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Context and review

• Relationships among power, temperature, and 

reliability.
• PCB power integrity.
• Several mechanical devices.
• H bridges.
• Shaft encoders.
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Power supplies

 Goals (Why?).
 Always stably output desired voltage.
 V requirements may change w. time.

 Reality
 Available voltage wrong sometimes or always.
 High parasitics.

 L  dI/dt  = droops/spikes w. current var.→
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Battery discharge curve

 Beware startup peak.
 Load matters.

 Series R.
 T matters.
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AC-AC

 Winding ratio.
 Step up or down voltage.

  Expensive and bulky.
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AC-DC

 Need DC.
 Full-wave rectifier.
 What does this do to waveform?
 How to make stable? C.
 Tolerate changing input V? Zener.
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Linear DC-DC

• Simple, Zener-based.
• Inefficient for large V conversion.
• Will give reading material for review.
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Charge pump DC-DC

• Charge C.
• Stack with source.
• Repeat.
• Not great for high power.
• Good for communication.
• Can control charging period to control V.
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Buck switching DC-DC
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• Efficient.
• Step-down, only.
• Max output = Vin – Vloss.

Buck-boost switching DC-DC
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• Efficient.
• Step up or down.

 0X  2X.→

• Inverting.

None
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• Don't always need regulator.
• They're only around 85% efficient.
• Terrible for usually-sleeping 

systems.
• Built-in battery C is useful.
• Can components can tolerate full 

swing?
• Consider LiIon start-up peak!

See 

http://robertdick.org/publications

/kim07oct.html

Will post many other regulator 

references to website today.
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Signal conditioning

• Why? Bare sensor characteristics clash with ADC.
• Problems with many sensor outputs.

 High internal resistance.
 Voltage range mismatch.
 Unwanted frequencies.
 Fluctuating near-DC offset.

• Solutions.
 Low-pass/high-pass/notch filters.
 Amplifiers.
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Filter order



Realistic op-amp model

• Nonlinear behavior not 

represented in model.
• Consider power supply V. 
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Op-amp “Golden Rules”
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For negative feedback
• Gain is infinite so input voltages equal.
• Input resistance infinite so input current zero.
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Nodal analysis for noninverting case
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First-order active lowpass filter
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Cascading of active filters
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Create a higher-order filter by cascading.



Cascading active filters

Create band filters by cascading.

Instrumentation amplifiers

• Amplifies differential signal.
• Rejects ground (common-mode) noise.
• Most designs use multiple op amps.
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References

• Paul Horowitz and Winfield Hill, “The Art of 

Electronics.”
• Howard M. Berlin, “Design of OP-AMP Circuits.”
• Any decent introductory circuits book.
• Application notes from op amp manufacturers.
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Wireless communication

• Reliability.
• Power.
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Wireless environment

• Noise.
• Absorption.
• Reflection.

 Multipath.
• Environmental conditions.
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Anisotropic radiation patterns

Credit to fpvlair.com for image.
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Wireless motion

• Antenna motion.
• Conductive material motion.
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Communication power

 
1. Antenna.

2. Electronics.

 

Radiated energy

• Radiated power depends on distance.
• Hit target SNR at receiver.

• For given rate,  Pr ∝ dα , α≈ 3-4.

• Small antennas may be inefficient.
• Power into amp often ≈ 4 times transmitter power.

Communication energy

 Circuit energy is roughly constant and independent of 

distance. 
 On order of 1-10mW.

 For large distances, transmission energy dominates.
 For short distance, circuit energy should also be 

considered.

Communication energy

Example: For a particular radio the power 

consumption while on is 2mW. When 

transmitting at a peak power of 10mW the 

power amplifier has an energy efficiency of 

25%. 

 

What is total power while transmitting?



Communication power and multi-hop

 Are two hops better than one?
 Superlinear increase in energy with distance.
 Constant energy hit regardless of distance.

Processing vs. transmitting

 For motes, transmitting 1-bit costs same as 

executing ¼ 1,000 processor instructions.
 Can save on transmission costs by intelligently 

processing data before transmitting!
 Data aggregation/fusion.

Dynamic power management

 Dynamic power management also useful for 

communication power.
 Turn radio off when nothing to send/receive.
 Note while off can not receive.
 Taking into account DPM can change transceiver 

trade-offs.
− Better to send fast and sleep or slow?

Hibernation

When to wake up?
 

Possibilities

1. At regular intervals. 
– Need synchronization.

   2.  Trigger by stimulus.

– E.g., heat-sensitive circuit. 


