
EECS 373
Design of Microprocessor-Based Systems

Website: https://www.eecs.umich.edu/courses/eecs373/

Robert Dick
University of Michigan

Lecture 1: Introduction, ARM ISA

September 6 2017

Many slides from Mark Brehob

Teacher

Robert Dick
http://robertdick.org/
dickrp@umich.edu

 EECS Professor
 Co-founder, CEO of profitable direct-

to-consumer athletic wearable
electronics company (Stryd)

 Visiting Professor at Tsinghua
Univeristy

 Graduate studies at Princeton
 Visiting Researcher at NEC Labs,

America, where technology went into
their smartphones

 ~100 research papers on embedded
system design

Lab instructor

 Matthew Smith
 matsmith@umich.edu
 Head lab instructor
 15 years of 373 experience
 He has seen it before
 … but he’ll make you
figure it out yourself

TAs

 Took EECS 373
 Jon Toto <jontoto@umich.edu>
 Brennan Garrett <bdgarr@umich.edu>
 Thomas Deeds <deedstho@umich.edu>
 Melinda Kothbauer <mkothbau@umich.edu>

Course goals

 Embedded system design
 Debugging complex systems
 Communication and marketing
 A head start on a new product or research idea

What is an embedded system?

An (application-specific) computer

within something else

that is not generally regarded as a computer.

Embedded, everywhere Embedded systems market

Dominates general-purpose computing
market in volume.

Similar in monetary size to general-purpose
computing market.

Growing at 15% per year, 10% for general-
purpose computing.

Car example: half of value in embedded
electronics, from zero a few decades ago.


Common requirements

Timely (hard real-time)
Wireless
Reliable
First time correct
Rapidly implemented
Low price
High performance
Low power
Embodying deep domain knowledge
Beautiful

Example design process

What is driving the

embedded everywhere trend?

Technology trends

Application innovations

Outline

Technology Trends

Course Description/Overview

Review, Tools Overview, ISA

Moore’s Law (a statement about economics):
IC transistor count doubles every 18-24 months

Photo Credit: Intel 1950 1960 1970 1980 1990 2000 2010 2020

100m

1

10

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

1T

10T

S
iz

e
 (

m
m

3
)

Computer volume shrinks by 100x every decade

100x smaller
every decade

[Nakagawa08]

Mainframe

Personal
Computer

Workstation

Smart
Sensors

1 per Enterprise

1 per
Professional

1 per person

Ubiquitous

1 per Family

1 per Engineer Laptop

100 – 1000’s
per person

Price falls dramatically, and enables new applications

1950 1960 1970 1980 1990 2000 2010 2020

0.01

0.1

1

10

100

1000

10000

100000

In
fl

a
ti

o
n

 A
d

ju
s
te

d
 P

ri
c
e

 (
1
0
0

0
s
 o

f
U

S
D

)

Mainframe

Personal
Computer

Workstation

Smart
Sensors

Ubiquitous

Laptop

Computers per person

1950 1960 1970 1980 1990 2000 2010 2020

100m

1

10

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

1T

10T

S
iz

e
 (

m
m

3
)

Mainframe

Mini
Computer

Personal
Computer

Workstation

Smartphone

Smart
Sensors

1 per Enterprise

1 per Company

1 per
Professional

1 per person

Ubiquitous

1 per Family

1 per Engineer Laptop

100 – 1000’s
per person

lo
g

 (
p

e
o

p
le

 p
e
r

c
o

m
p

u
te

r)
[Bell et al. Computer,

1972, ACM, 2008]

 “Roughly every decade a

new, lower priced computer

class forms based on a new

programming platform,

network, and interface

resulting in new usage and

the establishment of a new

industry.”

- Gordon Bell [1972,2008]

Bell’s Law: A new computer class every decade

Technology Scaling

 Moore’s Law
 Made transistors cheap

 Dennard Scaling
 Made them fast
 But power density undermines

 Result
 Fixed transistor count

 Exponentially lower cost
 Exponentially lower power

 Small, cheap, and low-power
 Microcontrollers
 Sensors
 Memory
 Radios

Technology Innovations

 MEMS technology
 Micro-fabricated sensors

 New memories
 New cell structures (11T)
 New tech (FeRAM, FinFET)

 Near-threshold computing
 Minimize active power
 Minimize static power

 New wireless systems
 Radio architectures
 Modulation schemes

 Energy harvesting

What is driving Bell’s Law?

Corollary to Moore’s Law

UMich Phoenix Processor
Introduced 2008

Initial clock speed

106 kHz @ 0.5V Vdd
Number of transistors

92,499
Manufacturing technology

0.18 µ
Photo credits: Intel, U. Michigan

15x size decrease

40x transistors

55x sm
aller λ

Broad availability of inexpensive, low-power, 32-bit MCUs
(with enough memory to do interesting things)

Hendy’s “Law”:
Pixels per dollar doubles annually

Credit: Barry Hendy/Wikipedia

G. Kim, Z. Foo, Y, Lee, P. Pannuto, Y-S. Kuo, B. Kempke, M. Ghaed, S. Bang, I. Lee, Y. Kim, S. Jeong, P. Dutta, D. Sylvester, D. Blaauw,

“A Millimeter-Scale Wireless Imaging System with Continuous Motion Detection and Energy Harvesting,

In Symposium of VLSI Technology (VLSI’14), Jun. 2014.

Radio technologies enabling pervasive computing, IoT

Source: Steve Dean, Texas Instruments

http://eecatalog.com/medical/2009/09/23/current-and-future-trends-in-medical-electronics/

H
ig

he
r
P
ow

er

Lo
w

er
E
ner

gy
pe

r

A
to

m
ic

 O
per

at
io

n

Established commun interfaces: 802.15.4, BLE, NFC

 IEEE 802.15.4 (a.k.a. “ZigBee” stack)
 Workhorse radio technology for sensornets
 Widely adopted for low-power mesh protocols
 Middle (6LoWPAN, RPL) and upper (CoAP layers)
 Can last for years on a pair of AA batteries

 Bluetooth Smart
 Short-range RF technology
 On phones and peripherals
 Can beacon for years on coin cells

 Near-Field Communications (NFC)
 Asymmetric backscatter technology
 Small (mobile) readers in smartphones
 Large (stationary) readers in infrastructure
 New: ambient backscatter communications

Emerging interfaces: ultrasonic, light, vibration

 Ultrasonic
 Small, low-power, short-range
 Supports very low-power wakeup
 Can support pairwise ranging of nodes

 Visible Light
 Enabled by pervasive LEDs and cameras
 Supports indoor localization and comms
 Easy to modify existing LED lighting

 Vibration
 Pervasive accelerometers
 Pervasive Vibration motors
 Bootstrap desktop area context

MEMS Sensors:
Rapidly falling price and power of accelerometers

[Analog Devices, 2009]

ADXL345

10 µA @ 10 Hz @ 6 bits

25 µA @ 25 Hz Price
Power

[ST Microelectronics,

2009]

O(mA)

[Analog Devices, 2012]

ADXL362

1.8 µA @ 100 Hz @ 2V

300 nA wakeup mode

Non-volatile memory capacity & read/write bandwidth

Lower capacity but

Higher R/W speeds

and
Lower energy per

atomic operation

and
High write

endurance

NRAM

 Nonvolatile
 Fast as DRAM
 Vapor(hard)ware
 May happen

Energy harvesting and storage:

Thermoelectric Ambient

Energy Harvester [PNNL]

Shock Energy Harvesting

CEDRAT Technologies

Electrostatic Energy

Harvester [ICL]

Thin-film batteries

RF [Intel]

Piezoelectric

[Holst/IMEC]

Clare Solar Cell

Growing application domains

 Wearable
 Social
 Location-aware
 IoT: integrated with physical world, networked
 Automated transportation
 Medical

My observation

 Every new class of computer systems will initially be seen as a

toy by many or most

 As it becomes socially and commercially important, nearly

everybody will act as if it was always obvious this would happen

 … even those who claimed it would always be a toy.

 If logic dictates something, ignore the naysayers.
 But that logic better consider potential customers.

Embedded, Everywhere Example - Stryd

What?

 Tiny wearable embedded

system
 Wireless communication
 Integrated signal processing
 Careful power management
 Unconventional sensors

Lionel Sanders setting Ironman Triathlon

World Record wearing Stryd

Why?

 Lets athletes precisely control

effort when training and racing

so they can run faster

Why study 32-bit MCUs and FPGAs?

MCU-32 and PLDs are tied in embedded market share

What differentiates these?

FPGA Microprocessor

Microcontroller FPGA Modern FPGAs: best of both worlds!

Why study the ARM architecture

(and the Cortex-M3 in particular)?

Lots of manufacturers ship ARM products

ARM is the big player

 ARM has a huge market share
 15-billion chips shipped in 2015
 >90% of smartphone market
 10% of notebooks

 Heavy use in general embedded systems
 Cheap to use
 ARM appears to get an average of 8¢ per device

(averaged over cheap and expensive chips)
 Flexible: spin your own designs

 Intel history

Outline

Technology Trends

Course Description/Overview

Review, Tools Overview, ISA start

Course goals

 Embedded system design
 Debugging complex systems
 Communication and marketing
 A head start on a new product or research idea

Prerequisites

 EECS 270: Introduction to Logic Design
 Combinational and sequential logic design
 Logic minimization, propagation delays, timing

 EECS 280: Programming and Intro Data Structures
 C programming
 Algorithms (e.g., sort) and data structures (e.g., lists)

 EECS 370: Introduction to Computer Organization
 Basic computer architecture
 CPU control/datapath, memory, I/O
 Compiler, assembler

Topics

 Memory-mapped I/O
 The idea of using memory addressed to talk to input

and output devices.
 Switches, LEDs, hard drives, keyboards, motors

 Interrupts
 How to get the processor to become “event driven”

and react to things as they happen.

 Working with analog inputs
 Interfacing with the physical world.

 Common devices and interfaces
 Serial buses, timers, etc.

Example: Memory-mapped I/O

 Enables program to communicate directly with hardware
 Will use in Lab 3
 Write memory to control motor
 Read memory to read sensors

Example: Anatomy of a timer system

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Grades

 Project and Exams tend to be the major

differentiators.
 Class median is generally B

Labs 24%

Project 30%

Midterm 1 16%

Midterm 2 16%

Homework 7%

Presentations 7%

Time

 This is a time-consuming class
 2-3 hours/week in lecture
 8-12 hours/week working in lab

 Expect more during project time; some labs are a bit

shorter.
 ~20 hours (total) working on homework
 ~20 hours (total) studying for exams.
 ~8 hour (total) on your oral presentation

 Averages out to about 15-20 hours/week pre-

project and about 20 during the project…
 This is more than I would like, but we’ve chosen to use

industrial-strength tools, which take time to learn.

Labs

 7 labs

1. FPGA + Hardware Tools

2. MCU + Software Tools

3. Memory + Memory-Mapped I/O

4. Interrupts

5. Timers and Counters

6. Serial Bus Interfacing

7. Data Converters (e.g., ADCs/DACs)

 Difficulty ramps up until Lab 6.

 Labs are very time consuming.
 As noted, students estimated 8-12 hours per lab with one lab

(which varied by group) taking longer.

Open-Ended Project

 Goal: learn how to build embedded systems
 By building an embedded system
 Work in teams
 You design your own project

 Will provide list.

 Can define own goal.

 Major focus of the last third of the class.

 Important to start early.
 After labs end, some slow down.
 That’s fatal.

 This is the purpose and focus of the course.

Homework

 7 assignments
 First (review assignment) due Wednesday
 Definitions

 High-Z
 Drive
 Bus

Exams

 Two midterm exams.
 Done when focus switches to project.
 32% of grade.
 Higher (grade, not time) variance than project.

Office hours

 Robert Dick: 3:00-4:30 Tu, Th in 2417-E EECS
 Will often be in lab
 TA and Matthew's hours on website

Outline

Technology Trends

Course Description/Overview

Review, Tools overview, ISA start

Verilog

 Not covered in course
 Review 270 material
 Do review homework problems
 Trial and error may work for Lab 1

 Won’t work for project
 Understand key differences w. SW languages (e.g., C)

 E.g., nonblocking statement semantics

Net states

 What is a bus?
 What does “drive” mean?
 What does Hi-Z (high impedance) mean?
 Get started on HW1 before Monday.

 Ask questions in class or on Piazza if you need help with definitions.
 Concepts should have been covered in EECS 270

Crash course in debugging

 Biggest difference between experienced and novice engineers
 Knowing your own mind's capabilities

 Complexity scales superlinearly in system size
 Heuristics
 Get something insanely simple working and grow it
 Verify the obvious
 Verify in order of dependency

Actel’s SmartFusion Evaluation Kit A2F200M3F-FGG484ES
 200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and

additional distributed SRAM in the FPGA fabric and external memory

controller
 Peripherals include Ethernet, DMAs, I2Cs, UARTs, timers, ADCs, DACs and

additional analog resources
 USB connection for programming and debug from Actel's design tools
 USB to UART connection to UART_0 for HyperTerminal examples
 10/100 Ethernet interface with on-chip MAC and external PHY
 Mixed-signal header for daughter card support

“Smart Design” configurator Eclipse-based “Actel SoftConsole IDE”

Debugger is GDB-based. Includes command line. An embedded system

Major elements of an Instruction Set Architecture
(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #0x1

 ld r1, [r0,#5]

 r1=mem((r0)+5)

 bne loop

 subs r2, #1

Endianess

Endianness

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 FF 00
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 78 56 34 12

 Little-Endian (default)
 LSB is at lower address

 Big-Endian
 MSB is at lower address

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 00 FF
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 12 34 56 78

Addressing: Big Endian vs Little Endian (370 slide)

 Endianness: ordering of bytes within a word
 Little - increasing numeric significance with increasing

memory addresses
 Big – the opposite, most significant byte first
 MIPS is big endian, x86 is little endian, ARM supports

both

Instruction encoding

 Instructions are encoded in machine language opcodes

Instructions
movs r0, #10

movs r1, #0

A
R
M

v
7
 A

R
M

Register Value Memory Value
001|00|000|00001010 (LSB) (MSB)
(msb) (lsb) 0a 20 00 21
001|00|001|00000000

Assembly example

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top:

 # ldrb r2, [r1],#1
 ldrb r2, [r1]
 add r1, r1, #1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

Instructions used

 mov
 Moves data from register or immediate.
 Or also from shifted register or immediate!

 the mov assembly instruction maps to a bunch of

different encodings!
 If immediate it might be a 16-bit or 32-bit instruction.

 Not all values possible
 why?

 movw
 Actually an alias to mov.

 “w” is “wide”
 hints at 16-bit immediate.

From the ARMv7-M Architecture Reference Manual
(posted on the website under references)

There are similar entries for

move immediate, move shifted

(which actually maps to different

instructions), etc.

Directives

 #:lower16:data
 What does that do?
 Why?

Loads!

 ldrb?
 ldrsb?

Assembly example

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top:

 # ldrb r2, [r1],#1
 ldrb r2, [r1]
 add r1, r1, #1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

Done.

