

Outline

EECS 373

Design of Microprocessor-Based Systems

Robert Dick University of Michigan

Lecture 12: Memory and PCBs

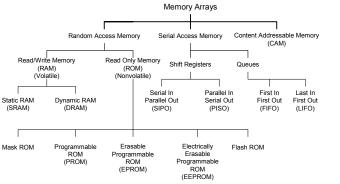
16 February 2017

Slides inherited from Mark Brehob.

- · Context and review
- Memory
- PCB design

Outline

- Context and review
- Memory
- PCB design

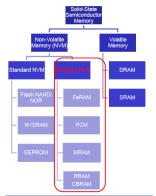

Context and review

- ADC and DAC operation and error
- Speed / accuracy / monotonicity trade-offs.
- Prototyping
- Breadboards.
- Soldering.
- · Wire wrap.
- Memory
- Flash
- Speed, functionality, reliability trade-offs.

Memory: why?

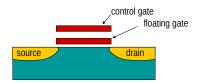
- You'll be dealing with this a lot in your projects.
- A little review now can save you trouble later.

Memory array types


MICHIGAN

5

Nonvolatile memory types


MICHIGAN

- Ferroelectric RAM: polarization changed by electric field.
 DRAM/flash-like. Electical polarization instead of floating gate.
 Reading → current pulse on write?
 150 ns. 10¹² cycles.
- Phase change memory: amorphous (off) vs. crystalline (on). 5ns to 100 ns write. ns read. 108 cycles.
- Magnetoresistive RAM. ns read.
 Slightly more for write. Many cycles.
- Programmable metallization cell: redox filament. 10s of ns read, write. 10¹⁰ cycles.
- Flash: ns read, ms write.
- EEPROM: ns read, ms write.
- SRAM/DRAM: ns read and write.

Floating gates

- Write: hot-electron injection or Fowler-Nordheim tunneling.
 - High voltage on control gate >> operating voltage
 - Electrons are trapped in the floating gate.
 - Will not discharge for many years.
- · Erase? Fowler-Nordheim tunneling.

- · Read by seeing whether it acts like a transistor or a wall.
- Tend to self-destruct after 105 write/erase cycles.

Outline

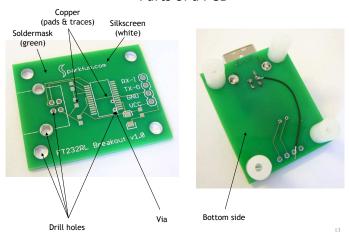
- Context and review
- Memory
- PCB design

PCBs: why?

 Even if you aren't making one for your project, need to understand how they work for debugging / reverse engineering.

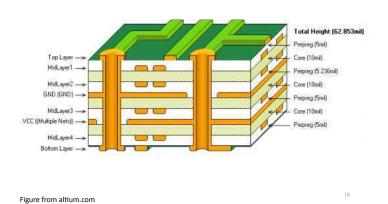
Printed circuit board design

- Physical support.
- Electrical connections.
 - Traces have restricted dimensionality.
 - Very thin, high resistance.
 - Holes/vias and pads.
 - Rework is hard.


Basic terminology

- Interconnects: traces.
- Inside of a given "layer" traces which cross are electrically connected.
- Can have multiple conductive layers by stacking/bonding boards.
- Through-hole: Having holes in the PCB designed to have pins put through the holes.
 - Contrast with surface mount where device goes on top.
- Surface mount.

Parts of a PCB


Vias

- Sometimes you need to connect traces on layers.
 - Use a via: a plated through hole
 - Generally smaller than a through hole for a pin.

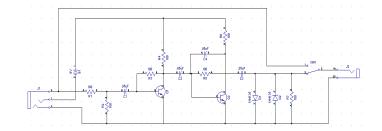
Clearances

- There will be space between the traces, other traces, and plated holes.
 - You need to meet the requirement of the manufacturer.

The layered construction of a PCB: a six layer board

What do do with layers?

- Mostly orthogonal routing layers.
- Ground planes to increase local power supply capacitance and minimize resistance.
- Power plane for similar reason.
- More layers → higher cost.


How to design PCB

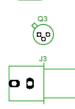
- 1. Create schematic
- 2. Place parts
- 3. Route interconnect
- 4. Generate files

Step 1: Create schematic

- The first thing you want is something that looks like a textbook circuit diagram. It just shows the devices and how they are connected.
 - Sometimes you will worry about pinouts here (say when working with a microprocessor maybe).
 - But usually you don't.
- No notion of layout belongs here, although the schematic connectivity will influence layout.

Example schematic

Why a schematic?


- Communication and formalization are main goals.
 - This is probably what your sketch on paper would look like.
 - You can find and fix bugs more easily here than the PCB layout.

Step 2: Place parts

- You need to place the patterns on the board.
 - You need to not overlap them to that the components can actually fit on the board.
 - You want to leave room for the traces to connect everything.
- This is very much an art form.
 - In fact you will find people who rant about "sloppy" or "unprofessional" placements.
- Some tools will do this for you.
- Sometimes they screw up.

Patterns

- Once you know what it is you want to build, you need to figure out how to lay it out on the board.
 - You need to know how big each piece is, and where the holes need to be placed.
- Each device has a pattern.
 You will occasionally need to create a pattern.

Step 3: Route interconnect

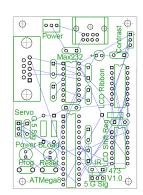
- A route is a connection between devices.
 - It may consist of multiple traces
- There are design rules which include:
 - Minimum trace width
 - Minimum spacing between traces and holes
 - Minimum spacing between holes and holes.
- Rules vary by manufacturer.
- · Units vary my manufacturer.

Issues of measure

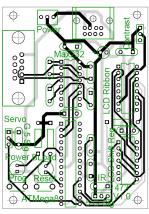
- PCB designers use odd terminology.
- A "thou" is a thousandth of an inch.
- · A "mm" is a millimeter
- A "mil" is a thousandth of an inch.
 - Thou is generally preferred over mil to avoid confusion, but most tools/vendors use mil.

Trace width

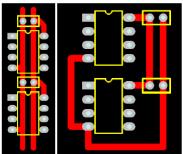
- In general most PCB manufactures seem to have trace-width minimums of 6-10 thous.
 - Most are willing to go smaller for a price.
- A rule of thumb is to use a 50 thou minimum for power/ground and 25 for everything else.
 - This is to drop the resistance of the traces.
 - In general you are worried about heat dissipation
- There are lots of guidelines for width/power but in general you are looking at:
 - A 10cm trace needs to be 10 thou wide if it will carry 1 amp.
 - 5 amps at 10cm would require 110 thou.


Trace width continued

- The problem with wide traces is that they are hard to route.
 - In particular you might wish to go between pins of a device.
- One solution is to be wide normally and "neck down" when you have to.
 - This is more reasonable than you think.
 - Think resistors in series.


Rat's nest.

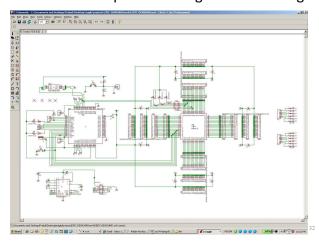
- Rat's nest shows device placements and connections but not routing.
 - Automatically generated for you.
 - Sometimes before placement, sometimes after.
 - Varies by tool.



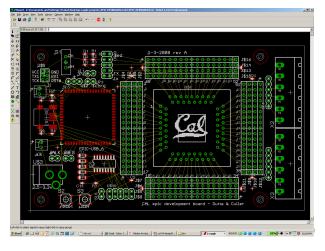
Routing for real

- You can use an autorouter to route your traces
 - Some people hate these as the design will be "ugly".
 - Saves a lot of time.
 - Oddly, not always as good as a person can do.
 - But much faster.
- Still generally need to do some (or all) of the routing by hand
 - Very, very tedious.

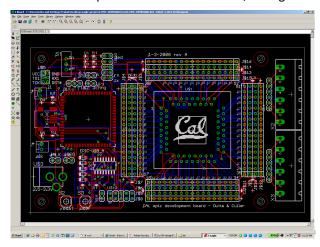
Routing quality

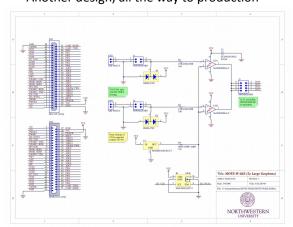


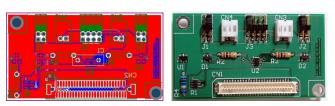
An example of GOOD power routing (Left) and BAD power routing (Right)


Step 4: Generate files

- Once the design is done, a set of files are generated.
 - Each file describes something different.
 - Copper on a given layer.
 - · Silkscreen.
 - · Solder mask.
 - Most files are in "Gerber" format.
 - Human-readable (barely) ASCII format.
 - Has commands like draw and fill.
 - Drill files are a different format called Excellon.
 - Human-readable (barely) ASCII with locations and diameters for the holes.
- Generally you zip all these files up and ship them as a single file to the PCB manufacturer.
 - Often a good idea to include the design file(s) too.


The schematic captures the logical circuit design


Floorplanning captures part locations


The auto-router places tracks on the board, saving time

Another design, all the way to production

Another simple design, all the way to production

- · Simple design that solved a hard problem.
- Deployed at many sites around U.S.

Not a simple design

- · Note component density
- Can mount components on each side.
 Relationship between PCB layout, pinoute, and outcome. pinouts, and external components important.
 - LED.
- Battery.
- Others, e.g., big inductors.
 Form (and board shape) follows
- RF subsystem physical design tricky.

The layered construction of a PCB: A six layer board

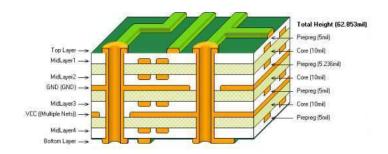


Figure from altium.com

Doesn't need to be expensive / complex

- Can CAD/CAM mill away solid Cu layer.
- · Can use lithography.
 - Photoresist.
 - Mask (can print with laser printer).
 - Projector.
 - Etchant (many are dangerous to breathe and touch).
 - Safe way to dispose of Cu-containing solution.