
LCD	Display
CHENGMING	ZHANG

2017 .3 .28

Outline

•Introduction

•Characteristics

•Interfacing

Introduction

•Widely	used	in	daily	life(and	embedded	system	as	well)

•LCD,	LED	(with	LCD),	OLED

•Volatile	or	static

LCD	Characteristics

•Lightweight,	compact,	portable,	cheap

•Use	a	thin	layer	of	liquid	crystal	between	plate

•Behavior	change	under	different	voltage

•Circuit	needed	to	control	every	part	of	display

Interfacing

source:	https://cdn-shop.adafruit.com/970x728/2050-00.jpg

Interfacing
•8-pin	&	SPI	mode



Configurations
Name Description

GND Ground

3-5v Power	in

MOSI Master	out	slave	in

MISO Master	in	slave	out

CS Select	signal

CLK	 Clock signal

D/C Indicating	incoming	transaction	is	data	or	command

Sending	Data	&	Command
•Sending	Data

§ D/C	high

§ CS	high

•Sending	Command

§ D/C	low

§ CS	high

•Various	command:	SETCOLOR	SETIMAGE…

Interfacing

•Arduino	library	available	for	both	8-bit	and	SPI	mode

•Written	in	C++,	can	be	ported	to	c	language

Reference
https://en.wikipedia.org/wiki/Flat_panel_display#Plasma_panels

https://www.adafruit.com/product/2050

Question

Thank	you



RF Module and Sensors 
Chunke Tan 

RF Modules 
�  Communicate wirelessly 

�  Types: 

�  Transmitter module 

�  Receiver module 

�  Transceiver module 

�  System on chip module 

Modulation Wireless Protocol 
�  Wifi 

�  Bluetooth 

�  Zigbee 

�  … 

Sensors 

Temperature sensor 
light sensor 

Accelerometer sensor Temperature and humidity sensor 

Wireless Sensor Network 
 
�  Spatially distributed automated sensors 

�  Sensor node 

�  Base station 

�  Applications 



Thank you! 

Reference 
�  1. Xbee UART Data Flow Graph: https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf  

�  2. ASK: http://www.tmatlantic.com/encyclopedia/index.php?ELEMENT_ID=10420 

�  3. FSK: https://en.wikipedia.org/wiki/Frequency-shift_keying 

�  4. ASK procedure: https://en.wikipedia.org/wiki/Amplitude-shift_keying 

�  5. Wifi graph: https://www.lifewire.com/guide-to-wireless-network-protocols-817966 

�  6. Bluetooth graph: https://en.wikipedia.org/wiki/Bluetooth_low_energy 

�  7. Zigbee graph: http://buildyoursmarthome.co/home-automation/protocols/zigbee/ 

�  8.Temperature sensor: https://solarbotics.com/product/35040/ 

�  9. light sensor: https://www.intorobotics.com/common-budgeted-arduino-light-sensors/ 

�  10. Accelerometer sensor: https://learn.sparkfun.com/tutorials/accelerometer-basics 

�  11. Temperature and humidity sensor: http://www.ebay.com/itm/DHT11-Temperature-and-Humidity-Sensor-Module-for-Arduino-/271096647277 

�  12. Wireless sensor network architecture: https://en.wikipedia.org/wiki/Wireless_sensor_network#/media/File:WSN.svg 

�  13. Sample for WSN: https://thenewstack.io/tutorial-prototyping-a-sensor-node-and-iot-gateway-with-arduino-and-raspberry-pi-part-1/ 

Embedded	Systems	in	
Athletic	Training

By:	John	Maxey

March	28,	2016

EECS	373

Evolution	of	Training	Technology

• Research	and	development	constantly	changing	the	way	athletes	train

• Innovations	in:
• Apparel	– clothing	(heatgear),	shoes

• Equipment	– tennis	racket,	bicycle

• Biometrics	– pedometers,	HR	monitors

• Mobile	apps	– AMP	Sports

• Wearable	devices	– FitBit,	motusPRO

• Wearable	technology	is	a	$14	billion	industry

Benefits	of	Technology	in	Athletic	Training

• Analyzes	data	in	real	time
• Heart	rate

• Calories

• Distance

• Steps

• Understand	body’s	reactions	during	training
• Comparable	to	a	dashboard	on	a	car

• Continues	to	get	smaller,	more	powerful,	and	cheaper

Aspects	of	Training	Technology

• Water	tolerance	– able	to	withstand	sweat	while	training

• Size	– must	not	interfere	with	performance

• Power	consumption	– must	conserve	battery	life	to	last	long	enough

• Wireless	communication	– connect	with	other	devices	to	display	data

• Microcontroller	– determine	the	capabilities	of	the	device



How	it	Works

• Processor	always	on	– motions/activity	trigger	interrupts

• RTOS	– real-time	operating	system,	processes	data	without	buffers

• ARM	processor:	interfaces	with	sensors	and	RFID,	
displays	data	on	LCD	screen

• Bluetooth:	link	to	smartphone

How	it	Works	(continued)

• Accelerometer,	pedometer,	HR	monitor,	etc.	tracks	activity

• Data	points	from	sensors	estimate	current	state

• High-end	products:	multiple	processors,	connect	to	cloud	services,	
user	interface	provides	smartphone	graphics	,	advanced	operating	
system

Advanced	Training	and	Analysis	- motusPRO

• Used	to	track	exact	motions	of	baseball	players

• Tracks	over	40	mechanical	metrics

• Assists	in	technique,	trends,	and	rehabilitation

• Small,	lightweight	sensors	in	clothing

• Transmits	data	to	app	in	real-time

• CAD	advancements	allow	for	
virtual	design	and	testing

References

• http://www.dailymail.co.uk/sciencetech/article-2138142/Electric-training-suit-
vibrates-tell-Olympic-athletes-perfected-routine.html - electric	training	suit

• https://www.forbes.com/sites/paullamkin/2016/02/17/wearable-tech-market-to-
be-worth-34-billion-by-2020/#74051eb13cb5 - wearable	technology	market

• http://www.motusglobal.com/motuspro.html - motusPRO

• https://community.arm.com/iot/embedded/b/embedded-blog/posts/arm-
technology-driving-the-wearable-trend - ARM	technology	in	sports

• https://www.slideshare.net/Funk98/wearable-technology-design - evolution	of	
sports	technology

• http://www.embedded.com/design/real-world-applications/4431259/The-basics-
of-designing-wearable-electronics-with-microcontrollers - designing	wearable	
technology

Positioning Methods 
in Embedded Systems	

Jacob Cooper 

GPS	
•  Tracking via satellites 

•  Works globally 

•  Very commonplace(smartphones) ->Easy to 

implement into system 

•  GPS modules on sparkfun for $40-80 



GPS	
CONS 

•  Inconsistent accuracy(smartphone GPS 16ft) 

•  Ineffective indoors 

•  Mildly power hungry 

 

 

Wifi Based Positioning	
•  Calculate using strength of wifi signal from access 

points with known locations 

•  Good solution for indoor locations with wifi 

•  Arduino function wifi.rssi() 

•  Limited settings 

•  Median accuracy of 2-4m 

Dead Reckoning	
•  Use initial position and movement calculations 

•  IMU is good solution(sparkfun $14-50) 

•  Pairs with GPS tracking for indoors 

•  Cumulative error builds up 

•  Reset/refresh using wifi 

Ultrasonic	
•  Works locally, requires line of sight 

•  One side transmits and one receives 

•  Direction and distance applications 

•  Cheap, low power options 

•  Consider echoing effects 

Infrared	
•  Local, requires line of sight 

•  Single ended 

•  Cheap options work within 5ft 

•  Affected by conditions especially lighting 

Lidar	
•  Expensive($1,000’s) for sweeping 

•  Cheaper option($150) 

•  Near-infrared laser 

•  40m Range, 2.5cm accuracy 

•  Setup for I2C or PWM 

 

 

 



Questions?	

AUDIO PROCESSING IN 
EMBEDDED SYSTEMS
BY THEO MILLER

AUDIO SAMPLING

• According to the Shannon-Nyquist Theorem, properly reconstructing a signal requires 

sampling at twice its frequency

• Range of human hearing is 20Hz – 20kHz, so sampling rate must be at least 40 kHz

• Low-pass filter needed, lowering effective sample rate

• Standard Digital audio samples at 44.1 kHz to compensate

• Sample rates of 48, 96, or 192 kHz also exist, but there is much debate as to whether 

they increase quality

• Other systems, such as voice recognition and reproduction, use lower sample rates, as most of the higher frequencies aren’t needed

AUDIO OUTPUT FORMATS

• Pulse Code Modulation (PCM)

• Most common

• Amplitude of sample represented as digital code

• Used by most standard ADC’s and DAC’s
• Pulse Width Modulation (PWM)

• Amplitude encoded in duty cycle

• Requires PWM carrier frequency to be at least 12 times the bandwidth of the signal

• Speakers require filter to remove carrier frequency

• Does not require a DAC, can be sent from GPIO or specialized PWM output

• Low cost

AUDIO OUTPUT FORMATS

• Direct Stream Digital (DSD)

• Developed by Sony and Phillips

• Most modern ADC’s and DAC’s use sigma-delta designs

• Involves over sampling signal at 1 bit data resolution

• PCM requires extra conversions

• Less intuitive to process than PCM, requires extra overhead

AUDIO COMPRESSION

• Uncompressed audio takes up large amount of space 

• CD-quality audio, ~10MB for 1 min

• Examples: WAV and AIFF

• Lossless Compression

• Reduces size by ~½, bit-perfect copy

• Examples: FLAC, ALAC, APE

• Lossy Compression

• Can reduce size by 10x or more, information lost

• Uses quirks in ear’s physiology to remove data without drastically affecting audio quality
• Examples: MP3, AAC, WMA



AUDIO CODECS

• Integrate ADC’s, DAC’s, and audio compression into one system
• Usually support a wide rage of communication protocols

• Highly configurable

SOURCES

• http://www.analog.com/media/en/dsp-documentation/embedded-

media-processing/embedded-media-processing-chapter5.pdf

• http://www.trustmeimascientist.com/2013/02/04/the-science-of-

sample-rates-when-higher-is-better-and-when-it-isnt/

• http://lifehacker.com/5927052/whats-the-difference-between-all-

these-audio-formats-and-which-one-should-i-use

QUESTIONS?

REAL TIME OPERATING SYSTEM

Yi Zhi Wee

EECS 373

WHAT IS RTOS?

• OS for applications with real-time constraints

• Must respond to events quickly

• No deadloop

• Provides library for task scheduling

JUST USE NVIC?

• Must manually setup hardware

• Scheduling will (probably) need timer

• RTOS schedules task in software (easier debugging)

• Program portable to other machines with same RTOS



EXAMPLE: RATE MONOTONIC SCHEDULING

• Static priority

• Tasks are periodic

• Shortest period highest priority

WHAT ELSE?

• Dynamic priority

• Interrupts (low latency)

• Other scheduling algorithms (eg. round robin)

Random Numbers in 

Embedded Systems
Brennan Garrett

Applications of Random Numbers

• Cryptography (random keys)

• Network Applications

• Games

Software Generators vs Hardware Generators

Software Hardware

C Function: Rand() Input Time Differences

Kiss Algorithm Noise from ADC

Rand()

• Very easy to use, no implementation 

necessary

• Poor quality of randomness, produces 

cyclic results for lower numbers

• Poor randomness, useful for trivial 

applications

https://www.slideshare.net/numericalsolution/random-number-generation-
in-c-past-present-and-potential-future



Kiss Algorithm 

https://www.embedded-office.com/en/blog/random-1.html

• Keep it Simple Stupid

• Multiple-With-Carry Generator, Shift 

Registers, Linear Congruential 

Generator

• Provides better “randomness”

• Better software implementation, not 

perfect

Input Time Differences

• Measures time between two input 

signals (keyboard, button)

• Time difference provides random 

seed

• Can be implemented at start time

www.zilogic.com/blog/tutorial-random-numbers.html

Noise from ADC

• Application reads in thermal noise 

from an ADC 

• This physical measurement 

provides pure randomness

• Best method to find random seed

http://www.zilogic.com/blog/tutorial-random-numbers.html

Conclusion

• Measuring a physical phenomena as a seed will produce the best results

• Randomness relates to application

References

• http://www.azillionmonkeys.com/qed/random.html

• http://www.embedded.com/design/configurable-

systems/4024972/Generating-random-numbers

• http://www.zilogic.com/blog/tutorial-random-numbers.html Interfacing with 
N64 Controller
James Mitchel



The Controller

▪ Controller for N64

▪ First to utilized analog stick for 3D 
gameplay

▪ 14 buttons and analog stick for 
control

▪ Trident shape still unique today

http://how-does-things-work.blogspot.com/2010/01/working-of-nintendo-64.html

The Buttons

▪ Each button is a switch that completes a circuit when it is pressed

http://www.neogaf.com/forum/showthread.php?t=1181939

The Joystick

▪ Two wheels, with tiny slots around 
the edge, form right angle

▪ Moving the joystick moves the two 
wheels turn slightly

▪ Wheels in between LED and photo 
cell 

▪ Quadrature encoding!

http://how-does-things-work.blogspot.com/2010/01/working-of-nintendo-64.html

The Serial Port

▪ One wire for power (3.3 V) and one 
for ground

▪ Only one wire for data

▪ Open collector

▪ Needs own serial interface

▪ Self clock

http://how-does-things-work.blogspot.com/2010/01/working-of-nintendo-64.html

The Bit

▪ Self clocking

▪ Each bit lasts 4us

▪ Starts low

▪ Ends high

▪ Data is the middle 

▪ 0 when low

▪ 1 when high
http://www-inst.eecs.berkeley.edu/~cs150/fa04/Lab/Checkpoint1.PDF

The Commands

▪ 8’hFF: Reset Controller 

▪ 8’h00: Get Status 

▪ 8’h01: Get Buttons 

▪ 8’h02: Read Mempack

▪ 8’h03: Write Mempack

▪ 8’h04: Read EEPROM 

▪ 8’h05: Write EEPROM

http://how-does-things-work.blogspot.com/2010/01/working-of-nintendo-64.html



Polling

▪ Send message to controller over data wire

▪ The message is a byte long plus a stop bit (so effectively 9 bits)

▪ Message is 0x01 for getting button data

▪ So send 0b000000011 over the data line using the bits described before

http://www.pieter-jan.com/node/10

Button Status

▪ Controller responds over data wire

▪ Sends 4 bytes plus a stop bit (so effectively 33 bits)

▪ Buttons sent as binary, pressed versus not pressed

▪ Receive joystick x-coordinate and y coordinate

http://slideplayer.com/slide/8085899/

Sending and Receiving

http://www-inst.eecs.berkeley.edu/~cs150/sp01/Labs/lablecckpt1.pdf

The Interface

▪ Most material online don’t use a FPGA so they are polling and receiving the data 
all from software.

▪ For my team’s application it makes more sense to use FPGA and interrupts to 
interface between the controller.

▪ Have the FPGA constantly poll, get button data, and send an interrupt when an 
important event (like button press) happens so software can react.

References

▪ http://www-inst.eecs.berkeley.edu/~cs150/fa04/Lab/Checkpoint1.PDF

▪ http://www-inst.eecs.berkeley.edu/~cs150/sp01/Labs/lablecckpt1.pdf

▪ http://www.pieter-jan.com/node/10

▪ http://how-does-things-work.blogspot.com/2010/01/working-of-nintendo-64.html

▪ https://www.eecs.umich.edu/courses/eecs270/lectures/270L23NotesF14.pdf

▪ http://slideplayer.com/slide/8085899/

▪ http://www.neogaf.com/forum/showthread.php?t=1181939
LVDS I/O Standard

By: Jacob Sigler



• Stands for Low Voltage Differential Signaling

• Transmits inverted and non-inverted signal called 

“Differential Pair” or “Diff Pair”

– Signals measured between each other, not ground 

reference

• Voltage swing of ~±350mV (compared to 3.3V for CMOS 

logic)

• Max data rate ~3.125 Gbps

What is LVDS? LVDS Driver

*1

• Lower voltage results in lower dynamic power

• For our FPGA:

• For 200MHz Signal: LVDS = 2588uW 3.3v LVTTL = 3510uW 

LVDS Advantages – Low Power

• Low voltage swing also allows higher speed (charging 

capacitance)

• For our FPGA:

LVDS Advantages – High Speed

• Common mode noise couples equally into both signal lines

• Receiver takes difference of inputs, so common mode noise 

is subtracted out

LVDS Advantages – Noise Immunity

*2

• LVDS requires inverted and non-inverted signals, so two 

wires per line

• To get around this, can run ½ lines at 2x speed compared to 

parallel interface

– 12 parallel lines at 100MHz

– 6 LVDS pairs at 200MHz

LVDS Disadvantages – Two Lines



• Common Embedded Uses:

– LCD Video Connectors

– Camera Interface

– High Speed ADC/DAC Interface

LVDS Uses

• SmartFusion has pre paired diff inputs

– Cant route two random signals and call them diff pairs

• Can select LVDS in the IO manager

Implementation Tips

1. By Dave at ti - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=19127

216

2. By Linear77 - Own work, CC BY 3.0, 

https://commons.wikimedia.org/w/index.php?curid=18321

195

References

PID Control

in 

Embedded Systems
Shaurav Adhikari

EECS 373

Example application of PID control in an 

Embedded System

Controlling the position of an actuator by getting its current position as 
feedback

PID controllers use feedback to determine the output



PID controller

Proportional:

• Quickly moves output in the desired direction and reverses if overshooting 
occurs

Integral:

• Corrects small steady state errors by accumulating them over time.

Derivative:

• Allows for higher Kp and Ki values without overshooting.

• Limits how quickly changes occur in output. 

Varying Kp

Varying Ki Varying Kd

Implementing PID

Loop:

current_error = desired_position – current_position

proportional = Kp * current_error

integral = Ki * accumulated_error

derivative = Kd * (current_error – previous_error)

controller_output = proportional + integral + derivative

Things to consider

• If feedback is noisy then the controller would produce undesired
output

• Some devices may not respond to small changes

• When error is greater than a chosen threshold, simply get the error 
within the threshold as fast as possible. 



Questions?

References

• http://www.phidgets.com/docs/Linear_Actuator_-_PID_Control

• http://tutorial.cytron.com.my/2012/06/22/pid-for-embedded-
design/

• https://en.wikipedia.org/wiki/PID_controller

Embedded System and 
Wearable device 

J IAYI LIU

EECS 373

Basic Description 
͚Wearaďle͛ deǀiĐes are ŵiŶiature eleĐtroŶiĐ deǀiĐes ǁorŶ oŶ 
the body, often integrated with or designed to replace existing 
accessories such as a watch.

Size 
• The devices must be small enough to be wearable. 

•It͛s alǁays ďe ĐhalleŶgiŶg to iŶtegrate ŵore fuŶĐtioŶalities iŶside a sŵall spaĐe. 

•System-on-Chip (SoC) and chip scale packages (CSP) enable engineers to minimize the size of the 
device.

Power Consumption 
• Wearable devices need to stay on to do the monitoring while 
the battery capacity is limited, power consumption is very 
challenging.

•Solve by applying efficient algorithm(inactive unused program 
or functionality) or use good MCU(32-bit ARM architecture, 
Bluetooth Low Energy (BLE)). 



Wireless communication
• Wireless communication is commonly used in wearable devices to enable devices interact with 
each other. 

•Each device need to support at least one wireless protocols( Wi-Fi, ANT+, Bluetooth Low Energy 
(BLE)).  

Microprocessor or Microcontroller
•The selection of the processor is highly based on features of the device. Commonly use MCUs 
and in most case engineers integrate functions on a single chip to minimize size. 

•32-bit ARM processors are popular in wearable deǀiĐes. It͛s ĐoŵputiŶg perforŵaŶĐe is ďrilliaŶt 
aŶd it͛s effiĐieŶĐy iŶ terŵs of poǁer is also ideal. 

•When the system is sophisticated, multiple processor might be required. (When the system has 
bunch of sensors and require real-time analysis and wireless communication). 

Operating system
• Not required for simple device or system. 

•When the device connect with complex devices 
like smartphone(Android) or system itself is 
complex, OS may be needed. 

Thank you!!

Embedded 
Systems in Space

Joe Lafayette
Nick Martinelli

Embedded Systems in Space

● Sophisticated embedded systems are integral to space travel
○ A spacecraft without onboard computing won’t do much

● Surviving in space is exceptionally hard
○ It is an extremely hostile environment

● Even small missions require extreme preparation



Areas of Consideration

● Radiation
● Temperature
● System Reset
● Reprogramming
● Power Consumption

Radiation

● Single event upset
○ Change in device state due to a single ionizing particle
○ Single event latch-up occurs when ionizing particle short circuits device

● Bit flips
○ Can render data/instructions useless

● Europa Clipper / Multi-Flyby Mission
○ Does multiple close fly-bys to avoid intense radiation
○ Radiation would quickly render electronics inoperable

Radiation Protection

● Utilize radiation resistant/hard components
○ Can prevent bit flips and damage

● Recognize single-event latch up/upset
○ Power down components/spacecraft to minimize damage

● Shield less resistant components if needed

Temperature

● Ranges from -170º to 123º Celsius (ambient) in Low Earth Orbit
● Cold temperatures decrease the rate of chemical reactions in 

batteries
● High & low temperatures reduce semiconductor performance
● Components can have measurement drift as function of 

temperature
○ Crystal Oscillators

● You can’t get too hot or too cold

Temperature Solutions

● Heat dissipation is hard
○ Conduction and convection can’t remove heat from the 

system

● Can utilize thermistors to recognize low battery 
temperatures

○ Can activate heating circuit to keep batteries warm

● Use radiators to remove excess heat from the 
system

○ Requires extra mass and surface area

● Use thermal insulation to maintain temperature
● Use temperature sensors to compensate for 

thermal drift
https://i.stack.imgur.com/cpIBo.jpg

Temperature Solutions
New Horizons

● Heat dissipation is hard
○ Conduction and convection can’t remove heat from the 

system

● Can utilize thermistors to recognize low battery 
temperatures

○ Can activate heating circuit to keep batteries warm

● Use radiators to remove excess heat from the 
system

○ Requires extra mass and surface area

● Use thermal insulation to maintain temperature
● Use temperature sensors to compensate for 

thermal drift https://en.wikipedia.org/wiki/New_Horizons



No Easy System Reset

● Software/hardware bugs can cause inoperable state
● Communication could be limited

○ Radio functionality may be compromised

● Need a Watchdog Timer
○ Can be used to reset/power cycle parts of spacecraft if not Űfedű

● Well designed watchdog systems can Űreviveű a dead spacecraft
● Watchdog systems are invaluable

○ Lightsail 1 spacecraft 
■ Didn’t have good WDT system
■ Upgrading for Lightsail 2

No Component Replacement

● Spacecraft parts can, and will, fail
○ Could mean only partial mission success
○ Could potentially interfere with operation of other components

● Can’t replace parts on a spacecraft
● Redundancy and isolation should be considered

○ Redundant copies that can be switched to in case of failure
○ Scheme for isolating faulty hardware from shared interfaces

■ Bus isolators
■ Power switching

Reprogramming

● In-flight reprogramming is essential
○ Software bugs
○ Hardware failures

● These could be fatal without reprogramming
○ Bug fixes
○ Lock-out/work around broken hardware

■ I.E., isolate from a bus, repurpose other hardware to do same job

● Don’t have a simple USB connection for reprogramming
● Need dedicated hardware/software for altering processor memory

Power Consumption

● Want system to be in sleep/low 
power mode whenever possible

● Need power harvesting
○ Solar

● The inverse square law is not your 
friend

○ Solar panels are less effective further from 
the sun

○ Missions to outer planets need to rely on 
other power sources

■ New Horizons uses a radioisotope 
thermoelectric generator (RTG)

https://en.wikipedia.org/wiki/New_Horizons

New Horizons

References 

https://en.wikipedia.org/wiki/Single_event_upset 

https://en.wikipedia.org/wiki/Europa_Clipper 

https://en.wikipedia.org/wiki/Spacecraft_thermal_control 

https://en.wikipedia.org/wiki/LightSail_2#LightSail_1_test_flight 


