EECS 373

Design of Microprocessor-Based Systems

RO

R1

R2

R3

R4

RS

R6

R7

Robert Dick R
University of Michigan e
R11
R12
Lecture 3: Linking, debugging Eﬁfgi
R15 (PC)
13 September 2017 _—

Many slides from Mark Brehob

Review

R Vilk

* ISA
* Encodings
* Addressing modes
* Status register
* Using the ARM ARM
* ABI (including quick rules
* Pass in rO-r3
* Return in rO (+r1)
* Caller saved r0O-r3
* Callee saved r4-r7
* Others? See more detailed ABI information
® Build process
* Gecc, nm, objdump, as, |d
* Make and makefiles
* More on this today

Register | Synonym | Special Role in the procedure call standard
rs PC The Program Counter.
ri4 LR The Link Register.
r1i SP The Stack Pointer.
r12 P The Intra-Procedure-call scratch reqgister.
ri1 va Variable-register 8.
ri0 (' Variable-register 7.
9 ;g Platfiorm rn_agister. . . _
R The meaning of this register is defined by the platfiorm standard.
rg vh Variable-register 5.
rf vd Variable reqgister 4.
rG v3 Variable register 3.
s V2 Variable register 2.
r4 v Variable register 1.
ra ad Argument f scratch register 4.
rZ al Argument f scratch register 3.
r al Argument / result / scratch register 2.
rQ ail Argument / result / scratch register 1.

- e e Fo - 2 om m

Lab 2

R Vilk

Why did that happen?

* Disable watchdog

* Odd target address for bx, blx
* Long history of such features

Survey outcome e
Y

In-class examples closes in 8 hours

A total of 9 vote(s) in 40 hours

6 (67% of users) _ Clear: | understand the build process much better
1 (112 of users) - Disorganized: | don't see how everything fits together
5 (56% of users) _ Too fast: Too much jumping around to follow

0 (0% of users) Too slow: Too much time on topics | already knew

0 (0% of users) Hard to read, too small

Examples have value
They are covered too fast
Could better show how things fit together

Resolution
* Narrate what | am doing and why more thoroughly
* Slow down

Outline

R Vilk

®* Where are we?
® Building and linking
* Debugging

An embedded system

| Feedback control algorithms | | Data compression | | Machine learning | | Data analysis | | Reliability models |

| Server-side algorithms | | Efficient physical models | | Embedded algorithms | | Thermal models I | Vision |

C ter science theory, machine learning, and vision

| DRAM | | FLASH | | SRAM |

l Emerging memory tech. |

Memory

CPU DSP
Network encoding
FPGA
Network protocols
Computation
| Wireless transceivers |

Computer architecture

Communications and
networking

| Signal conditioning / filtering |

| Custom environmental controls | | Package |

High-level requirememts
Makes most important things very easy
Just works
Fun to own
Simple to explain benefit

Low-level requirements
Low-cost
Reliable
Bounded timing
Fast
Long lifespan
Low power
Light
Compact
Beautiful

Attributes
Fragmented market
Limited design team size
Domain knowledge essential

| DAC | | ADC | | PWM drivers | | Pumps | | Fans | | Filters | | Heat pumps |
Result
Analog circuits Industrial / consumer design SO !
Brutally complex for designer
Breadth and depth required
| Other actuators and outputs | | Solenoids | | Accel | | Gyro | | Magnet | | Audio | | Pressure | | Vibration |
| Motor drivers / H bridges | | Steppers | | Capacitance | | Temperature | | Flow | | lonizing radiation | | Strain |

| Speakers | | LEDs |

Servos

Actuators and power electronics

| Orientation | | Pressure | | Gas | I TDS | | Light | | Field |

Sensors / MEMS

| Power delivery network | | Scavenging supply | | Charging control | | Supercaps | | Network models | | Battery | | Distributed C

Power systems

Embedded system design

R Vilk

Outline

R Vilk

* Whereare-we?
® Building and linking
* Debugging

What are the real GNU executable names for the ARM? pitizrs

R Vilk

® Just add the prefix “arm-none-eabi-” prefix

* Assembler (as)
- arm-none-eabi-as

® Linker (ld)
- arm-none-eabi-ld
* Object copy (objcopy)
- arm-none-eabi-objcopy
®* Object dump (objdump)
- arm-none-eabi-objdump
®* C Compiler (gcc)
- arm-none-eabi-gcc
* C++ Compiler (g++)

- arm-none-eabi-g++

How does an assembly language program e

get turned into a executable program image? VS

Binary program

file (.bin)
1:I:\isembl)sl f.gbjeCt Executable
iles (.S) iles (.0) image file@@;
oy
aﬁ\
1d j>
(1linker)
o
éf

(o7

Sk

Disassembled

Finker code (.1lst)
script (.1d)

What information does the disassembled file provide? IH.-E%E.EI

®

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb examplel.s -0 examplel.o
arm-none-eabi-ld -Ttext Ox0 -o examplel.out examplel.o
arm-none-eabi-objcopy -Obinary examplel.out examplel.bin
arm-none-eabi-objdump -S examplel.out > examplel.lst

.equ STACK_TOP, ©x20000800 examplel.out: file format elf32-littlearm
.text
.syntax unified Disassembly of section .text:
.thumb
.global _start 00000000 <_start>:
.type start, %function 0: 20000800 .word 0x20000800
4: 00000000 .word 0x00000000
_start:
.word STACK_TOP, start 00000008 <start>:
start: 0: 200a movs ro, #10
movs ro, #10 2: 2100 movs rl, #0
movs rl, #O
loop: 00000004 <loop>:
adds rl1l, ro 4: 1809 adds ri1, ri, ro
subs ro, #1 6: 3801 subs ro, #1
bne loop 8: difc bne.n c <loop>
deadloop:
b deadloop 0000000a <deadloop>:

.end a: e7fe b.n 12 <deadloop>

Elements of assembly language program? Cicnioan
Vil
.equSTACK_TOP, 0©x20000800 /* Equates symbol to value */
.text /* Tells AS to assemble region */
.syntax unified /* Means language is ARM UAL */
.thumb /* Means ARM ISA is Thumb */

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs ro, #10
movs rl, #0O
loop:
adds rl1, ro
subs ro, #1
bne 1loop
deadloop:
b deadloop
.end

/*
/*
/*
/*
/*

/*
/*

/*

.global exposes symbol */

_start label is the beginning */
...0of the program region */
Specifies start is a function */
start label is reset handler */

Inserts word 0x20000800 */
Inserts word (start) */

We’ve seen the rest ... */

How does a mixed C/Assembly program gy
get turned into a executable program image? @
C files (.c)

Binary program

file (.bin)
1d
(1linker)
1
Assembly <<;ij Executable
files (.s) image file @ Q
v a
o>
gcc °
::i:>(compile :j;>
+ link) o
éf

Disassembled
Code (.1lst)

Library object Linker
files (.0) script (.1d)

* Debugging

R Vilk

Compile-time debugging

R Vilk

* -Wall: Show more compile-time problems
* -ggdb: Include the most complete debugging information possible.
* -0O0: Turn off optimization (only when debugging).

What do debuggers do?

* Souce—PC association
* Breakpoints
* Single stepping
* Skip counts
* Variable inspection
* Monitoring
+ Stack analysis
* Memory search
* Setting variables
* Backtracing

R Vilk

What is about to happen?

R Vilk

* Try each of these on real example
* Use same debugger you use in class, but w.o. GUI wrapper
* Show the commonly used debugging functions

R Vilk

Done.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

