
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick

University of Michigan

Lecture 4: Toolchain, ABI, Memory Mapped I/O

18 September 2017

Many slides from Mark Brehob.

2

In-class examples

Poll results
 Improved
 Maybe still slightly too fast

Actions
 Slow down a little bit more
 Keep narrating
 Keep example complexity/realism trade-off the same

3

Midterm

20 Sep: Practice/review material posted
24 Sep: Practice/review solutions posted
7pm 27 Sep: Midterm exam 1

4

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

5

HW1: powerful logic design heuristics

 If you are ever stuck on a design problem
involving a combinational network, write the
truth table

 If you are ever stuck on a design problem

involving a sequential network, draw the state
diagram

6

Gates

7

De Morgan's Laws and bubble pushing

(ab)' = a' + b'
(a + b)' = a'b'

Example:
a'b' + b'c + ac
((a'b)' + (b'c)' + (ac)')'

8

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

Power-on reset

 On the ARM Cortex-M3
 SP and PC are loaded from

the code (.text) segment
 Initial stack pointer

 LOC: 0x00000000
 POR: SP mem(0x00000000)←

 Interrupt vector table
 Initial base: 0x00000004
 Vector table is relocatable
 Entries: 32-bit values
 Each entry is an address
 Entry #1: reset vector

 LOC: 0x0000004
 POR: PC mem(0x00000004)←

 Execution begins

9

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
...

Register at 0xE000ED08 sets where vector table is.

10

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

11

IT blocks

 If-then
 Four following instructions can be conditional
 Automatically inserted by assembler
 Must specify condition
 Contained instructions must use that condition
 Longer branches enabled
 Makes status bits available in Thumb mode
 Doesn’t generate code in non-Thumb mode

12

IT blocks

Example

 IT EQ
 MOVEQ r0,r1
 BEQ dloop ; branch at end of IT block is permitted

Incorrect example

 IT NE
 ADD r0,r0,r1 ; syntax error: no condition code used

13

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

14

IP register and veneers

 How far can one branch?
 With bl, even numbers in -16777216 to

16777214 range
 That’s 24 bits (25 due to even restriction)
 24 < 32
 Need lilypads to hop on, i.e., veneers
 Linker-generated glue to handle far calls
 Allowed (but not required) to use r12

15

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

Old-style I/O

 Special instructions for reading/writing
peripherals

 Wasteful: Already have read/write instructions

16

Memory-mapped I/O

 Put peripherals at memory addresses
 Turn LED turn on by writing 1 to address 5
 Read button state (active-high) at address 4
 Use a bus on which the peripheral sits

17

Bus access example

 Discuss a basic bus protocol
 Asynchronous (no clock)
 Initiator and Target
 REQ#, ACK#, Data[7:0], ADS[7:0], CMD

 CMD=0 is read, CMD=1 is write.
 REQ# low means initiator is requesting

something.
 ACK# low means target has done its job.

A read transaction

 Initiator wants to read location 0x24
 Initiator sets ADS=0x24, CMD=0
 Initiator then sets REQ# to low

 Delay first
 Target sees read request.
 Target drives data onto data bus.
 Target then sets ACK# to low.
 Initiator grabs the data from the data bus.
 Initiator sets REQ# to high, stops driving ADS and

CMD
 Target stops driving data, sets ACK# to high

terminating the transaction

Read transaction

ADS[7:0]

CMD

Data[7:0]

REQ#

ACK#

?? ??0x24

?? ??0x55

 A B C D E F G HI

Write transaction
(write 0xF4 to location 0x31)

 Initiator sets ADS=0x31, CMD=1, Data=0xF4
 Initiator then sets REQ# to low.
 Target sees write request.
 Target reads data from data bus. (Just has to store

in a register, need not write all the way to
memory!)

 Target then sets ACK# to low.
 Initiator sets REQ# to high & stops driving other

lines.
 Target sets ACK# to high terminating the transaction

The push-button
(if ADS=0x04 write 0 or 1 depending on button)

ADS[7]
ADS[6]
ADS[5]
ADS[4]
ADS[3]
ADS[2]
ADS[1]
ADS[0]
REQ#

Button (0 or 1)

0

Data[7]

Data[0]

..

..

..

..

..

Delay ACK#

What about
CMD?

The LED
(1 bit reg written by LSB of address 0x05)

ADS[5]

ADS[7]
ADS[6]

ADS[4]
ADS[3]
ADS[2]
ADS[1]
ADS[0]
REQ#

Flip-flop
which
controls LEDclock

D

DATA[5]

DATA[7]
DATA[6]

DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]

Delay ACK#

What does this look like from software perspective?

25

volatile char * button_ads = (char *)(0x24);

char read_button(void) {
return *button_ads;

}

.equ BUTTON_ADS, 0x24

movw r0, #:lower16:BUTTON_ADS
movt r0, #:upper16:BUTTON_ADS
ldr r1, [r0, #0]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25

