
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick
University of Michigan

Lecture 6: Memory-mapped I/O review, APB, start interrupts.

24 January 2017

Slides inherited from Mark Brehob.

2

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

3

Lecture flow

 Feedback: Not always clear why we are learning

particular material, and jumping from topic to topic

can make this worse.
 Resolutions:

 Explain reason for each topic at transitions.
 Context and review at start of each lecture.

 Keep on giving feedback.
 Teaching the way I would learn best doesn't work.

 I learn is a weird way.
 I really do act on the feedback.

4

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

5

Context and review

 Just finished memory-mapped IO.
 Write and read memory locations to trigger actions by

peripherals.
 Approaches to design and debugging

 Graph model
 Get a simple version working

 Using stack in parameter passing.
 Project problem selection.

 Were the small group meetings helpful?
 Will require two short project proposals soon.

 Started on APB
 Did a simple example.
 Will do a more complex example today.

6

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

7

Tuesday lab

 Before lecture.
 I have been watching this and covering essential

material previous Thursday.
 However, I will often have reinforcing or more detailed

examples on Tuesday.
 When labs are all done, will compare lab medians for

Tuesday lab and rest of class.
 If there is a significant difference, will adjust Tuesday

lab grades.
 Don't expect a significant difference.

 Lab staff know their stuff.
 Do generally cover the essentials first.

8

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

9

Assembler directives

 Reason for covering: Some people were confused about

this in lab.
 Assembler directions don't necessary generate any

instructions.
 Convenience to allow more modular and organized

code, e.g., .equ .
 Generates no code.
 Acts like a proceprocessor macro (#define) in C.

 Provide information about data to include, e.g.,

.word .
 Tell assembler which symbols are global, e.g., .global .
 Indicate where in memory things (code and data)

should sit, e.g., .text

10

Assembler directives example

@ “#define”-like

.equ STACK_TOP, 0x20000800

.equ SYSREG_SOFT_RST_CR, 0xE0042030

@ Make _start externally visible (to ld).

.global _start

@ “a”: allocatable

@ %progbits: section contains data

@ .int_vector: section name. link.ld uses this.

.section .int_vector, "a", %progbits

_start:

 .word STACK_TOP, main

11

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

12

Hardware vs. software programming

 Reasons covering
 Common sticking point
 A few students have had trouble with this in lab

 HDL FPGA→

 Control which functions (gates) are implemented.
 Control how they are connected.

 Assembly/C ARM Cortex M-3→

 Control instruction sequences.
 Control data to load into memory before execution.

13

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

APB bus signals

• PCLK
− Clock

• PADDR
− Address on bus

• PWRITE
− 1=Write, 0=Read

• PWDATA
− Data written to the

I/O device.

Supplied by the

bus

master/processor.

14

APB bus signals

• PSEL
− Asserted if the current bus

transaction is targeted to

this device

• PENABLE
− High during entire

transaction other than the

first cycle.

• PREADY
• Driven by target. Similar to

our #ACK. Indicates if the

target is ready to do

transaction.
− Each target has it’s own

PREADY
15

So what’s happening here?

Example setup

• For the next couple of slides, we will

assume we have one bus master “CPU”

and two slave devices (D1 and D2)
• D1 is mapped to address

− 0x00001000-0x0000100F
− D2 is mapped to addresses
− 0x00001010-0x0000101F

Say the CPU does a store to location 0x00001004
with no stalls

18

D1

D2

Say the CPU does a store to location 0x00001004
with no stalls

19

D1

D2
Not driven

locally

Design a device which writes to a register whenever
any address in its range is written

20

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg

D[31:0]

 Q[31:0]

EN

 C

We are assuming APB only gets lowest 8 bits of address here…

What if we want to have the LSB of this register
control an LED?

Reg A should be written at address 0x00001000
Reg B should be written at address 0x00001004

21

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg A

D[31:0]

 Q[31:0]

EN

 C

We are assuming APB only gets lowest 8 bits of address here…

32-bit Reg B

D[31:0]

 Q[31:0]

EN

 C

Reads…

22

Each slave device has its own local PRDATA bus.

Let’s say we want a device that provides data from
a switch on a read to any address it is assigned.
(so returns a 0 or 1)

23

PRDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

Switch

Device provides data from switch A if address
0x00001000 is read from. B if address 0x00001004
is read from

24

PRDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

Switch A

Switch B

All reads read from register, all writes write…

25

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg

D[31:0]

 Q[31:0]

EN

 C

We are assuming APB only gets lowest 8 bits of address here…

26

A write transfer with wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

Wait

State

Wait

State

27

A read transfer with wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

Wait

State

Wait

State

Errors and stalling

• There is another signal, PSLVERR (APB Slave Error)

which we can drive high if things go bad.
− Nothing will go wrong with our device: ground it.

• Notice we are assuming that our device need not

stall.
− Could stall if we needed.
− If you need more than a few extra cycles,

generally means your design should change.

28

Verilog

29 30

APB state machine

• IDLE
− Default APB state

• SETUP
− When transfer required
− PSELx is asserted
− Only one cycle

• ACCESS
− PENABLE is asserted
− Addr, write, select, and

write data remain stable
− Stay if PREADY = L
− Goto IDLE if PREADY = H

and no more data
− Goto SETUP is PREADY = H

and more data pending

31

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

32

Caller/callee saved registers review

Reason for covering: Some people didn't understand this

and it is important for the project.

Some code

function_call()
 This can walk all over r0-r3.
 If this ends up needing a veneer, the linker might insert

code clobbering r12.
 Preserve r0-r3 and r12 if we'll read before write after

the call.

More code

33

Caller/callee saved registers review

Reason for covering: Some people didn't understand this

and it is important for the project.

Was just called
 I'm allowed to clobber r0-r3.
 Safe to clobber r12, too, because linker may have

already clobbered it.
 Not worrying about special registers >r12.
 Need to save/restore everything else if it will be

written: r5-r11

34

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

35

Volatile keyword

Reason for covering: You need this to safely write C code

that plays with IO devices.

Definition: this value may be changed by something

outside this program.

Examples
 #define LED_ADDR ((volatile const unsigned *)(8))
 volatile const unsigned *led_addr = 0x8;

Otherwise, compiler might optimize away actual memory

accesses.

What's volatile? The pointer or the value pointed to?

http://cdecl.org is great!

36

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

37

Pointers and function pointers

 Reason for covering: Function pointers let you esentially

pass code around dynamically among functions and build

vector tables in C.
 Pointers

 Type-safe addresses.
 Avoid void * unless really needed.
 When would you use this?
 The type of the object cannot be known at compile time.

38

Void *, a short illustrative script

Compiler: Excuse me, sir. May I suggest using a round peg?

Programmer: Shut up! I don't care! Just do it!

Compiler: As you wish, sir.

OS: Where would you like your 10GB core dump file delivered?

39

Function pointers

// Can use for generic functions.

int apple_checker(const void *x);

int orange_checker(const void *x);

int check_stuff(void *stuff_array,

int (*checker)(const void *);

// Can use for jump tables.

void (*func_ptr[3]) = {func1, func2, func3};

40

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

41

Weak references

 Reason for covering: A trick to conditionally call

functions that may be useful in Lab 4 and your

projects.

What does a weak symbol imply?
 Provides a default entry in a function vector.
 Why useful? Allows override at link time.

What does a call through a weak symbol imply?
 If the symbol exists, call the function.
 If not, do nothing.
 Why useful? Allows link-time conditional calls without

recompilation.
 Especially useful for large projects using libraries and

multiple build versions.

42

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

Interrupts

Merriam-Webster:
− “to break the uniformity or continuity of”

• Informs a program of some external events
• Breaks execution flow

Key questions:
• Where do interrupts come from?
• How do we save state for later continuation?
• How can we ignore interrupts?
• How can we prioritize interrupts?
• How can we share interrupts?

43

I/O Data Transfer

Two key questions to determine how data is transferred

to/from a non-trivial I/O device:

1. How does the CPU know when data is available?

a. Polling

b. Interrupts

2. How is data transferred into and out of the

device?

a. Programmed I/O

b. Direct Memory Access (DMA)

Interrupts

Interrupt (a.k.a. exception or trap):
• Makes CPU stop executing the current program and begin

executing a an interrupt handler or interrupt service
routine (ISR). ISR does something and allows program to

resume.

Similar to procedure calls, but
• can occur between any two instructions
• are transparent to the running program (usually)
• are not generally explicitly called by program
• call a procedure at an address determined by the

type of interrupt, not the program

Two types of interrupts

• Those caused by an instruction
− Examples:

• TLB miss
• Illegal/unimplemented instruction
• div by 0

− Names:
• Trap, exception

Two basic types of interrupts

• Those caused by the external world
− External device
− Reset button
− Timer expires
− Power failure
− System error

• Names:
− interrupt, external interrupt

How it works

• Something tells the processor core there is an

interrupt
• Core transfers control to code that needs to be

executed
• Said code “returns” to old program
• Much harder then it looks.

− Why?

Details

• How do you figure out where to branch to?

• How to you ensure that you can get back to
where you started?

• Don’t we have a pipeline? What about partially
executed instructions?

• What if we get an interrupt while we are
processing our interrupt?

• What if we are in a “critical section?”

Where

• If you know what caused the interrupt

then you want to jump to the code that

handles that interrupt.
− If you number the possible interrupt cases,

and an interrupt comes in, you can just

branch to a location, using that number as an

offset (this is a branch table)
− If you don’t have the number, you need to poll

all possible sources of the interrupt to see

who caused it.
• Then you branch to the right code
• Ugly.

Get back to where you once belonged

• Need to store the return address somewhere.
− Stack might be a scary place.

• That would involve a load/store and might

cause an interrupt (page fault)!
− So a dedicated register seems like a good choice

• But that might cause problems later…

Snazzy architectures

• A modern processor has many instructions
in-flight at once.
− What do we do with them?

• Drain the pipeline?
− What if one of them causes an exception?

• Squash them all and restart later
− Slows

• What if the instruction that caused the
exception was executed before some
other instruction?
− What if that other instruction caused an

interrupt?

Nested interrupts

• If we get one interrupt while handling

another what to do?
− Just handle it

• But what about that dedicated register?
• What if I’m doing something that can’t be

stopped?
− Ignore it

• But what if it is important?
− Prioritize

• Take those interrupts you care about.
• Ignore the rest.
• Still have dedicated register problems.

Critical section

• We probably need to ignore some interrupts but

take others.
− Probably should be sure our code can’t cause an

exception.
− Use same prioritization as before.

Our processor

• Over 100 interrupt sources
− Power on reset, bus errors, I/O pins changing state,

data in on a serial bus etc.

• Need a great deal of control
− Ability to enable and disable interrupt sources
− Ability to control where to branch to for each interrupt
− Ability to set interrupt priorities

• Who wins in case of a tie
• Can interrupt A interrupt the ISR for interrupt B?

− If so, A can “preempt” B.

• All that control will involve memory mapped I/O.
− And given the number of interrupts that’s going to be a

pain.

55 56

Enabling and disabling interrupt sources

How to know where to go on an interrupt.

57

