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Many slides from Mark Brehob

Review

 ISA
 Encodings
 Addressing modes
 Status register
 Using the ARM ARM

 ABI (including quick rules
 Pass in r0-r3
 Return in r0 (+r1)
 Caller saved r0-r3
 Callee saved r4-r7
 Others? See more detailed ABI information

 Build process
 Gcc, nm, objdump, as, ld
 Make and makefiles
 More on this today

Lab 2

Why did that happen?
● Disable watchdog
● Odd target address for bx, blx

● Long history of such features

Survey outcome

Examples have value

They are covered too fast

Could better show how things fit together

Resolution
● Narrate what I am doing and why more thoroughly
● Slow down

Outline

 Where are we?
 Building and linking
 Debugging



An embedded system Outline

 Where are we?
 Building and linking
 Debugging

What are the real GNU executable names for the ARM?

 Just add the prefix “arm-none-eabi-” prefix
 Assembler (as)

 arm-none-eabi-as

 Linker (ld)
 arm-none-eabi-ld

 Object copy (objcopy)
 arm-none-eabi-objcopy

 Object dump (objdump)
 arm-none-eabi-objdump

 C Compiler (gcc)
 arm-none-eabi-gcc

 C++ Compiler (g++)
 arm-none-eabi-g++

How does an assembly language program 
get turned into a executable program image?
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What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start

start:

movs r0, #10

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne  loop

deadloop:

b    deadloop

.end

example1.out:     file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:

   0: 20000800 .word 0x20000800

   4: 00000000 .word 0x00000000

00000008 <start>:

   0: 200a      movs r0, #10

   2: 2100      movs r1, #0

00000004 <loop>:

   4: 1809      adds r1, r1, r0

   6: 3801      subs r0, #1

   8: d1fc      bne.n c <loop>

0000000a <deadloop>:

   a: e7fe      b.n 12 <deadloop>

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

arm-none-eabi-objcopy -Obinary example1.out example1.bin

arm-none-eabi-objdump -S example1.out > example1.lst

.equSTACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */

/* _start label is the beginning */

/* ...of the program region */

.type start, %function /* Specifies start is a function */

/* start label is reset handler */

_start:

.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */

start:

movs r0, #10 /* We’ve seen the rest ... */

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne  loop

deadloop:

b    deadloop

.end

Elements of assembly language program?



How does a mixed C/Assembly program 
get turned into a executable program image?
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Outline

 Where are we?
 Building and linking
 Debugging

Compile-time debugging

 -Wall: Show more compile-time problems
 -ggdb: Include the most complete debugging information possible.
 -O0: Turn off optimization (only when debugging).

What do debuggers do?

 Souce→PC association
 Breakpoints

 Single stepping
 Skip counts

 Variable inspection
 Monitoring
 Stack analysis
 Memory search
 Setting variables

 Backtracing

What is about to happen?

 Try each of these on real example
 Use same debugger you use in class, but w.o. GUI wrapper
 Show the commonly used debugging functions

Done.


