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Context and review SWicHIGAN |
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* Response to Embedded Systems stand-up routine.
— Confusion — fear — nervous laughter — relief.
* Hardware vs. software programming.

* APB

How to interface with a bus.

Need to understand how to do this with a shared bus.
Don't need tristate buffers for SmartFusion board.
Review handwritten notes and lecture video if still
fuzzy.

* Several other topics: volatile, function pointers, weak
references.

Use the source.



Hardware vs. software programming (again)
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* Reasons covering
* Common sticking point
* A few students have had trouble with this in lab
* HDL — FPGA
* Control which functions (gates) are implemented.
* Control how they are connected.
* Assembly/C — ARM Cortex M-3
* Control instruction sequences.
* Control data to load into memory before execution.
* Implications
* When you write to an MMIO address, the
processor/bus controller know how to set and time
bus signals. Someone else built that.
* Your peripheral (SPIO in Lab 3) needs to react to those
signals appropriately.
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Interrupts et
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Why do these matter?

¢ Informs a program of some (usually) external
event.

® Interrupts execution flow.

e Enables event-driven system design!!!
* Low-power.
* Often simpler.

Key questions:

e Where do interrupts come from?

How do we save state for later continuation?
How can we ignore interrupts?

How can we prioritize interrupts?

o
o
o
¢ How can we share interrupts?



m A
/0 data transfer Vil

Two key questions to determine how data are
transferred to/from a non-trivial I/0 device.

1. How does the CPU know when data are
available?
a. Polling.
b. Interrupts.

2. How are data transferred into and out of the
device?
a. Programmed I/0
b. Direct Memory Access (DMA)



Interrupts et
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Interrupt (a.k.a. exception or trap) causes CPU to stop executing
program and execute an interrupt handler or interrupt service
routine (ISR). The ISR does something and then control is
returned to the interrupted program.

Interrupts are similar to procedure calls. However,

® can occur between any two instructions and even within
some instructions,

e are transparent to the running program (usually),

e are not explicitly requested by the program (typically),
and

e call a procedure at an address determined by the type of
interrupt, not the program.



Instruction-triggered interrupts
Vil
e TLB miss.
¢ |llegal/unimplemented instruction.
e Divide by 0.
* Trap instruction.
o

Names: trap, exception, software interrupt.



Externally triggered interrupts
=t

External device

Reset button

Timer expires

Power failure

System error

Names: interrupt, external interrupt, hardware
interrupt



Interrupt process et
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¢ Something tells the processor there is an
interrupt, e.g., via an input pin.

® Processor transfers control to code that needs to
be executed through interrupt vector or jump
table.

* |SR executes.

e Resumes prior program at same location.

¢ Doing this right is complex.



Interrupts complicate processor design et
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e Which ISR to call?

¢ How to resume program when done?
- Instruction pointer? Other state?

e What about partially executed instructions in the
pipeline?

¢ What if we get an interrupt while we are
processing our interrupt?

- What if we are in a “critical section?”



m A
Where e
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e |f you know the interrupt source.
- Interrupt vector.
- Jump table.
e If not.
— Must poll all sources to find out.



Returning e
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® Need to store the return address

somewhere.
— Stack would involve a load/store that might
cause another interrupt.
— Dedicated register.
e What if there is another interrupt?



Implications of architectural optimizations
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e Qut-of-order execution
- If any state of a “too fast” instruction made
its way out of the processor before an

interrupt, system state corrupted.
* Need to clean things up before/in ISR.



Nested interrupts et
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e Just handle it.
- If a dedicated interrupt return IP register is being
used, how many do we need?
- What if the ISR is half-way through a precisely
times bus transaction?
* Ignore it: Bad if it is important.
® Prioritize.
— Take more important interrupts.
— Ignore the rest
— Still have dedicated register problems.
— Have to consider possibility of ISR failing due to
timing problems.



Critical section CMICHIGAN |
R Vik

lgnore less important interrupts.
Take more important interrupts.
Avoid causing exceptions in interrupt code.
Keep as short as possible.
- E.g., write a value to memory that informs
the program of something.
- Program deals with it at a good time.



Example: generally bad @

void isr(void) {
Do something complex/slow.

}



Example: generally good
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void isr(void) {
++(*button_pressed);

}

int superloop(void) {
while (1) {

if (*button_pressed) {
--(*button_pressed);
button_service();

3

Do other stuff, like Al.

Could also sleep.

}
}
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Table 7.1 List of System Exceptions

Exception

Number Exception Type  Priority Description

1 Heset -3 (Highest) Hesatl

2 M -2 Nonmaskable interrupt (external MMI input)

3 Hard fault —1 All fault conditions if the comesponding fault
handler is not enabled

4 MemManage fault  Programmable Memory management fault; Memory
Protection Unit (MPLU) viclation or access
to llegal locations

B Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHE) interface recaives an
error response from a bus slave (also called
prefetch abort 1 it is an instruction fetch or
data abort if it is a data access)

B LIsage fauit Programmable Exceptions resulting from program error of
trying to access coprocessor (the Coriex-M3
does not support a coprocessar)

7-10 Heserved INA —

11 SVC Programmable supervisor Call

12 Debug monitor Programmabla Debug monitor (breakpoints, watchpoints, or
external debug requestis)

13 Heszerved A —

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

A

Vil




SmartFusion interrupt sources

Table 1-5+ SmartFusion Interrupt Sources

INTISR[64] ACE_PCO_FLAGO_IRQ ACE
INTISR[65] ACE_PCO_FLAG1_IRQ ACE
INTISR[66] ACE_PCO_FLAG2_IRQ ACE
INTISR[67] ACE_PCO_FLAG3_IRQ ACE
INTISR[68] ACE_PC1_FLAGO_IRQ ACE
INTISR[69] ACE_PC1_FLAG1_IRQ ACE
INTISR[70] ACE_PC1_FLAG2_IRQ ACE
INTISR[71] ACE_PC1_FLAG3_IRQ ACE
INTISR[72] ACE_PC2_FLAGO_IRQ ACE
INTISR[73] ACE_PC2_FLAG1_IRQ ACE
INTISR[74] ACE_PC2_FLAG2_IRQ ACE
INTISR[75] ACE_PC2_FLAG3_IRQ ACE
INTISR[76] ACE_ADCO_DATAVALID_IRQ ACE
INTISR[77] ACE_ADC1_DATAVALID_IRQ ACE
INTISR[78] ACE_ADC2_DATAVALID_IRQ ACE
INTISR[79] ACE_ADCO_CALDONE_IRQ ACE
INTISR[S0] ACE_ADC1_CALDONE_IRQ ACE
INTISR[S1] ACE_ADC2_CALDONE_IRQ ACE
INTISR[82] ACE_ADCO_CALSTART_IRQ ACE
INTISR[S3] ACE_ADC1_CALSTART_IRQ ACE
INTISR[84] ACE_ADC2_CALSTART_IRQ ACE
INTISR[85] ACE_COMPO_FALL_IRQ ACE
INTISR[S6] ACE_COMP1_FALL_IRQ ACE
INTISR[S7] ACE_COMP2_FALL_IRQ ACE
INTISR[88] ACE_COMP3_FALL_IRQ ACE
INTISR[89] ACE_COMP4_FALL_IRQ ACE
INTISR[90] ACE_COMPS5_FALL_IRQ ACE
INTISR[91] ACE_COMP6_FALL_IRQ ACE
INTISR[92] ACE_COMP7_FALL_IRQ ACE
INTISR[93] ACE_COMPS_FALL_IRQ ACE
INTISR[94] ACE_COMP9_FALL_IRQ ACE
INTISR[95] ACE_COMP10_FALL_IRQ ACE

Cortex-M3 NVIC Input IRQ Label IRQ Source
NMI WDOGTIMEOUT_IRQ WATCHDOG
INTISR[O] WDOGWAKEUP_IRQ WATCHDOG
INTISR[1] BROWNOUT1_5V_IRQ VR/PSM
INTISR[2] BROWNOUT3_3V_IRQ VR/PSM
INTISR[3] RTCMATCHEVENT_IRQ RTC
INTISR[4] PU_N_IRQ RTC
INTISR[5] EMAC_IRQ Ethernet MAC
INTISR[6] M3_IAP_IRQ AP
INTISR[7] ENVM_0_IRQ ENVM Controller
INTISR[8] ENVM_1_IRQ ENVM Controller
INTISR[9] DMA_IRQ Peripheral DMA
INTISR[10] UART_0_IRQ UART_O
INTISR[11] UART_1_IRQ UART_1
INTISR[12] 5PI_0_IRQ SPI_O
INTISR[13] SPI_1_IRQ SPI_1
INTISR[14] 12C_0_IRQ 12C_0
INTISR[15] 12C_0_SMBALERT_IRQ 12C_0
INTISR[ 18] 12C_0_SMBS5US_IRQ 12C_0
INTISR[17] 12C_1_IRQ 12€_1
INTISR[18] 12C_1_SMBALERT_IRQ 12C_1
INTISR[19] 12C_1_SMB5US_IRQ 12C_1
INTISR[20] TIMER_1_IRQ TIMER
INTISR[21] TIMER_2_IRQ TIMER
INTISR[22] PLLLOCK_IRQ M55_CCC
INTISR[23] PLLLOCKLOST_IRQ MS55_CCC
INTISR[24] ABM_ERROR_IRQ AHB BUS MATRIX
INTISR[25] Reserved Reserved
INTISR[26] Reserved Reserved
INTISR[27] Reserved Reserved
INTISR[28] Reserved Reserved
INTISR[29] Reserved Reserved
INTISR[30] Reserved Reserved
INTISR[31] FAB_IRQ FABRIC INTERFACE
INTISR[32] GPIO_0_IRQ GPIO
INTISR[33] GPIO_1_IRQ GPIO
INTISR[34] GPIO_2_IRQ GPIO

T B P

GPIO_3_IRQ to GPIO_31_IRQ cut

54 more ACE specific interrupts

Vil



Interrupt vectors

(in startup_a2fxxxm3.s found in CMSIS, startup_gcc) “

Table 7.1 List of System Exceptions
fnVectors: Exception
g—p Number Exception Type  Priority Description
. WOIXr d es t ac k 1 Reset —3 (Highest) Heset
—_ 2 NMI -2 Nonmaskable interrupt (external NMI input)
. WOIXr d Re se t H an d l er 3 Hard fault —1 All fault conditions if the comresponding fault
- handler is not enabled
. WO rd NM I H andl er 4 MemManage fault  Programmable Memory management fault; Memory
J— Protection Un_it (MPU) violation or access
.word HardFault Handler _ : - :
— 5 Bus fauit Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
. WO rd MemManage Handl er error response from a bus slave (also called
_ prefatch abort if it is an instruction fetch or
. Word BU_SFaU_lt Handler data abort if it is a data access)
- B Usage fault Programmable Exceptions resulting from program error or
WOT d Usa g eFau 1 t Han d 1 er trying to access coprocessor (the Cortex-M3
° P does not support a coprocessar)
710 Reserved NA —
- WOr d O 11 B8VC Programmable Supervisor Call
12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
-WOIr d O external debug requesis)
13 Resen/ad INA —
-WOr d O 14 PendBV Programmable Pendable Service Call
15 SYSTICK Programmable System Tick Timer
.word O
.word SVC Handler
— Table 7.2 List of External Interrupts
. WO rd DebUgMO n_Handl er Exception Number Exception Type Priority
WOY d O 16 External Interrupt #0 Programmable
° T External Interrupt #1 Programmable
.word PendSV Handler - Bl -
— 255 External Interrupt #2382 Programmable

.word SysTick Handler

.word WdogWakeup IRQHandler

.word BrownOut 1 5V IRQHandler

.word BrownOut 3 3V IRQHandler
eveeeeenaeee.. (they continue)




Interrupt handlers
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.word estack
.word Reset Handler
.word NMI Handler
.word HardFault Handler
-word MemManage Handler
.word BusFault Handler
.word UsageFault Handler
.word 0O
.word O
93 * Reset Handler
54 */ B
95 .global Reset Handler
o6 . type Reset Handler, %function
S7Reset Handler:
98 start:

. A
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Pending interrupts
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r— Hardware cleared interrupt request

Interrupt
Request \
Interrupt
Pending Status
/ Handler Mode
Thread
Processor Mode
Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4



Untaken interrupts
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Interrupt
Request \
Interrupt
Pending Status r
Pending status
cleared by software
Thread

Processor Mode

Mode

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped |/0 register)



Active Status set during handler execution | ¥

Interrupt request
x~~ cleared by software

Interrupt

Request \

Interrupt
Pending Status

Interrupt

Active Status
Handler Mode e Interrupt returned

Processor Thread
Mode Mode
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Interrupt Request not Cleared

Interrupt request stays active

Interrupt

Request —\

Interrupt
Pending Status

Interrupt

Active Status
\C Handler Mode

Processor Thread
Mode Mode
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Answer
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Interrupt Interrupt request siay active

request \

Interrupt
pending status

Handler mode

Interrupt |
active status Interrupt return {—[]

Processor  Thread
mode mode Interrupt reentered




Interrupt pulses before entering ISR
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Multiple interrupt pulses
before entering ISR

Interrupt
Request \
Interrupt {

Pending Status

Interrupt ?
Active Status

Processor
Mode




m A
Answer

Vil

Multiple interrupt pulses
Interrupt  Defore entering ISH

request
3

Intermupt
pending status

Interrupt | |

active status

Handler mode

Processor Thread /
mode mode Interrupt retum




New Interrupt Request after Pending Cleared m A

Interrupt request
pulsed again

Interrupt

Request \

Interrupt
Pending Status

Interrupt o~
Active Status

Handler Mode

Thread

Processor Mode
Mode




Tail chaining
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® Processor can serve multiple interrupts without returning
to program.
e Improves response latency.
- No need for state save/restore.



Configuring the NVIC
iV i

e Interrupt Set Enable and Clear Enable
- OxEOOOE100-0xEOOOE11C, OxEOOOE180-0xEOOOE19C

OxEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[ 1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0
bit[ 1] for interrupt #1

bit[31] for interrupt #31

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status




Configuring the NVIC (2)

e Set Pending & Clear Pending
- OxEOOOE200-0xEOO0E21C, OXxEOOOE280-0xEOOOE29C

OxEOO0E200 | SETPENDO R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE280 | CLRPENDO R/W 0 Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status




Configuring the NVIC (3) FIiTen

e Interrupt Active Status Register
- OxEOOOE300-0xEOOOE31C

Address Name Type Reset Value Description
OxEOOOE300 ACTIVEO R 0 Active status for external interrupt #0-31

bit[0] for interrupt #0
bit[1] for interrupt #1

bit[31] for interrupt #31
OxEOOOE304 ACTIVE1 R 0 Active status for external interrupt #32-63




Interrupt priorities e
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e If multiple interrupts arrive at same time, prioritize.
e 3 fixed highest priorities.
Up to 256 programmable priorities and 128 preemption
levels.
Particular processors support a subset of priorities.
SmartFusion supports 32 priorities: five highest bits.
0, 8, 16, 32, 24, 32, ...
Higher priorities preempt lower.
Priority can be sub-divided into groups.
* Splits register into preempt priority and subpriority.
* Subpriority used if two interrupts with same preempt
priority arrive at same time.



Interrupt Priority (2) AT

e Interrupt Priority Level Registers
- OxEOOOE400-OxEOOOE4EF

Address Name Type Reset Value Description
0xEO00E400 PRI_O R/W 0 (8-bir) Priority-level external interrupt #0
OxEOO0E401 PRI_1 R/W 0 (8-bir) Priority-level external interrupt #1

OxEOOOE41F PRI_31 R/W 0 (8-bir) Priority-level external interrupt #31




Preemption Priority and Subpriority

Application Interrupt and Reset Control Register (Address OXEOOOEDOC)

Priority Group Preempt Priority Field Subpriority Field

0 Bit [7:1] Bit [O]

1 Bit [7:2] Bit [1:0] Use
2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

4 Bit [7:5] Bit [4:0] Sp||t
5 Bit [7:6] Bit [5:0]

6 Bit [7] Bir [6:0]

7 None Bit [7:0]

Bits Name Type Reset Description
Value

31:16 | VECTKEY R/W - Access key; 0xO5FA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is OxFA0S

15 ENDIANNESS R = Indicates endianness for data: 1 for big endian (BE8)
and O for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ w = Requests chip control logic to generate a reset

1 VECTCLRACTIVE W ~ Clears all active state information for exceptions;
typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET w = Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

PRIGROUP
field to control



PRIMASK, FAULTMASK, and BASEPRI e

 What if we quickly want to disable all interrupts?

e Write 1 into PRIMASK to disable all interrupt except NMI
- MOV RO, #1
- MSR PRIMASK, RO

e Write 0 into PRIMASK to enable all interrupts

« FAULTMASK is the same as PRIMASK, but also blocks hard
fault (priority -1)

 What if we want to disable all interrupts below a certain
priority?
o Write priority into BASEPRI

- MOV RO, #0x60
- MSR BASEPRI, RO



Masking e
"2 ]

B1.4.3 The special-purpose mask registers

There are three special-purpose registers which are used for the purpose of priority boosting. Their function
1s explained in detail in Execution priovity and priority boosting within the core on page B1-18:

. the exception mask register (PRIMASK) which has a 1-bit value
. the base priority mask (BASEPRI) which has an 8-bit value
. the fault mask (FAULTMASK) which has a 1-bit value.

All mask registers are cleared on reset. All unprivileged writes are ignored.

The formats of the mask registers are illustrated in Table B1-4.
Table B1-4 The special-purpose mask registers

31 g8 7 1 0
PRIMASK RESERVED PM
FAULTMASK RESERVED M

BASEPRI RESERVED BASEPRI




Interrupt Service Routines o

1. Automatic saving of registers upon exception
« PC, PSR, RO-R3, R12, LR pushed on the stack

. While bus busy, fetch exception vector

. Update SP to new location

. Update IPSR (low part of PSR) with new exception number
. Set PC to vector handler

. Update LR to special value EXC_RETURN

o U1 N W N

e Several other NVIC registers get updated

e Latency: as short as 12 cycles



Example of complexity: the Reset Interrupt

BG and PSM VCC33GO0D R“:fest BROWNOUT3 3VINT [~
Cortex-M3
BGPSMENABLE—— =~ PSM_EN, O - VCECTSGO0D .} controller Ll L L
ABPOWERON———=— Power-Down
g V<e [veaTs VCC15UP
Detect BGGOOD PPB
PORESET_N | SYSREG
VCC33A [VCC33 VCC33UP
& Detect

FPGAGOOD

FPGA Is Programed Delay

~100 ps delay before PSM is turned on to allow for BG to power up
~20 ps delay for NVM to power up

1) No power.
2) System is held in RESET as long as VCC15 < 0.8V.
a) In reset: registers forced to default.
b) RC-Osc begins to oscillate.
c) MSS_CCC drives RC-Osc/4 into FCLK.
d) PORESET_N is held low.
3) Once VCC15GOO0D, PORESET_N goes high.
a) MSS reads from eNVM address 0x0 and 0x4.



The xPSR register layout

A
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The APSR, IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bat register.
The combination of the APSR. IPSR and EPSR registers 1s referred to as the xPSR register.

31 30 29 28 27 26 25 24 23

Table B1-2 The xPSR register layout

APSR.

N

Z

C

%

Q

IPSR

0 or Exception Number

EPSR

ICTIT

ICTIT




WFI: Wait For Interrupt
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* Puts processor in low-power mode and waits for interrupt.
* Why?



Two stacks? MSP and PSP
Vil

* OS always uses MSP.
* Can configure processor so program uses PSP.
* Makes it harder for application code to corrupt OS/superloop state.
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e Timers
- General characteristics
- SmartFusion board



Timers TR
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e Why they matter?
e Avoid pitfalls of loop-based delays.

* Waste power.

* Prevent other useful work from being done.
e Why they are complex?

* Span HW/SW boundary.



iPhone Clock App

il AT&T 2 10:36 PM < © 100% =

New York

St. Louis

Denver 9:36 PM
Today

Los Angeles

World Clock Alarm Stopwatch Timer

A

Vil

World Clock - display
real time in multiple
time zones

Alarm - alarm at certain
(later) time(s).

Stopwatch - measure
elapsed time of an
event.

Timer - count down time
and notify when count
becomes zero.



Motor and light Control et

Vil

e Servo motors - PWM
signal provides control
signal.

B
—— o m
- - a
= .
._8_1 L
- —
p::-"'f e

 DC motors - PWM signals
control power delivery.

e RGB LEDs - PWM signals
allow dimming through
current-mode control.




Methods from Android SystemClock
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Public Methods

static long

static long

static long

static boolean

static void

static long

currentThreadTimeMillis ()
Returns milliseconds running in the current thread.

elapsedRealtime()
Returns milliseconds since boot, including time spent in sleep.

elapsedRealtimeNanos ()
Returns nanoseconds since boot, including time spent in sleep.

setCurrentTimeMillis (long millis)
Sets the current wall time, in milliseconds.

sleep (long ms)
Waits a given number of milliseconds (of uptimeMillis) before returning.

uptimeMillis ()
Returns milliseconds since boot, not counting time spent in deep sleep.

51



Standard C library’s <time.h> header file
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Library Functions

Following are the functions defined in the header timea.h:

S.N.

Function & Description

char "asctimel(const struct tm “timeptr)
Returns a pointer to a string which represents the day and time of the structure timeptr.

clock _t clock{void)
Retumns the processor clock time used since the beginning of an implementation-defined era
{normally the beginning of the programy).

char *ctime{const time_t “limer)
Returns a string representing the localtime basad on the argument timer.

double difftime{time 1 tima1, time _1 timaz)
Returns the difference of seconds between timal and timea2 (limei-time2).

struct tm "gmtime(const time_t *timer)
The value of timer is broken up into the structure tm and expressed in Coordinated Universal
Time {(UTC) also known as Greenwich Mean Time (GMT).

struct tm “localtime({const time_t *timear)
The value of timer is broken up into the structure tm and expressed in the local time zone.

fime_t mktime(struct tm “timepir)
Converts the structure pointed to by timeplr into a time_t value according to the local time
Zone.

size 1 siritime{char "str, size_1 maxsize, const char *formal, const struct tm “timeptr)
Formats the time represented in the structure timeptr according to the formatting rules
defined in format and stored into str.

time 1 imedtime _t "limer)
Calculates the current calender time and encades it into time t format.



Standard C library’s <time.h> header file:

struct
int
int
int
int
int
int
int
int
int

tm {

tm sec;
tm min;
tm_hour;
tm mday ;
tm mon;
tm_ year;
tm_wday;
tm yday;
tm isdst;

Jx
Pl
l,-'-.t
P
Jx
J=
l,-'-.t
i
Jx

geconde,; range 0 to 59
minutes, range 0 to 59

hours; range 0 to Z3

day of the month, range 1 to 3l
month, range 0 o 11

The number of years since 1900
day of the week,; range 0 to b
day in the year, range b to 365
davlight saving time

struct tm

)
L )
*y
=
)
L )
*y
=
)

A
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Anatomy of a timer system

Applications

Application Software

A

Vil

timer t timerX;
initTimer () ;

startTimerOneShot (timerX, 1024);

stopTimer (timerX) ;

typedef struct timer {
timer handler_ t handler;
uint32_t time;
uint8_t mode;
timer t* next_timer;

} timer_ t;

Low-Level Timer Subsystem Device Drivers

Software
RAW R7W RAW
Hardware
= Compare <+ Counter +> Capture 9
Prescaler
-|Clock DriveIY
Internal

Xtal/Osc

timer tick:
1dr r0, count;
add r0, r0, #1

module timer (clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @ (posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+l;
end
endmodule




Anatomy of a timer system

Application Software

Applications 1

A
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timer t timerX;
initTimer () ;

startTimerOneShot (timerX, 1024);

stopTimer (timerX) ;



Timer requirements e
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e Wall clock date & time
e Date: Month, Day, Year
e Time: HH:MM:SS:mmm
* Provided by a “real-time clock” or RTC
e Alarm: do something (call code) at certain time later
e Later could be a delay from now (e.g., At)
e Later could be actual time (e.g., today at 3pm)
o Stopwatch: measure (elapsed) time of an event
e Instead of pushbuttons, could be function calls or
e Hardware signals outside the processor



Timer requirements

e Wall clock
o datetime_t getDateTime()
e Alarm
e void alarm(callback, delta)
e void alarm(callback, datetime_t)
o Stopwatch: measure (elapsed) time of an event
e t1 =now(); ... ; t2 = now(); dt = difftime(t2, t1);
e GPIO_INT_ISR:
LDR R1, [RO, #0] % RO=timer address
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Wall Clock from a Real-Time Clock (RTC)

A
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Timer requirements MTCHIGAR
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e Alarm
e void alarm(callback, delta)
e void alarm(callback, datetime_t)



Anatomy of a timer system
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Xtal/Osc




Oscillators - RC
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C  Sguare Wave

£ Oscillator



Oscillators - Crystal
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Frgure 1: Fundamental Mode [solated
Pierce-Gate Oscillator




Anatomy of a timer system
.. RV

R7VY K7 VvV AVAR A
Hardware l l l
™ Compare <+ Counter + Capture 9 module timer (clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;
Prescaler always @ (posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+l;
end
Clock Drivery endmodute
Internal —f — l | M -



Timer requirements e
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o Stopwatch: measure (elapsed) time of an event
e t1 =now(); ... ; t2 = now(); dt = difftime(t2, t1);
e GPIO_INT_ISR:
LDR R1, [RO, #0] % RO=timer address



Timer applications
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There are two basic activities one wants timers for:
* Measure how long something takes
— “Capture”
* Have something happen once or every X time
period
— “Compare”



Example # 1: Capture e
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* Fan

- Say you have a fan spinning and you want to know
how fast it is spinning. One way to do that is to
have it throw an interrupt every time it completes a

rotation.

* Right idea, but might take a while to process the
interrupt, heavily loaded system might see slower fan than
actually exists.

* This could be bad.

- Solution? Have the timer note immediately how
long it took and then generate the interrupt. Also
restart timer immediately.

* Same issue would exist in a car when measuring speed
of a wheel turning (for speedometer or anti-lock
brakes).



Example # 2: Compare e
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* Driving a DC motor via PWM.
— Motors turn at a speed determined by the
voltage applied.
* Doing this in analog can be hard.
— Need to get analog out of our processor
— Need to amplify signal in a linear way
(op-amp?)
» Generally prefer just switching
between “Max” and“Off” quickly.
— Average is good enough.
— Now don’t need linear amplifier—just
“on” and “off”. (transistor)
— Need a signal with a certain duty cycle and
frequency.
* That is % of time high.



Servo motor control: class exercise e
Vil

* Assume 1 MHz CLK

* Design “high-level” circuit to
— Generate 1.52 ms pulse
— Every 6 ms
— Repeat

* How would we generalize this?



Outline e
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® Timers
_ g Ll .
- SmartFusion board



Timers on the SmartFusion l:%m.m
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* SysTick Timer
- ARM requires every Cortex-M3 to have this
timer.
- 24-bit count-down timer to generate system
ticks.
- Has own interrupt.
- Clocked by FCLK with optional programmable
divider.
* See Actel SmartFusion MSS User Guide for
register definitions.
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Timers on the SmartFusion

e Real-Time Counter (RTC) System
- Clocked from 32 kHz low-power crystal
- Automatic switching to battery power if necessary
- Can put rest of the SmartFusion to standby or sleep to reduce power
- 40-bit match register clocked by 32.768 kHz divided by 128 (256 Hz)

FPGA Fabric vee égi
1.5/3.3 V Level Shift Circuitry
EA From 33V
T Core Flash VCC33AP
e B\ —
m WV |
Low—Pov_ver RTC E 'E- VR Logic 1.5V Voltage |
Crystal Oscillator SE . Regulator !
o £ VR Init |
APB 0 v i = ! External
- MATCH ! : FPGA_VRON PTBASE |1 pass
, & Flash Bits - -1 FPGAGOOD ! Transistor
VRINITSTATE |
= ENABLE !
]
LPXIN RTCPSMMATCH »|VR PTEM = 15V
LPXIN - - | Qutput
VRON [{VRPU !
CLKOUT RTCCLK PU_N ||
VCC33UP |
|
l I .
VRPSM
—————————————————————————————————————————————————— Power-Up/-Down
Toggle Control
Switch

v

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf


http://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion
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« Watchdog Timer
- 32-bit down counter
- Either reset system or NMI Interrupt if it reaches 0!

APB Bus
'\ A A
Y
| wboGLOAD | | wDOGSTATUS | | WDOGVALUE |
v A
| WDOGENABLE | | WDOGREFRESH |
4
RCOSCCLK > -+ RCOSCRESETN
SLEEPING ———— : ———— WDOGTIMEOUT
HALTED —————— 32-Bit Down Counter ————— WDOGTIMEQUTINT
PROGRAMMING - 1 » \WDOGWAKEUPINT
| wboGmvre | | WDOGCONTROL | |
1 1 WDOGRIS_|
A

A

A Y

WDOGMIIS
Y \

APB Bus




Timers on the SmartFusion
Vil

® System timer

— “The System Timer consists of two programmable
32-bit decrementing counters that generate
interrupts to the ARM® Cortex™-M3 and FPGA
fabric. Each counter has two possible modes of
operation: Periodic mode or One-Shot mode. The
two timers can be concatenated to create a 64-bit
timer with Periodic and One-Shot modes. The two
32-bit timers are identical”

http://www.actel.com/documents/SmartFusion MSS_UG.pdf


http://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Anatomy of a timer system

i Vilk

Operat]ng System 1 typedef struct timer {

timer handler_ t handler;
uint32_t time;
uint8_t mode;
timer t* next_timer;
I } timer_ t;




Virtual timers l:%m.m
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* Can we use more timers than exist in hardware?

* Yes. Use hardware timers as a foundation for
software-controlled virtual timers.

* Maybe we have 10 events we might want to
generate.

* Make a list of them and set the timer to go off
for the first one.

* Repeat.



Problems?
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®* Only works for “compare” timer uses.
®* Will result in slower ISR response time.
— May not care, could just schedule sooner.
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