

• Smart grid

• Digital divide

• Granting internet access to underprivileged people

Benefits of smart cities

• Manufacturing & Trade

• More streamlined systems for production and distribution

• Government

• Enable to be more ‘in touch’ with constituents

• Health

• Monitors for dangerous levels of gases

• Reducing pollution

Challenges ahead

• Most obvious – security

• Scaling

• Smart city model depends on the development of:

• Cooperative government

• Robust economic model

• Smart and engaged citizens

Key players

• GE – Energy

• Cisco – Internet support

• AT&T/Verizon – IoT ecosystem

• Google – Data, Autonomous vehicles

• Sidewalk Labs – bridging gap between tech + policy

Logic Circuit Minimization
with Espresso

Gigi Guarino

What is espresso?

● A program used to minimize logic circuits and boolean functions
● Developed by the University of California, Berkeley, in the 1990’s

Why is this helpful?

For our project:

● Minimize the combinational logic in our Verilog

In RTL design:

● Minimize the amount of logic gates

Input

A .pla file

Specify number of inputs with .i

Specify number of outputs with .o

Truth table for only outputs that result in a 1

Signify end of file with .e

.i 3

.o 1

000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 0

.e

example.pla

Output

To run espresso from command line...

With no flag, outputs a minimized .pla file in sum of products form
$ espresso.exe input.pla

With flag -epos, outputs a minimized .pla file in product of sums form
$ espresso.exe -epos input.pla > output.pla

SOP vs. POS
Sum of products example:
out = a’b’c + a’bc’ + ab’c’

Product of sums example:
out =(a + b + c)(a + b’ + c’)
(a’ + b + c’)(a’ + b’ + c)
(a’ + b’ + c’)

a b c out

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Example:
a b c d out
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

To the left is a truth table for our desired
logic circuit

To the right is the .pla file we are going to
input to espresso
It has 4 inputs
It has 1 output

The truth table only contains the input
combinations that result in a 1, the 0’s
could be included but are unnecessary

.i 4

.o 1

0001 1
0010 1
0011 1
0110 1
0111 1
1000 1
1001 1
1010 1
1100 1
1101 1
1110 1

.e

Logic function before

SOP:
f(a,b,c,d) = a’b’c’d + a’b’cd’ + a’b’cd + a’bcd’ + a’bcd +
ab’c’d’ + ab’c’d + ab’cd’ + abc’d’ + abc’d + abcd’

POS:
f(a,b,c,d) = (a + b + c + d)(a + b’ + c + d)
(a + b’ + c + d’)(a’ + b + c’ + d’)(a’ + b’ + c’ + d’)

Logic circuit before (SOP)
Two-level circuit with 11 4-input
AND gates and 1 11-input OR gate

Output .pla
$ espresso.exe abcd.pla

.i 4

.o 1

.p 4
-001 1
--10 1
1-0- 1
0-1- 1

$ espresso.exe -epos abcd.pla

.i 4

.o 1

.#phase 0

.p 3
1-11 1
0-00 1
010- 1
.e

Minimized functions

SOP:
f(a,b,c,d) = b’c’d + cd’ + ac’ + a’c

POS:
f(a,b,c,d) = (a + c + d)(a’ + c’ + d’)(a’ + b + c’)

Minimized circuit (SOP)
Two-level circuit with 4 4-input
AND gates and 1 4-input OR gate

Questions?

Sensors used in Self-Driving
Vehicles
Presented by Saad Shaik

Introduction

 Self-driving vehicles need to read a variety of
information about their surroundings

 Different sensors have their own unique
advantages and disadvantages

 Measuring all necessary information requires an
array of specialized sensors

 The three main sensing techniques are LIDAR,
Radar, and Cameras

LIDAR

 Stands for Light Detection and Ranging

 Scans the surroundings by rotating a laser and
measuring the reflected intensity

 Provides information on the distance, shapes,
and speed of nearby objects

 Range of 100m with resolution of ~10cm

 Pros:

◦ Mid-range, high precision object detection

◦ Generates 3D maps to detect hills

◦ Accurately detects stationary objects

Radar

 Stands for Radio Detection and Ranging

 Scans the surroundings with radio waves and
measures the reflected intensity

 Provides information on the distance and
velocity of near to mid-range objects

 Pros:

◦ Works in all weather conditions; rain, snow, fog

◦ Radar can see behind obstacles and two cars ahead

◦ Accurate for close range object detection, useful for

parking and lane-changing

Camera

 Uses a camera to capture visual and color data
of the surroundings

 Provides information on visual cues such as
traffic lights, cones, signs, lane markers

 Range of up to 250m

 Pros:

◦ Only sensor that can detect color and text, can

differentiate objects based on color

◦ Best sensor for scene interpretation

◦ Cheap enough to have multiple on one car

Summary

 Each sensor has its own advantages and
specialized use cases

 LIDAR is used for precision object detection
and 3D mapping

 Radar is used for measuring velocities and
validating LIDAR in all weather conditions

 Cameras are used for visual cues and color
detection

 The best self-driving system will have a multi-
sensor network to include each sensor’s unique
advantages

Works Cited

1. “Self-driving vehicles -- are we nearly there yet?” Rudy Ramos
http://www.embedded.com/electronics-blogs/say-what-
/4442823/Self-driving-vehicles---are-we-nearly-there-yet-

2. “Autonomous Cars' Pick: Camera, Radar, Lidar?” Davide Santo
http://www.eetimes.com/author.asp?section_id=36&doc_id=1330
069

3. “Self-driving cars will bristle with sensors” Stephen Shankland
https://www.cnet.com/news/self-driving-cars-will-bristle-with-
sensors/

4. “Self-Driving Cars’ Spinning-Laser Problem” Tom Simonite
https://www.technologyreview.com/s/603885/autonomous-cars-
lidar-sensors/

5. “The Autonomous Car: A Diverse Array of Sensors Drives
Navigation, Driving, and Performance” Bill Schweber
http://www.mouser.com/applications/autonomous-car-sensors-
drive-performance/

http://www.embedded.com/electronics-blogs/say-what-/4442823/Self-driving-vehicles---are-we-nearly-there-yet-
http://www.eetimes.com/author.asp?section_id=36&doc_id=1330069
https://www.cnet.com/news/self-driving-cars-will-bristle-with-sensors/
https://www.technologyreview.com/s/603885/autonomous-cars-lidar-sensors/
http://www.mouser.com/applications/autonomous-car-sensors-drive-performance/

Quadrature Decoding
Christopher Schmotzer
March 23, 2017

Motivation

● Position and Velocity Measurements for Motor Control
○ Tachometer
○ Potentiometer
○ Optical Encoder

■ Absolute Encoder
■ Incremental Encoder

Incremental Encoder

http://www.ni.com/white-paper/14805/en/

http://www.ni.com/tutorial/7109/en/
http://www.ni.com/white-paper/4763/en/

Quadrature Encoder

● Phase Difference corresponds to Direction of Rotation
○ Channel A leads Channel B implies Increment
○ Channel B leads Channel A implies Decrement

Direction of Rotation

http://www.ni.com/tutorial/7109/en/

Quadrature Decoder

Block Diagram

http://www.fpga4fun.com/QuadratureDecoder.html

Implementation

http://www.fpga4fun.com/QuadratureDecoder.html

module quad(clk, quadA, quadB, count);
input clk, quadA, quadB;
output [7:0] count;

reg [2:0] quadA_delayed, quadB_delayed;
always @(posedge clk) quadA_delayed <= {quadA_delayed[1:0], quadA};
always @(posedge clk) quadB_delayed <= {quadB_delayed[1:0], quadB};

wire count_enable = quadA_delayed[1] ^ quadA_delayed[2] ^ quadB_delayed[1] ^ quadB_delayed[2];
wire count_direction = quadA_delayed[1] ^ quadB_delayed[2];

reg [7:0] count;
always @(posedge clk)
begin
 if(count_enable)
 begin
 if(count_direction) count<=count+1; else count<=count-1;
 end
end

endmodule

APPENDIX: Types of Decoding

● 1X
○ Counter is incremented/decremented by rising edges of one channel only
○ Cannot determine direction

● 2X
○ Counter is incremented/decremented by rising AND falling edges of one channel only
○ Cannot determine direction

● 4X
○ Counter is incremented/decremented by rising and falling edges of Channels A and B
○ Can determine direction

APPENDIX: Definitions

● Cycles Per Revolution (CPR)
○ Number of full quadrature cycles per full shaft revolution (360 mechanical degrees)
○ 200 CPR encoder provides 200, 400, or 800 distinct positions in 1x, 2x, or 4x modes

respectively

● Quadrature
○ Phase difference of 90° between two waves at the same frequency

