gtz Outline iz
Vi Vi
Design of Microprocessor-Based Systems * Context and review
® Interrupts
— General characteristics
— Our Cortex M-3
Robert Dick * Timers L.
University of Michigan — General gharacterlstlcs
— SmartFusion board
Lecture 7: Interrupts
26 January 2017
Slides inherited from Mark Brehob.
Context and review R Hardware vs. software programming (again) T
Vi Vil
* Response to Embedded Systems stand-up routine. * Reasons covering
. ; Cdonfusion — 11”tear — nervous lqughter — relief. * Common sticking point
. Asg ware vs. sortware programming. * A few students have had trouble with this in lab
- How to interface with a bus. * HDL — FPGA
- Need to understand how to do this with a shared bus. * Control which functions (gates) are implemented.
- Don't need tristate buffers for SmartFusion board. * Control how they are connected.
_ |fzue;/Zi§w handwritten notes and lecture video if still * Assembly/C — ARM Cortex M-3
* Several other topics: volatile, function pointers, weak * Control instruction Se.quences' .
references. * Control data to load into memory before execution.
- Use the source. * Implications
* When you write to an MMIO address, the
processor/bus controller know how to set and time
bus signals. Someone else built that.
* Your peripheral (SPIO in Lab 3) needs to react to those
signals appropriately.
Outline = Interrupts e
Vi Vi
) Why do these matter?
* Context-and-review ¢ Informs a program of some (usually) external
* Interrupts event.
- General characteristics * Interrupts execution flow.
- Our Cortex M-3 ¢ Enables event-driven system design!!!
* Timers o * Low-power.
- General characteristics « Often simpler.

- SmartFusion board
Key questions:
* Where do interrupts come from?
* How do we save state for later continuation?
* How can we ignore interrupts?
* How can we prioritize interrupts?
* How can we share interrupts?

1/0 data transfer Vil

Two key questions to determine how data are
transferred to/from a non-trivial I/0 device.

1. How does the CPU know when data are
available?
a. Polling.
b. Interrupts.

2. How are data transferred into and out of the
device?
a. Programmed 1/0
b. Direct Memory Access (DMA)

Instruction-triggered interrupts et
Vi
® TLB miss.
¢ |llegal/unimplemented instruction.
¢ Divide by 0.
* Trap instruction.
¢ Names: trap, exception, software interrupt.
Interrupt process otz
Vi

* Something tells the processor there is an
interrupt, e.g., via an input pin.

* Processor transfers control to code that needs to
be executed through interrupt vector or jump
table.

* ISR executes.

® Resumes prior program at same location.

¢ Doing this right is complex.

Interrupts [chioan |
Vi

Interrupt (a.k.a. exception or trap) causes CPU to stop executing
program and execute an interrupt handler or interrupt service
routine (ISR). The ISR does something and then control is
returned to the interrupted program.

Interrupts are similar to procedure calls. However,

® can occur between any two instructions and even within
some instructions,

® are transparent to the running program (usually),

e are not explicitly requested by the program (typically),
and

e call a procedure at an address determined by the type of
interrupt, not the program.

Externally triggered interrupts St
Vi
¢ External device
® Reset button
* Timer expires
* Power failure
® System error
¢ Names: interrupt, external interrupt, hardware
interrupt
Interrupts complicate processor design e
Vi

e Which ISR to call?

* How to resume program when done?
- Instruction pointer? Other state?

* What about partially executed instructions in the
pipeline?

* What if we get an interrupt while we are
processing our interrupt?
- What if we are in a “critical section?”

Where gtz
Vi
¢ |f you know the interrupt source.
- Interrupt vector.
- Jump table.
¢ If not.
— Must poll all sources to find out.
Implications of architectural optimizations R
Vi
¢ Qut-of-order execution
- If any state of a “too fast” instruction made
its way out of the processor before an
interrupt, system state corrupted.
* Need to clean things up before/in ISR.
Critical section otz
Vi

® Ignore less important interrupts.
¢ Take more important interrupts.
* Avoid causing exceptions in interrupt code.
* Keep as short as possible.
- E.g., write a value to memory that informs
the program of something.
- Program deals with it at a good time.

Returning

Nested interrupts

| micHican |
Vi
Need to store the return address
somewhere.
— Stack would involve a load/store that might
cause another interrupt.
— Dedicated register.
* What if there is another interrupt?
| V)
| micHican |
Vi

Just handle it.
- If a dedicated interrupt return IP register is being
used, how many do we need?
- What if the ISR is half-way through a precisely
times bus transaction?
Ignore it: Bad if it is important.
Prioritize.
— Take more important interrupts.
— Ignore the rest
— Still have dedicated register problems.
— Have to consider possibility of ISR failing due to
timing problems.

Example: generally bad

void isr(void) {

3

Do something complex/slow.

| micHiGaN |
Vi

Example: generally good

Outline

Vil

void isr(void) {
++(*button_pressed); e Context-andreview
3 ¢ Interrupts
i i - General-characteristies
int superloop(void) {
while (1) { - Our Cortex M-3
if (*button_pressed) { * Timers
--(*button_pressed); - General characteristics
) button_service(); - SmartFusion board
Do other stuff, like Al.
Could also sleep.

3
3

Table 7.1 List of System Exceptions [ichioan | SmartFusion interrupt sources
Exception .
: e s Table 1-5+_ smantsusion terupt sorces
Nimhor Expopionieo) BEdCHY) Beserintion Ear e T g soe AT e P FAG R S
" — 3 (Highest) Fasst o WHOGTIEOUT G WATED0G sl AP0 FAGT G e
< ST WOOGWAREUP_RQ WATGHD0G msnie] Ace oo FAGERQ e
2 NMI -2 Nonmaskable interrupt (external NMI input) WA GROUNGUTT SV G N e G 7D FLAGE 1RQ A
3 Hard fautt 1 Al fault conditions if the comespanding fault iR SROwNOUTS V_Ra R Tswis] AP FAGRQ A(E
hediar is ot enablod RG] RICHATCHEVENT 1 e TSR] A FCFAGT R 3
TR B e TSRT AGE PG FAGLIRG m
4 MemManags fautt Programmabie Memory management fauit; Memory TSR] e EenetiAc | TSRt Ao ARG A
rotection Unit (MPL) violation or access TR o = TSR] G P2 FAG RQ a
tailegal locations e Sone R o s Ao rAGT R A
= Bus fauit Brogramrabls Puss oo necre wiv Advanosd Eigh= T R Erna Comrler TSRl Ao RAG R A
P&t iarioo Piis (ALY il e oot esan) ovA TR Ferphaa DA TSRS A P2 FAG G m
e gl e e TSR] ART 0 R AR o TSRl A ADCO_DATAVALD R A
SOLIgspansc I A’y S S also.cal TSR] VARG AR T TSR] 'ACE_ADC1 DATAVALID Q. 3
prefeich abort if it is an instruction fatch or [Fone o msaie] A ADCE DATAVALDRQ A
data abort if it is a data access) INTSRIT3] SPLIRQ s INTishs] 'ACE_ADCO_CALOONE 1RQ ace
6 Usage fault Programmable Exceptions resuting from program error or A Reo R o TSR0l ACE ADCT_CALDONE 1RQ S
rying to access coprocessor (the Cortex-M3 TSR 2CO MGAIERTING oo EL] ACEADGE_CALDONE 1RG A
Bemenva s A Tac 0 swasUs g o BRG] A ADGH CALTART 1RQ 3
_ 5 K AT TR 3] TSR] AGE ADCT CALTART 1RQ m
7-10 Reserved NA - SR Te 12C 1 SMBALERT_IRQ 21 iseiea) “ACE_ADC2_CALSTART_IRQ ace
11 sve Programmable Supervisor Gal TSR] EET e T TSR] A Conro FALL G 3
" TSR] TR Re TweR s e coMP AL x
12 Debugmonitor Programmable Debug monitor {breakpaints, watchpoints, or e ——— — — e -
external debug requests) AT FIoG R s ceC TSR] A CoNFR FALL TG A
13 Reserved NA ==] PLLLOCKIOST_RQ 155 CC [NTiskigs] 'ACE_COMP_FALLIRQ. e
14 PendsV PG Pendable Seice Gl SRAT v ERROR R R RS AT TSREO] A CoMFS FALL Q. 3
" sRisT Reerved Reerved TSRl ACE Con FALL G A
15 SYSTICK Programmable System Tick Timer TR =] == EE] A conPT AL G 3
e Reerved Reered msRaT A conre FALL IR 3
rssial e Reered TSRl ACeconrs.FALLIRG A
TSR] =] == TREsT A conPTo FALLRG e
Table 7.2 List of External Interrupts i) Resened Resned L.
: . : i X 54 more ACE specific interrupts
Exception Number Exception Type Priority] oo)
E o
16 External Interrupt #0 Programmable GPI0.2.1RQ GPlo
17 Extemnal Interrupt #1 Programmable
- - GPIO_3_IRQ to GPIO_31_IRQ cut
285 External Interrupt #239 Programmable

Interrupt vectors — e
(in startup_a2fxxxm3.s found in CMSIS, startup_gcc) B¥ pravectors) :

Table 7.1 Listof System Exceptions 24 .word _estack
g_pfnVectors: Exception e 25 .word Reset_Handler
.word _estack 1 e =3 Harest) 26 .word NMI Handler
.word Reset Handler w0 Nt om0 oo o 27 .word HardFault Handler
.word NMI Handler 4 Membanagaaut Progammable Memory m;msni ot Mamory 28 .word MenManage Handler
! Protecon Unt MPL) el o acoses

.word HardFault Handler i 29 .word BusFault Handler

_ s Bus st Programmabls Bus smor, cocurs when Ad
.word MemManage Handler PetamarcsBis AH8)arce 30 .word UsageFault_Handler

o prefstch abort tis an nstuction fetch or 31 .word O
-word BusFault Handler . Tosohi Povamils Beaphes mais o 32 Twopd: 10
.word UsageFault Handler Dip s e = g
-word 0 W I
Wo rg 8 :z ::;n ::qvmm %E:"gﬂm&;:zz?:gzm wahors, or
.wor 1 Pandsy Programmatle Pendable Senvis Call
~word 0 s svene Frogramnatle Sytem Tik Timer
.word SVC_Handler

— Table 7.2 Listof Externl ntermupts 192

.word DebugMon_ Handler | Exception Number Exception Type Ppriority 3
.word 0 b Frirtiminined s 194 *
-word PendSV_Handler =s e 29 Pogarate .global Reset_Handler
.word SysTick_Handler 196 .type Reset_Handler, %function
.word WdogWakeup_ IRQHandler 197Reset_Handler:
.word BrownOut_1 5V_IRQHandler g_start:

.word BrownOut_3_3V_IRQHandler
.............. (they continue)

Pending interrupts

[- Hardware cleared interrupt request

Request

Interrupt

Interrupt

Pending Status /1

Thread
Processor Mode

Mode

Handler Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

Active Status set during handler execution | ¥
VA

Interrupt request

i~ cleared by software
Interrupt

Request \

Interrupt

Pending Status

Interrupt
Active Status
|

Handler Mode e nterrupt returned

Processor Thread
Mode Mode
Answer
Interrupt Interrupt request stay active

request
Interrupt [1

pending status \
Interrupt
active statLEs Interrupt return /’U

Handler mode \y

Processor Thread

mode mode Interrupt reentered

| micrican |
Vi

Untaken interrupts

| micrican |
Vi

Interrupt
Request

Interrupt r

Pending Status

Pending status
cleared by software

Thread
Processor Mode
Mode

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped |/0 register)

Interrupt Request not Cleared

Interrupt request stays active

Interrupt

Request \

Interrupt

Pending Status

Interrupt ®
Active Status
Handler Mode
Processor Thread
Mode Mode
Interrupt pulses before entering ISR

Multiple interrupt pulses
before entering ISR

Interrupt

Request

Interrupt

Pending Status

Interrupt ?
Active Status

Processor
Mode

Answer

Multiple interrupt pulses
Interrupt before entering ISR

request

y

Interrupt

pending status

Interrupt

active status

Handler mode

Processor Thread

mode mode Interrupt returmn

Tail chaining

® Processor can serve multiple interrupts without returning
to program.
* Improves response latency.
- No need for state save/restore.

Configuring the NVIC (2)

« Set Pending & Clear Pending
- OxE000E200-0xEO00E21C, OXEOOOE280-0xEO00E29C

OxEOO0E200 | SETPENDO R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE280 CLRPENDO R/W 0 Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

New Interrupt Request after Pending Cleared m ar

| micHican |
Vil
Interrupt request
pulsed again
Interrupt
Request \
Interrupt
Pending Status
Interrupt
Active Status ®
Handler Mode
Thread
Processor Mode
Mode
Configuring the NVIC o
Vi

* Interrupt Set Enable and Clear Enable
- OxEO0OE100-0xEO00E11C, OXEOOOE180-0xEQ00E19C

0xEO00E100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEO00E180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Configuring the NVIC (3)

* Interrupt Active Status Register
- 0XEO00E300-0xEO00E31C

Address Name Type Reset Value Description

0xE000E300 ACTIVEO R 0 Active status for external interrupt #0-31
bit[0] for interrupt #0
bit[1] for interrupt #1
bit[31] for interrupt #31

0xE000E304 ACTIVET R 0 Active status for external interrupt #32-63

Interrupt priorities e

¢ |f multiple interrupts arrive at same time, prioritize.
e 3 fixed highest priorities.
Up to 256 programmable priorities and 128 preemption
levels.
Particular processors support a subset of priorities.
SmartFusion supports 32 priorities: five highest bits.
0, 8, 16, 32, 24, 32, ...
Higher priorities preempt lower.
Priority can be sub-divided into groups.
* Splits register into preempt priority and subpriority.
* Subpriority used if two interrupts with same preempt
priority arrive at same time.

Preemption Priority and Subpriority

Priority Group | Preempt Priority Field Subpriority Field
Bit [0]

Bic [1:0

Bit [2:0

|
2] I
3] I
4] Bit [3:0]
S] I
6] |
I

Use
PRIGROUP
field to control
split.

Bir [4:0
Bit [5:0
Bit [7] Bit [6:0
None Bic [7:0]

Njo|lula|w n|a]o
L]

Application Interrupt and Reset Control Register (Address OXEOOOEDOC)

Bits | Name Type | Reset | Description
Value

31:16 VECTKEY R/W - Access key; 0XOSFA must be written to this field to write
to this register, otherwise the write will be ignored; the

read-back value of the upper half word is 0xFAOS

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BES)
and 0 for little endian; this can only change after a reset

10:8 PRIGROUP RW |0 Priority group

2 SYSRESETREQ w = Requests chip control logic to generate a reset
1 VECTCLRACTIVE w -

Clears all active state information for exceptions;
typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET w - Resets the Cortex-M3 processor (except debug logic),

but this will not reset circuits outside the processor

Masking [icwioan |
Vi

B1.4.3 The special-purpose mask registers

There are three special-purpose registers which are used for the purpose of priority boosting, Their function
is explained in detail in Execurion priority and priority boosting within the core on page B1-18:

the exception mask register (PRIMASK) which has a 1-bit value
the base priority mask (BASEPRI) which has an 8-bit value
the fault mask (PAULTMASK) which has a 1-bit value

All mask registers are cleared on reset. All unprivileged writes are ignored.

The formats of the mask registers are illustrated in Table B1-4
Table B1-4 The special-purpose mask registers

31 8 7 1 0
PRIMASK RESERVED PM|
[FAULTMASK| RESERVED FM|
BASEPRI RESERVED BASEPRI

| micrican |
Vi

Interrupt Priority (2)

« Interrupt Priority Level Registers
- OXEOOOE400-0xEO0OE4EF

Address Name Type Reset Value Description

0xE000E400 PRI_O R/W 0 (8-bir) Priority-level external interrupt #0

0xEO00E401 PRI_1 R/W 0 (8-bir) Priority-level external interrupt #1

OxEO00E41F PRI_31 R/W 0 (8-bir) Priority-level external interrupt #31

PRIMASK, FAULTMASK, and BASEPRI

» What if we quickly want to disable all interrupts?

» Write 1 into PRIMASK to disable all interrupt except NMI
- MOV RO, #1
- MSR PRIMASK, RO

» Write 0 into PRIMASK to enable all interrupts

* FAULTMASK is the same as PRIMASK, but also blocks hard
fault (priority -1)

» What if we want to disable all interrupts below a certain
priority?

» Write priority into BASEPRI
- MOV RO, #0x60
- MSR BASEPRI, RO

Interrupt Service Routines
ChVih

1. Automatic saving of registers upon exception
« PC, PSR, RO-R3, R12, LR pushed on the stack
2. While bus busy, fetch exception vector
3. Update SP to new location
4. Update IPSR (low part of PSR) with new exception number
5. Set PC to vector handler
6. Update LR to special value EXC_RETURN

« Several other NVIC registers get updated
« Latency: as short as 12 cycles

Example of complexity: the Reset Interrupt LTl

BGandPsM|__ VCC33GOOD
VECTS600D

BGPSMENABLE - PSM_EN, 0 -
ABPOWERON ————— | Power-Dowr

® ~

>13v
>08V !

~100 ps delay before PSM s turned on to allow for BG to power up
~20 s delay for NVM to power up

1) No power.
2) System is held in RESET as long as VCC15 < 0.8V.

a) In reset: registers forced to default.
b) RC-Osc begins to oscillate.
c) MSS_CCC drives RC-Osc/4 into FCLK.
d) PORESET_N is held low.
3) Once VCC15GOOD, PORESET_N goes high.
a) MSS reads from eNVM address 0x0 and 0x4.

WFI: Wait For Interrupt et
Vi
* Puts processor in low-power mode and waits for interrupt.
* Why?
Outline otz
F AL D

* Timers
- General characteristics
- SmartFusion board

The xPSR register layout

| micrican |
Vi

The APSR. IPSR and EPSR registers are allocated as mutnally exclusive bitfields within a 32-bit register.
The combination of the APSR, IPSR and EPSR registers is referred to as the kPSR register.

31 30 29 28 27 26 25 24 23 16 15

Table B1-2 The xPSR register layout

10 9 8

0

APSRIN | Z

c|v

IPSR

0 or Exception Number

[EPSR|

ICIIT| T

ICIIT

Two

stacks? MSP and PSP

* OS always uses MSP.

* Can configure processor so program uses PSP.
* Makes it harder for application code to corrupt OS/superloop state.

Timers

* Why they matter?

* Avoid pitfalls of loop-based delays.

* Waste power.

| micrican |
[AL T

* Prevent other useful work from being done.

* Why they are complex?
* Span HW/SW boundary.

| micHican |
Vi

iPhone Clock App S Motor and light Control e
AT T 1036PM_ 70 100 @® « World Clock - display * Servo motors - PWM
“eat " World Clock + real time in multiple signal provides control

time zones signal.
NeWIYoRK 11:36rm
. e Alarm - alarm at certain
o tous 10:36em (later) time(s). * DC motors - PWM §ignals
Today control power delivery.
» Stopwatch - measure
R 9:36pm elapsed time of an
pLa2 event. e RGB LEDs - PWM signals
allow dimming through
Los Angeles 8:3750;“: e Timer - count down time current-mode control.

and notify when count
becomes zero.

Methods from Android SystemClock Standard C library’s <time.h> header file

Library Functions

Following are the functions defined in the header time.h:

S.N. Function & Description
staticlong currentThreadTimemillis () 1 char "asctime(const struct tm "timeptr) :
“ - Returns a pointer o a string which represents the day and time of the structure timeptr.
Returns milliseconds running in the current thread.
clock_t clock{void)
staticlong elapsedRealtime () 2 Returns the Processor clock time used since the beginning of an implementation-defined era
; ; ; . i . {normally the beginning of the program).
Returns milliseconds since boot, including time spent in sleep. = 8
3 char “ctime{const time_t ‘l_wmar:
static long elapsedRealtimeNanos () Returns a string representing the localtime based on the argument timer,
Returns nanoseconds since boot, including time spent in sleep. Houbia.difftimedtine.t imeil, time._t ime2)
9 P P 4 Returns the difference of seconds between time1 and time2 (time1-time2).
staticboolean setCurreniTimeMillis (long millis) sruct tm *gmiime(const time_t *tmar)
Sets the current wall time, in milliseconds. 5 The valug of timer is broken Up Into the Structure tm and expressed in Goordinated Universal
Time (UTC) also known as Greenwich Mean Time (GMT).
staticvoid sleep (long ms) 8 struct tm “localtime(const time _t *timer)
Waits a g‘wen number of milliseconds (01 uptimeM‘tllis) hefare retuming. The value of timer is broken up into the structure tm and expressed in the local time zone.
time_t mktime{struct tm “timeptr)
staticlong uptimeMillis) 7 Gonverts the structure pointed to by timeptr into a time:_t value according to the local lime
Returns milliseconds since boot, not counting time spent in deep sleep. e,
size_1 stritime(char "str, size_t maxsize, const char *format, const struct im “timeptr)
8 Formats the time represented in the structure timeptr according to the formatting rules
defined in format and stored into str.
9 time_1 time(time_t “timer)

Standard C library’s <time.h> header file: struct tm

struct tm {

Anatomy of a timer system

Calculates the curent calender time and encodes it into time_t format.

timer_t timerx;
initTimer();
Application Software

startTimerOneShot (timerX, 1024);

stopTimer (timerk) ;

typedef struct timer (
timer_handler_t handler;
uint3Z_t time;

int tm sec; /* seconds, range 0 to 5% w/

int tm ming /* minutes, range O to 59 =/ timer_tick:

int tm_hour; /* houzs, range 0 to 23 */ | Low-Level Timer Subsystem Device Drivers | L ro ot

int tm mday; /= day of the month, range 1 to 31 =/ T

int tm_mon; /* month, range 0 to 11 */ Software

int tm_year; /* The number of years since 1900 =/ RIW R/W RAW

int tm wday; /* day of the week, range 0 to 6 */ Hardware R I 'y , I

int tm_yday; /* day in the year, range 0 to 385 */ yi |<

int tm:::{sdst; /* daylight saving time */ -I Compare I A Counter 4 L Capture module timer(clr, ena, clk, almm);

Internal
————————— O

input clr, ena, clk;
output almm;

reg almm;

reg [3:0] count;

Xtal/Osc

always @(posedge clk) begin
alm <= 0;
if (clr) count <= 0;
else count <= count+l;
end
endmodule

Anatomy of a timer system

Application Software

Applications

Timer requirements

» Wall clock
« datetime_t getDateTime()

Timer requirements

e Alarm
¢ void alarm(callback, delta)
« void alarm(callback, datetime_t)

[ichican | Timer requirements =
cinert viners; IV Vi
initTimer () ;
RI— » Wall clock date & time

« Date: Month, Day, Year
e Time: HH:MM:SS:mmm
¢ Provided by a “real-time clock” or RTC
» Alarm: do something (call code) at certain time later
¢ Later could be a delay from now (e.g., At)
¢ Later could be actual time (e.g., today at 3pm)
» Stopwatch: measure (elapsed) time of an event
» Instead of pushbuttons, could be function calls or
« Hardware signals outside the processor

T Wall Clock from a Real-Time Clock (RTC) e
Vi . Vi
f * Often a separate module
¢ Built with registers for
» Years, Months, Days
¢ Hours, Mins, Seconds
* Alarms: hour, min, day
¢ Accessed via
* Memory-mapped 1/0
« Serial bus (12C, SPI)
s INTERFACE D?ﬁ%g“ ;:::Zs
otz Anatomy of a timer system T
Vi 3

External o B T «t,,,i ,,,,,,)
&V

170 1/0

Oscillators - RC

SEEr Oscillators - Crystal R
F 3 3
R
AN
-1
I
IC Square Wave Rs
Oscillator PS | D | JL
T T
Figure 1: Fundamental Mode Isolated
Pierce-Gate Oscillator
Anatomy of a timer system SmiEr Timer requirements T
Vi Vi
» Stopwatch: measure (elapsed) time of an event
e t1 =now(); ... ; t2 = now(); dt = difftime(t2, t1);
Hardware JKI A4 K7 v ‘KI vy .
o RN ¢ GPIO_INT_ISR:
Compare [¢—7™— Counter [—7=>| CaptUre [§ momse simrictr, ona, e, sim): LDR R1, [RO, #0] % RO=timer address
28 13701 count:
i‘%"}‘cii, ;m:c w0
Internal

Timer applications

| micHican |
Vi

There are two basic activities one wants timers for:
* Measure how long something takes
— “Capture”
* Have something happen once or every X time
period
- “Compare”

Example # 1: Capture

| micHiGan |
Vi
* Fan
- Say you have a fan spinning and you want to know
how fast it is spinning. One way to do that is to
have it throw an interrupt every time it completes a
rotation.
* Right idea, but might take a while to process the

interrupt, heavily loaded system might see slower fan than
actually exists.

* This could be bad.

- Solution? Have the timer note immediately how
long it took and then generate the interrupt. Also
restart timer immediately.

* Same issue would exist in a car when measuring speed

of a wheel turning (for speedometer or anti-lock
brakes).

Example # 2: Compare

| micHican |
Vi
* Driving a DC motor via PWM.
— Motors turn at a speed determined by the
voltage applied.
* Doing this in analog can be hard.
—Need to get analog out of our processor
—Need to amplify signal in a linear way
(op-amp?)
» Generally prefer just switching
between “Max” and“Off” quickly.
— Average is good enough.
—Now don’t need linear amplifier—just
“on” and “off”. (transistor)
— Need a signal with a certain duty cycle and
frequency.
* That is % of time high.
Outline o
Vi
¢ Contextandreview
* interrupts
_ 6 I .
- OurCeortexM-3
* Timers
- General-characteristies
- SmartFusion board
Timers on the SmartFusion otz
Vi

« Real-Time Counter (RTC) System
- Clocked from 32 kHz low-power crystal
- Automatic switching to battery power if necessary
- Can put rest of the SmartFusion to standby or sleep to reduce power
- 40-bit match register clocked by 32.768 kHz divided by 128 (256 Hz)

FPGA Fabric vee *—

From
— Core Flash VCC33AP,
Bits

RTC VR Logic 1.5V Voltage

Crystal Oscilator Regulator
VRIT
ape 0

MATCH

Fashgits | P{FPGAVRON
VRINITSTATE

LPXIN RTCPSMMATC PTEM =
LPXIN VRON [-{vRPU
cuouth—{rTcak PU_N
]:l veaaup

VRPSM

P
Toggle Control
switch

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Servo motor control: class exercise iz
Vi
* Assume 1 MHz CLK
* Design “high-level” circuit to
— Generate 1.52 ms pulse
— Every 6 ms
— Repeat
* How would we generalize this?
Timers on the SmartFusion St
Vil
* SysTick Timer
- ARM requires every Cortex-M3 to have this
timer.
- 24-bit count-down timer to generate system
ticks.
- Has own interrupt.
- Clocked by FCLK with optional programmable
divider.
* See Actel SmartFusion MSS User Guide for
register definitions.
Timers on the SmartFusion otz
Vi

» Watchdog Timer
- 32-bit down counter
- Either reset system or NMI Interrupt if it reaches 0!

| APB Bus |

WDOGLOAD _| WDOGSTATUS _| [wpoGVALUE]|
WOOGENABLE WDOGREFRESH

RCOSCCLK RCOSCRESETN

SLEEPING ———| WDOGTIMEQUT
WDOGTIMEOUTINT
JPINT

HALTED ————|
\ WDOGRIS
5

32-Bit Down Counter

WDOGMVRP WDOGCONTROL

WDOGMI

APB Bus |

Timers on the SmartFusion Anatomy of a timer system

| micrican | | micHican |
[AL [AL]

¢ System timer
— “The System Timer consists of two programmable Operating System | T
32-bit decrementing counters that generate Timer Abstractions and Virtualization wints. T meder
interrupts to the ARM® Cortex™-M3 and FPGA T) Chmenmes e
fabric. Each counter has two possible modes of
operation: Periodic mode or One-Shot mode. The
two timers can be concatenated to create a 64-bit
timer with Periodic and One-Shot modes. The two
32-bit timers are identical”

ct timer {
timer_handler_t handler;

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Virtual timers Problems?

| wichioan | | wichioan |
[AL Vi

* Can we use more timers than exist in hardware? * Only works for “compare” timer uses.
* Yes. Use hardware timers as a foundation for * Will result in slower ISR response time.
software-controlled virtual timers. — May not care, could just schedule sooner.
* Maybe we have 10 events we might want to
generate.
* Make a list of them and set the timer to go off
for the first one.
* Repeat.

