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Context and review

¢ Relationships among power, temperature, and
reliability.

PCB power integrity.

Several mechanical devices.

H bridges.

Shaft encoders.

Power supplies

* Goals (Why?).
* Always stably output desired voltage.
* V requirements may change w. time.
* Reality
* Available voltage wrong sometimes or always.
* High parasitics.
* L — dl/dt = droops/spikes w. current var.
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Battery discharge curve

* Beware startup peak.
* Load matters.

* Series R.
* T matters.

Wireless communication

Wireless communication

Voltage V
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AC-AC

* Winding ratio.
* Step up or down voltage.
* Expensive and bulky.
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AC-DC

* Need DC.

* Full-wave rectifier.

* What does this do to waveform?
* How to make stable? C.

* Tolerate changing input V? Zener.

Secondary
winding
tums.
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Linear DC-DC

¢ Simple, Zener-based.
¢ [nefficient for large V conversion.
* Will give reading material for review.

AC-AC

* Winding ratio.
* Step up or down voltage.
* Expensive and bulky.
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Charge pump DC-DC

¢ Charge C.

e Stack with source.

® Repeat.

* Not great for high power.

* Good for communication.

 Can control charging period to control V.



Buck switching DC-DC

e Efficient.
¢ Step-down, only.

® Max output = Vin - Vloss.

None

¢ Don't always need regulator.
* They're only around 85% efficient.
¢ Terrible for usually-sleeping

systems.

¢ Built-in battery C is useful.
¢ Can components can tolerate full

swing?

+ Consider Lilon start-up peak!

See

http://robertdick.org/publications

/kim07oct.html

Will post many other regulator
references to website today.

Signal conditioning

Buck-boost switching DC-DC

e Efficient.

¢ Step up or down.
* 0X — 2X.

® [nverting.
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Filter order

* Why? Bare sensor characteristics clash with ADC.

® Problems with many sensor outputs.
* High internal resistance.
* Voltage range mismatch.
* Unwanted frequencies.
* Fluctuating near-DC offset.

e Solutions.

* Low-pass/high-pass/notch filters.

* Amplifiers.
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(b) Response of first-order filter

Wireless communication
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Realistic op-amp model Ideal op-amp model
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First-order active lowpass filter Cascading of active filters
Create a higher-order filter by cascading.
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Instrumentation amplifiers

Cascading active filters

_ _ * Amplifies differential signal.
Create band filters by cascading. ° Rejects ground (Common_mode) noise.

® Most designs use multiple op amps.
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Wireless communication Wireless environment
® Reliability. * Noise.
® Power. ® Absorption.

e Reflection.
* Multipath.
e Environmental conditions.
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Anisotropic radiation patterns Wireless motion

* Antenna motion.
e Conductive material motion.
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Credit to fpvlair.com for image.
Communication power Radiated energy

¢ Radiated power depends on distance.
1.  Antenna. ¢ Hit target SNR at receiver.
2. Electronics. e For given rate, P o d®, oc.z 3—4.. .
¢ Small antennas may be inefficient.
® Power into amp often = 4 times transmitter power.

Communication energy Communication energy
* Circuit energy is roughly constant and independent of Example: For a particular radio the power
distance. consumption while on is 2mW. When

* Onorderof 1-10mW. . transmitting at a peak power of 10mW the
* For large distances, transmission energy dominates.

* For short distance, circuit energy should also be power amplifier has an energy efficiency of
considered. 25%.

What is total power while transmitting?



Communication power and multi-hop

* Are two hops better than one?
* Superlinear increase in energy with distance.
* Constant energy hit regardless of distance.

Dynamic power management

* Dynamic power management also useful for
communication power.

* Turn radio off when nothing to send/receive.

* Note while off can not receive.

* Taking into account DPM can change transceiver
trade-offs.
- Better to send fast and sleep or slow?

Processing vs. transmitting

For motes, transmitting 1-bit costs same as
executing =~ 1,000 processor instructions.

Can save on transmission costs by intelligently
processing data before transmitting!

Data aggregation/fusion.

Hibernation

When to wake up?

Possibilities
1. At regular intervals.
—Need synchronization.
2. Trigger by stimulus.
—E.g., heat-sensitive circuit.



