
EECS 373
Design of Microprocessor-Based Systems

Robert Dick
University of Michigan

Lecture 3: Linking, debugging

13 September 2017

Many slides from Mark Brehob

Review

 ISA
 Encodings
 Addressing modes
 Status register
 Using the ARM ARM

 ABI (including quick rules
 Pass in r0-r3
 Return in r0 (+r1)
 Caller saved r0-r3
 Callee saved r4-r7
 Others? See more detailed ABI information

 Build process
 Gcc, nm, objdump, as, ld
 Make and makefiles
 More on this today

Lab 2

Why did that happen?
● Disable watchdog
● Odd target address for bx, blx

● Long history of such features

Survey outcome

Examples have value

They are covered too fast

Could better show how things fit together

Resolution
● Narrate what I am doing and why more thoroughly
● Slow down

Outline

 Where are we?
 Building and linking
 Debugging

An embedded system Outline

 Where are we?
 Building and linking
 Debugging

What are the real GNU executable names for the ARM?

 Just add the prefix “arm-none-eabi-” prefix
 Assembler (as)

 arm-none-eabi-as

 Linker (ld)
 arm-none-eabi-ld

 Object copy (objcopy)
 arm-none-eabi-objcopy

 Object dump (objdump)
 arm-none-eabi-objdump

 C Compiler (gcc)
 arm-none-eabi-gcc

 C++ Compiler (g++)
 arm-none-eabi-g++

How does an assembly language program
get turned into a executable program image?

Assembly

files (.S)

Object

files (.o)

as

(assembler)

ld

(linker)

Memory

layout

Memory

layout

Linker

script (.ld)

Executable

image file

Binary program

file (.bin)

Disassembled

code (.lst)

ob
jc
op
y

objdump

What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start

start:

movs r0, #10

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne loop

deadloop:

b deadloop

.end

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:

 0: 20000800 .word 0x20000800

 4: 00000000 .word 0x00000000

00000008 <start>:

 0: 200a movs r0, #10

 2: 2100 movs r1, #0

00000004 <loop>:

 4: 1809 adds r1, r1, r0

 6: 3801 subs r0, #1

 8: d1fc bne.n c <loop>

0000000a <deadloop>:

 a: e7fe b.n 12 <deadloop>

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

arm-none-eabi-objcopy -Obinary example1.out example1.bin

arm-none-eabi-objdump -S example1.out > example1.lst

.equSTACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */

/* _start label is the beginning */

/* ...of the program region */

.type start, %function /* Specifies start is a function */

/* start label is reset handler */

_start:

.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */

start:

movs r0, #10 /* We’ve seen the rest ... */

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne loop

deadloop:

b deadloop

.end

Elements of assembly language program?

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly

files (.s)

Object

files (.o)

as

(assembler)

gcc

(compile

+ link)

Memory

layout

Memory

layout

Linker

script (.ld)

Executable

image file

Binary program

file (.bin)

Disassembled

Code (.lst)

ob
jc
op
y

objdump

ld

(linker)

Library object

files (.o)

C files (.c)

Outline

 Where are we?
 Building and linking
 Debugging

Compile-time debugging

 -Wall: Show more compile-time problems
 -ggdb: Include the most complete debugging information possible.
 -O0: Turn off optimization (only when debugging).

What do debuggers do?

 Souce→PC association
 Breakpoints

 Single stepping
 Skip counts

 Variable inspection
 Monitoring
 Stack analysis
 Memory search
 Setting variables

 Backtracing

What is about to happen?

 Try each of these on real example
 Use same debugger you use in class, but w.o. GUI wrapper
 Show the commonly used debugging functions

Done.

