
Course pack for

EECS 373: Design of Microprocessor Based Systems

Fall semester 2002
v0.2

EECS 373 course pack – mwb Page 1

Table of Contents
I.About this document..3

Disclaimer...3
Purpose..3
Text...3

II.Course Introduction..4
Embedded systems at the Univ. of Michigan..4
Other Introductory issues..5

III.PowerPC Assembly and Architecture...6
Databook notation...6
PowerPC Assembly Example..7
PowerPC instructions..7

Loads and Stores...8
ALU instructions – not exactly orthogonal..8
Other instructions...10

PowerPC Architectural issues...10
Special Purpose Registers...10

Questions...11
IV.Memory Mapped I/O – the basics...13

Simple memory-mapped I/O example..14
Questions...14

V.Processor Bus Protocols ..15
Memory mapped I/O – again...15

VI.ABI and the Stack...15
VII.Interrupts..15
VIII.DMA – Direct Memory Access..15
IX.Counters and Timers...15
X.Analog and Digital Signal..15
XI.Bonus Topics..16

Memory types..16
Error correction...16

Parity...16
Error Correction Codes (ECC)...16
Viterbi algorithm for error correction...16

Software engineering in embedded systems ...19
XII. ...20
XIII. ...20

EECS 373 course pack – mwb Page 2

I. About this document

Disclaimer
This document is not a purely original work! The basic ideas for this document came
from previous EECS 373 offerings at the Univ. of Michigan. Work from Prof. Steve
Reinhart, and Prof. Marios Papaefthymiou largely defined the course. Large parts of the
document have been taken from other sources, sometimes verbatim (or nearly so.) I’ve
attempted to cite appropriately, but may not have done so in all cases.

Some of the sources which were used heavily include:
• Arnie Berger’s class at Washington.

http://www.bothell.washington.edu/faculty/aberger/CSS427SP02/index.htm

Purpose
Traditionally EECS 373 students have complained about a lack of a textbook. While
better books are starting to come onto the market, we feel that there isn’t a book out there
that is good enough to justify requiring you to buy it. This document cannot take the
place of a textbook. Writing a book is an enormous task. Rather, the purpose of this
document is to give you a single source of information for the classroom portion of the
course.

Text
This course-pack is formated like a book in many ways. There is an index, a table-of-
contents and questions at the end of some of the chapters for example. Also some non-
standard features were added. For example, in many of the chapters there are highlighted
questions we want you to think though before moving onwards. Because it is more
educational for you to think the question though rather than just answering it, we've put
the answers (or at least a right answer) at the end of the course-pack. These questions
look like this:

AWhy did the chicken cross the road?

The answer to the question can be found at the end of this course-pack under “A”.

EECS 373 course pack – mwb Page 3

II.Course Introduction
EECS 373 is a class designed to teach you about embedded microprocessor systems. For
a lot of you that doesn’ t clear up the issue too much. So let’ s start off by answering some
fairly basic questions.

What is an Embedded System? [ABW]
• Any device, or collection of devices, that contain one or more dedicated

computers, microprocessors, or microcontrollers
o Device(s) may be local - Printer, automobile, etc.
o Devices may be distributed - Aircraft, ship, Internet appliance
o A PC or workstation may contain one or more embedded systems.

• Embedded computing devices have rigidly defined operational bounds. Not
general purpose computers (PC, Unix workstation)

Who uses them?
• The computer industry: Graphic cards, printers, network cards, scanners and

routers.
• The home: Home thermostats, microwaves, ovens and even refrigerators are likely

to have one or more embedded processors.
• In Michigan, the automotive industry is very active in the field of embedded

systems. 2003 model cars can be expected to have 20-80 microprocessors
controlling nearly everything (air/gas mixture in the engine, anti-lock breaks, air-
bags, the CD player, and even the simple clock on the dashboard.)

• Net effect: embedded systems are everywhere.

Why study embedded systems?
• Since embedded systems are everywhere. That means there are a lot of jobs in the

field.
• As processing power increases, we’ ll be able to do incredible things that we

haven’ t begun to imagine.
• Because it sits on the hardware/software boarder you can write code and also play

with hardware. Even if you think you enjoy one of those more than the other, it is
nice to have that change of pace!

• Basically, because it’ s fun and rewarding.

Embedded systems at the Univ. of Michigan
There are a number of classes closely related to EECS 373 at the University of Michigan.

EECS 373 course pack – mwb Page 4

At the start of this class you are assumed to be familiar with material from the required
classes (270 and 370 are the official prerequists, but 280 is required for 370). In
particular, logic design and assembly programming will be very important. Many
architectual issues from 370 will also be used as will bits of C programming.

Other Introductory issues
In lab we will be loaning you a copy of the data book (usually called “the white book”)
and making available a PowerPC assembly book (“the green book”). While this course
pack, as well as the lectures, will discuss the MPC823 those books will be the primary
source for learning about the chip and how to use it. In fact you will find the white book
invaluable during lab and probably even during exams.

See the syllabus and/or web page for issues on grades, cheating, lab times, office hours,
etc. This course pack doesn't cover that stuff...

EECS 373 course pack – mwb Page 5

EECS 270
• Logic design
• Xilinx tools

EECS 370
• Assembly programming
• Basic architecture

EECS 373
• System architecture
• Embedded programming
• Hardware/software co-

design

EECS 461
• Embedded controls
• HLL and embedded systems

EECS 280
• HLL programming
• Program design

III.PowerPC Assembly and Architecture
An Instruction Set Architecture (ISA) defines an interface between software and
hardware. It specifies processor aspects visible to programmer such as the number and
size of registers as well as the precise semantics and encoding of instructions.

An important point is that the ISA is not tied to a particular implementation
(microarchitecture). For example, in EECS 370 you worked with an ISA called LC2K (or
something similar). It had 8 registers and a certain legal range of memory. The format
and effect of each of the machine instructions were well defined. But you wrote
simulators for a number of different implementations. Those implementations included a
single-cycle processor, a multi-cycle processor, and a pipelined processor.

The PowerPC ISA was jointly defined by IBM, Apple, and Motorola in 1991. It is used
by Apple on Power Macintosh systems and is based on IBM Power ISA used in RS/6000
workstations. The chip we use in lab, the MPC823 implements a 32-bit version but has
no floating point support. It is a RISC (Reduced Instruction Set Computer) ISA with
some very non-RISC features. The RISC- features include 32-bit fixed-length
instructions, 32 32-bit general purpose registers, and only load and stores access memory
and external devices. All other instructions operate on registers. The Non-RISC features
include several special-purpose registers (link for example) and a few strange instructions
(my favorite is eieio as in the “ Old MacDonald” song).

The PowerPC assembly language is big-endian.

Databook notation
In this chapter we'll provide some of the highlights of PowerPC assembly. The data book
(white book) and the green book both provide a lot more information. The notation we
use to describe the behavior of instructions is borrowed from the white book. An
incomplete summary follows:

z (r4) means the contents of register 4.

z (x)0 indicates x 0's in a row.

z 0x5555 means 555516 just as it does in C/C++.

z The symbol || means concatenation. So 15||0x0000 would be the same as
0xF0000.

z MEM(x,y) is a reference to y bytes at memory location x.

z r4[x-y] is a reference to bits x though y of register 4.

So using this notation, MEM(100,2) �(8)0 || r4[0-7] would indicate that 0 zeros are
concatenated with bits 0-7 of register 4. That halfword is then loaded into memory
location 100. So if register 4 held the value 0x12345678, memory location 100-101

EECS 373 course pack – mwb Page 6

would now hold 0x0012. The complete specification is found on page B-3 of the white
book.

PowerPC Assembly Example
The best way to learn an assembly language is usually to dive right in. So let’s look at a
simple PowerPC program. which converts an infinite uppercase ASCII string into

lbz r4, 0 (r3)
 l oads a byte and zero-extends it to 32 bits effective address is (r3) + 0

data book notation: U��� �������__�0(0���U�����������
addi r4, r4, 0x20
 add an immediate value
 r4 (r4) + 0x20

(0x20 is the decimal number 32 in hex. In ASCII the value for the upper and
lower case of a given letter are exactly 32 apart. For example, ‘a’ – ‘A’ = 32.)

stb r4, 0 (r3)
 st ores a byte

effective address is (r3) + 0
MEM((r3) + 0 , 1) �r4[24-31]

The second addi has the same format as above, while b is an unconditional branch.

So the code in figure 1 simply loads a byte in from memory, adds 32 to the value and
stores the newly incremented byte back out to the same location in memory. It then
increments the register which points into memory by 1 and repeats the process forever.
Obviously this is not most useful program in the world, but it does serve as a nice starting
point for learning the assembly language.

PowerPC instructions
The PowerPC assembly language is fairly complex. In this section we introduce the
assembly language more formally. This section does not take the place of the white and
green books. Rather it is a simple overview of the language.

EECS 373 course pack – mwb Page 7

Figure 1. Simple PowerPC program

Loop: lbz r4, 0 (r3)
addi r4, r4, 0x20
stb r4, 0 (r3)
addi r3, r3, 1
b loop

Loads and Stores
Load/store opcodes start with l and st, respectively. The next character indicates the
memory access size: byte, halfword, (2 bytes), or word (4 bytes). So lb is a load byte
instruction. The effective address for the memory access can be computed in one of two
ways. The most common is “ register indirect with immediate index” (also known as
“ base + offset” or “ base + displacement”). The format used in the assembly language for
this addressing mode is “ d(ra)” which denotes an effective address of (ra) + d where d is
a 16-bit signed value.

Another addressing mode in the PowerPC ISA is “ register indirect with index” , also
known as “ indexed” or “ register + register” . If you want to use this addressing mode you
need to append an x to the opcode. So stbx rS, rA, rB denotes that the effective address
is (rA) + (rB). One interesting note, the PowerPC architecture sometimes treats r0 as a
constant 0 but not always. One case of where it does is in the indexed version of the load
and store if rA=r0 then r0 is treated as a 0 no matter what actual value is stored in r0.

BWhy do you think r0 is treated the way it is for indexed loads?

One other obvious issue exists for loads: what happens when you load 16 bits into a 32-
bit register? Obviously the lower 16 bits of the register will be loaded with the 16 bits
from memory, but that still leaves the other 16 bits. The PowerPC gives two options you
can do an arithmetic load or a zeroing load. In the case of the arithmetic load the upper
16 bits get the value of the most significant bit of the 16 bits that are loaded. This is a 2's
complement sign extension. The zeroing load always puts zeros in those upper 16 bits.
You might think that something similar would exist for loading a byte, but for whatever
reason, only the zeroing option is allowed by byte loads (but see the extsb instruction).

Finally, the PowerPC supports an update feature for its loads and stores. A load with
update has the side effect of changing the register used in computing the effective address
to the value of the effective address. For example if r3 is equal to 12 the instruction

lwzu r4, 12(r3) would load register four with the value stored in memory location 24 and
would change register three to have the value 24.

The green and white books have many more details about loads and stores and about
support for still different formats and options. In closing we list those load and store
opcodes which were discussed or hinted at in this section.

Summary of load/store instructions seen so far:

lbz lhz lha lwz stb sth stw lbzx
lhzx lhax lwzx stbx sthx stwx lbzu lhzu
lhau lwzu stbu sthu stwu lbzux lhzux lhaux
lwzux stbux sthux stwux

ALU instructions – not exactly orthogonal
When an ISA is described, one word that is often used to describe a “ pretty” ISA is that
the ISA is orthogonal. This means that each opcode has all of the options of other,

EECS 373 course pack – mwb Page 8

similar opcodes. So if a store instruction supports byte-addressing, there should be a load
instruction which does the same. With respect to ALU instructions, the PowerPC does
not achieve this goal. Each operation seems to have its own quirks and particularities. In
some cases there is no avoiding this. A 32-bit multiply does generate a 64-bit number,
where a 32-bit and instruction does not. But there are cases that seem centered on
reducing the number of encodings needed to implement the ISA.

Most arithmetic and logical instructions have two versions in the PowerPC ISA::

z Register-register -- add r1, r2, r3 (meaning r1 (r2) + (r3))

z Immediate -- addi r1, r3, 5 (meaning r1 (r3) + 5)

Immediate operands are limited to 16 bits but are are always expanded to 32 bits for
processing. Arithmetic operations (+, -, *, /) sign extend the immediate while logical
operations (and, or, etc) zero extend the immediate.

A few instructions (add, and, or, xor) have a third version:

z Immediate shifted -- addis rB, rA, 5 means rB �(rA) + (5 || 0x0000)

Thus the instructions andis, oris, xoris enable twiddling of bits in upper half of a register.
The primary use of addis is to load a value outside the 16-bit immediate range.

Another interesting feature of the ISA is that for the instructions addi and addis (only!)
r0 is treated as a zero if it is in the Ra spot. This allows for a way to load 32-bit
immediates into a register using only two instructions. The simplified mnemonic for
addi and addis with rA=r0=0 is li (load immediate) and lis (load immediate shifted).

CConsider the following two ways for loading a full 32-bit value into a
register:
lis r3, 5 lis r3, 5
ori r3, r3, 99 addi r3, r3, 99
When are these two approaches not equivalent?

Subtraction is also a bit interesting in the PowerPC assembly language. The true subtract
instruction is subf, which is subtract from. In the instruction subf rD, rA, rB the value
computed is Rb-Ra. Thus Ra is subtracted from Rb. The simplified mnemonic sub uses
the subf instruction but swaps the order of rA and rB. So subf r4, r5, r6 is the same as
sub r4, r6, r5. Of course there are also immediate versions of these instructions, although
they are actually simplified mnemonics (subi for example). See page F-2 of the green
book for details on simplified mnemonics for subtract instructions.

Multiplication has its own quirks. The problem is that when you multiply two 32-bit
numbers you can get a 64-bit value. Since all of the registers are 32-bits in size, this
presents something of a difficulty. Some ISAs have a special register where the upper 32-
bits of the result are placed. Others cause the 64-bit result to be split across two
successive general purpose registers. The PowerPC ISA instead has two separate
instructions, one which computes the high word of the result, the other computes the low
word. The basic instructions are multiply high word (mulhw) and multiply low word

EECS 373 course pack – mwb Page 9

(mullw). Proper use of the overflow bit in the XER register (described below) can help
to determine if the mulhw instruction is needed.

Compared to the rest of the basic arithmetic instructions, division is very straightforward.
The two basic instructions are simply divw and divwu, for signed and unsigned division
of words.

Other instructions
In addition to load/store and ALU instructions there are many other instructions.
Obviously this includes branches. But it also includes comparison instructions and
instructions that manipulate special purpose registers. For the most part, we will
introduce these special purpose instructions as needed, but without the branching
instructions we are hard pressed to write useful assembly programs, so we will discuss
them here.

The basic instructions are the unconditional branch b, and the branch conditional, bc. If
you look in the green or white books (pages 8-23 and B-20 respectively) you will see that
the unconditional branch is fairly complex. The branch offset is a 24-bit field. It can be
treated as either a PC-relative address or an absolute address depending on a the value of
a bit in the instruction encoding (the AA bit). Further, it can can save it’s current PC to a
special purpose register (the Link Register, or LR). Having the old PC around is
obviously useful when branching to a function.

The bc instruction is even more complex. When writing assembly code, the simplified
mnemonics like blt and bne are used more often than the bc instruction itself.

DUsing the white or green book, figure out what the 32-bit encoding would
be for the instruction bne cr3, bob in the following code:

bne cr3, bob
nop
nop

bob: nop

Use relative addressing. bne is defined on page B-22 of the white book .
(Warning, this is quite hard and requires a bit of digging.)

PowerPC Architectural issues
Trying to summarize the PowerPC architecture in a few paragraphs is doomed to failure.
The green book spends hundreds of pages trying to do just that. Rather we will only look
at a few of the more important architectural issues at this time. Later in this course-pack
various other architecture issues will be discussed as needed.

Special Purpose Registers
If you did the bne cr3, bob problem above, you’ve probably realized that there are a
number of special registers in the PowerPC ISA. In fact, the MPC823 implementation

EECS 373 course pack – mwb Page 10

has a huge number of such registers. The number specified by the PowerPC ISA is only
large. If you look on page Index-11 of the green book under “ registers” you will see this
listing of registers. Of all these registers, we will only focus on a couple of the more
basic.

The CR register, as you likely learned above, is the basis for deciding if a branch should
be taken or not. In the LC computer seen in EECS 370 the branch format was something
like

BEQ 1 3 joe

Meaning that if registers 1 and 3 were equal in value the branch would be taken to the
label joe. In the PowerPC the same thing is accomplished by using a compare instruction
(cmp) and a bc instruction. The cmp instruction sets 4 bit of the 32-bit CR register.
Normally speaking on the MPC823 you will only use the first 4 bits, called CR0. (See
page 2-5 of the green book.) Those 4 bits are

z Negative (LT) – this bit is set when the result is negative.

z Positive (GT) – this bit is set when the result is positive (and not zero).

z Zero (EQ) – This be is set when the result is zero

z Summary overflow (SO) This indicates at an overflow occurred sometime since this be
was explicitly cleared. See page 2-11 of the green book for details.

So to do the same thing as the LC instruction seen above you could do:

cmpw r1, r3
beq joe

This may seem like something of a waste, but keep in mind instructions like add may
also affect the CR register (CR0 only though) and thus the compare is often unneeded.

Registers other than the CR also can be important. The XER, LR and CTR registers can
be important. You might want to read pages 2-1 to 2-11 of the green book, skiping over
the details about the FPSCR (which is for floating point numbers, something the MPC823
does not support.) You will find the LR very important later on, and the CTR, used
correctly, can make certain “ for” loops much easier to write in assembly.

Questions
 1. Which of the following would be associated with the ISA and which with a specific

implementation of the ISA?
 a) Size of the L1 cache
 b)Number of general purpose registers?
 c) Number of ALUs
 d)Maximum number of bytes of memory allowed (both!)
 e) Number of bits used for the immediate value in a load instruction

EECS 373 course pack – mwb Page 11

 2. In the base + displacement addressing mode for loads and stores, why is the
displacement only 16 bits?

 3. What value would be stored into what memory address given the following
instructions? Assume r0=4, r1=8, r2=16, and r3=257
 a) stb r1, 0(r2)
 b)stb r0, 4(r3)
 c) stb r3, 8(r20)
 d)stw r3, 8(r20)
 e) stwx r2, r3, r1
 f) stwx r0, r1, r2

 4. Indicate the value of any and all registers that change after the following instructions
are executed? Assume that at the start of each instruction, r0=4, r1=8 and that memory
address 0=0xFF while the other address are 1=1, 2=2, etc. (remember these are byte
addresses!) Give your answers as 8-digit hexadecimal numbers.
 a) lbz r3, 0(r1)
 b)lha r3, -4(r0)
 c) lhz r3, -8(r1)
 d)lwu r3, 4(r1)
 e) lhzu r3, -4(r0)

 5. Write PowerPC assembly code which performs the following instructions. Unless
otherwise noted, assume that all intermediate values will fit in a 32-bit integer.
 a) R5=R1+R2+R3.
 b) R5=(R1-R2) * R3
 c) R6=(R1+16)/12
 d) R3=(R3-R4)-R5 “ you may not use any simplified mnemonics.
 e) R6=(R1*R2) / R4. “ The final result will fit into R6 but the intermediate result may

 take more than 32-bits.

 6. Write a PowerPC assembly program that loads 100 words starting at memory location
0x03330000 and sums them in order (lowest memory address to highest). If any of the
intermediate additions cause overflow, R1 is set to a 1. Otherwise it is set to the value
of the sum of the 100 words. You may not use the CTR register.

 7. As #6 above, but you must use the CTR register for the main loop.

 8. Write a program which compares the values in R1 and R3 and sets CR7 and CR0 to
the result of this comparison.

EECS 373 course pack – mwb Page 12

IV.Memory Mapped I/O – the basics
How does one access I/O devices though a programming language? You’ve learned at
least one assembly language and I'll bet there wasn't a “ talk to disk drive” instruction.
Instead of developing special instructions to talk to I/O devices, the vast majority (all?)
microprocessor use memory mapped I/O. The idea is that load and store assembly
instructions (or other instructions which can talk to memory on CISC machines) can be
used to read and write messages to the devices.

Each device has one or more special purpose registers that are each mapped to some
address in memory. For example, imagine a mouse that needs to be able to report where
it has moved since that last time it was queried. Imagine that the mouse responded with a
16-bit field, and 8-bit two's complement number describing the amount moved in along
the X-axis, and the other 8-bits would be the two's complement value of the amount
moved along the Y-axis. So 0x0070 would imply the mouse was moved up along the Y-
axis but not at all along the X-axis. We could design the device so that it supplied this
information whenever memory address 0x0000E004 was loaded. That is, the data for that
load would not come from the DRAM but rather from the mouse.

Continuing the mouse example, say a half-word load is performed from 0x0000E004 and
the response was 0x0400. This might imply that the mouse has moved some positive
distance along the X-axis since it was last queried. If another half-word load is
performed immediately afterward, it may be that a 0x0000 would be returned as the
mouse likely would not have moved enough to be noticeable in the few tens of
nanoseconds between the two loads.

This example, while fairly simple, sheds light on a number of important issues regarding
memory-mapped I/O devices. First of all, consider what would happen if the data from
these requests were cached. Each time a read was performed the data would be the same
as the last time the device were read rather than the data that was supposed to be read
from the device. Obviously this is undesired behavior, and so we have to be sure that
those addresses mapped to I/O devices are marked as being uncacheable.

Secondly, notice that performing a read can have side-effects. In our mouse example, the
I/O device responds with the movement since the last time it was read from. This means
that in addition to responding with the requested data the future behavior of reads from
the device has been impacted. This is important because we now have to be careful about
issuing loads speculatively (for example if a branch has been predicted taken, we now
have to be sure that a load directed at an I/O device doesn't issue until the prediction has
been verified, otherwise we might lose some data. By the same token, we have to worry
about issuing loads of the proper size. If we load a word when we only need a half-word,
it is possible that the extra bytes loaded are from an I/O device. Again, we might lose
data from our mouse because of the extra read.

Lastly, and perhaps most obviously, memory is now volatile. Not volatile in the since
that the data goes away without power (although that might be true also), but rather
volatile in the since of the C-language keyword. Obviously this is closely related to being
uncacheable.

EECS 373 course pack – mwb Page 13

Simple memory-mapped I/O example
Say we have two simple devices. One is a button, the other a light-emitting diode (LED).
Associated with the button is an 8-bit register located at memory address 0xF0040004.
That 8-bit register returns a 0x01 if the button is pushed, and 0x00 if the button is not
currently pressed. Similarly, associated with the LED is an 8-bit register located at
memory location 0x000000FF. If a zero is written to that memory location the light is
turned off. Writing anything else to the register causes the light to come on (and stay on
until turned off). Write a PowerPC assembly program that turns the light on when the
button is pressed and turns it off when the button is not pressed. It should keep checking
forever.

lis r3, 0xF004
ori r3, 0x0004
li r4, 0x00FF

loop: lbz r5, 0(r3)
sb r5, 0(r4)
b loop

ENow write the code so that the button acts as a toggle. Each time you
press the button the light should change state. Start the light in the off
state.

Questions
 1. Assume you have the following I/O devices

+ A button which is memory mapped into a single byte of memory at location
0x0000F000. That byte will be a 1 if the button is pressed, a zero otherwise.

+ A keyboard that is memory mapped into a halfword of memory at location
0xFFFF0000. That halfword will be all ones if nothing has been pressed since
the last time a read was performed. Otherwise it will be the 8-bit ASCII value
for the character pressed (the 8 most significant bits will be 0’s in that case.)

+ An array of 8 LEDs that are memory mapped into a single byte at memory
location 0x0000F001. Each LED is mapped to 1 bit of that byte. If the
corresponding bit for an LED is 1, it will be turned on. Otherwise it will be off.

 a) Write a program that will turn on all of the LEDs if the last key pressed was an X.
(0x58).

 b)Write a program which lights all of the LEDs only if the key currently pressed is
different than the key which was last pressed.

 c) Write a program which displays the most recently pressed character (in ASCII) on
the LEDs only if the button is pressed. Otherwise all of the LEDs should be off.

EECS 373 course pack – mwb Page 14

Volatile (C-language definition): the variable may be affected/changed by outside
influences.

 2. In your own words, list some of the advantages of memory-mapped I/O over using
special purpose instructions to communicate with the I/O devices. List one or more
disadvantages.

EECS 373 course pack – mwb Page 15

V. Bus Protocols

When interconnecting different devices some type of protocol needs to be observed.
Traditionally the protocol used in an embedded system is that of the processor’s memory
bus. I/O devices are connected directly to the same interconnect that the memory system
uses. Looking back the discussion about memory-mapped I/O in Chapter 4, having the
I/O devices watching the memory bus makes sense. After all, the I/O devices are acting
as if they were memory devices – you can read and write to them using loads and stores,
just as is done with memory. So the I/O device can intercept loads and stores to those
addresses to which they are mapped.

Over time, there have been many variations on this basic theme. One of the more
interesting (and relevant) examples of such variation can be seen in desktop PC arena.
When the 486

EECS 373 course pack – mwb Page 16

I/O I/O I/O I/O

Processor Processor

Memory & I/O
Chipset

L2
Cache

L2
Cache

The “ Big” Picture

Front Side Bus
(Processor bus)

PCI bus
(I/O bus)

Back Side bus
(No name?)

Memory

Memory mapped I/O – again

VI.ABI and the Stack

VII.Interrupts

EECS 373 course pack – mwb Page 17

Flip-Flops MUX SIMASK SIPEND SIVEC

CORE

SIEL

8 16

16

IRQ

IRQ#[0:7]

LVL[0:7] 8

8

8

8

VIII.DMA – Direct Memory Access

IX.Counters and Timers

X.Analog and Digital Signal

EECS 373 course pack – mwb Page 18

XI.Bonus Topics

Memory types

Error correction

Parity

Error Correction Codes (ECC)

Viterbi algorithm for error correction

The basic idea:
z With each data bit, send a parity bit along also.
z The parity bit is the parity of all of the data sent so far.
z Assume that there are few bit errors. If the parity doesn’ t work out, figure out the

smallest number of bit flips which could have occurred to get to the current data.

Example:
Say we want to send the data 10001.
Using even parity we might actually send:
Notice that all of the data bits thus far, plus the current parity results in an even number
of ones. So at the first step we have 1 for data and 1 for parity. At the second step we
have 10 for data and 1 for parity. At the 5th and final step we have 10001 for data and 0
for parity (still even number of ones).

Say that in transmission two errors occur and we get:

Notice that both the data and the parity bit of the 3rd step have been changed.

We want to try to recover the data. Notice that the parity bits for the 4th and 5th step are
clearly wrong. Thus we know we had some error.

Topic shift

Lets consider writing the data and parity bits as a single decimal number with the data bit
as the MSB. So the code that was sent was 31112 and the code received was 31212.
Notice that in a legal encoding certain numbers cannot follow other numbers. For
example a 0 (that is 0 data 0 parity) cannot be followed by a 2. If it were the parity bit of
one of the two numbers must be wrong The basic reason is that if we have a 0, the parity
up to that time must have been even and so we put in a zero parity bit. If the next data bit

EECS 373 course pack – mwb Page 19

is a 1 then the parity bit that goes with that data bit must also be a 1. . If you don’ t
believe me try to find a case where a 2 can follow a 0.

In general 0 and 2 can be followed by 0 or 3 and 1 and 3 can be followed by a 1 or a 2.

We can draw a graph which shows the same thing as follows:

The numbers on the right indicate the starting point, the numbers on the left the finishing
point. So 0 followed by a 3 is legal, but 3 followed by a 0 is not.

Now, let us return to the original problem. 31212 has a transition from 2 to1 which is
clearly not allowed. So we have at least one error. Let us draw a graph for the entire
problem.

EECS 373 course pack – mwb Page 20

0

1

2

3

0

1

2

3

0

1

2

3

3 1 2 1 2

On the left the numbers indicate the value we would guess was sent at any given step. On
the top we have the values we actually received at that step.

So if we chose the following path (in blue) we would be claiming the actual message sent
was 11203.

Now we need to consider the weight associated with each path though this graph. We
weight each of the nodes based upon the number of bit flips required for our data received
to jive with the data we think was sent. For example, if we received a 0 (which is 00 as a
bit string) but we are guessing we got a 2 (10 as a bit string) then there must have been
one bit flip. So we associate each node with the number of bits that would have had to
have flipped to get the value we are guessing. Again, using the same example, we get:

Where the numbers in red are the number of bit flips which would have had to occurred.
So in our proposed solution (in blue) the answer number of bit flips which this solution
would require is 1+0+0+1+1=3. Not bad, but we happen to know there is at least one
valid solution which only has 2 bit flips. After all, we created our input that way.

So what we need to do is find the shortest path which traverses this graph. In general
there are somewhere around 2N different paths where N is the number of data bits (or
steps) sent. Searching all possible paths is possible for small values of N, but very
difficult for large values of N. (at N=100 the universe would end before you searched all
of the possible paths one at a time even using the greatest computer in the world.)

EECS 373 course pack – mwb Page 21

0

1

2

3

3 1 2 1 2

0

1 2

0

0 0

01

1

1 1

1

112

2

2

2

1
1

0

1

2

3

3 1 2 1 2

As such we take advantage of the principle of optimality and notice that if a given node is
in the shortest path, the shortest path to that node from the left, and from that node on the
right, must also be in the shortest path. Put another way, if we just start to traverse the
graph and, at each ” step” keep track of a shortest path to get there, we can solve the
problem in no time.

For example, at step 1 we can quickly figure out that starting at node 3 is of weight 0,
node 2 or 1 is of weight 1 and node 0 is of weight 2. During step 2 we consider the two
ways we could get to node 0. We must be coming from either 0 or 2 from step 1. The
weights associated with those two nodes is 2 and 1 respectively. So we know the
minimal way to get to node 0 in step 2 is from node 2 in step 1. The total weight is 2 (1
for node 2 of step 1 and 1 for node 0 of step 2.)

So from the above we get:

So our answer is 31232. Which sadly is not what was originally sent. But it is the best
guess. Remember, this algorithm doesn’ t promise much of anything. But it usually does
a good job.

Step1 Step2 Step 3 Step 4 Step 5
Received 3 1 2 1 2

path cost path cost path cost path cost path cost
Node0 0 2 20 2 320 2 3120 1 31200 2
Node1 1 1 31 0 311 2 3111 2 31111 4
Node2 2 1 32 1 312 0 3112 4 31232 1
Node3 3 0 23 2 323 3 3123 1 31202 2

Data 1 0 1 0 1
Parity 1 1 0 1 0

Data 1 0 0 0 1
Parity 1 1 1 1 0

Software engineering in embedded systems

EECS 373 course pack – mwb Page 22

Alphabetical Index
Embedded System 4
ISA 6

EECS 373 course pack – mwb Page 23

A To get to the other side!

B I don’t have a clue. Certainly this makes it easier to use a register as a pointer, but you’d think that using the register
indirect form with an offset of zero would allow this also.

C If the immediate being added has a 1 in the most significant bit or if the number loaded into the register with the lis
instruction has a 1 in the MSB, then the add instruction will treat the numbers as negative. This will cause the addi to
have a different result than the ori.

D This is the equivalent of bne 4, 14, bob. The 4 means “ branch if the condition is false.” This is the 001zy found in the
table on page B-21 of the white book. The 14 indicates the 14th bit of the Condition Register (CR). It is the Zero (also
called EQ) bit of CR3. This can be best seen on pages 2-5 and 2.6 of the green book, although hints of it can be found
on page 6-22 of the white book. So we get:

This corresponds to 0b010000 00100 01110 00000000000011 0 0 = 0x408E000C
The value of BD=3 is because the next instruction executed is BD instructions in front of the current PC. NIA and CIA
are defined in table 8-3 in the green book.

E Your answer may be different. I've not tested this so let me know if you think it doesn't work!

lis r3, 0xF004
ori r3, 0x0004
li r4, 0x00FF
li r5, 1 ; set r5. Next state for light is on.
li r6, 0 ; r6 is the last known button state. Assume

 unpressed at start
sb r6, 0(r4) ; turn off light!

loop: lbz r7, 0(r3) ; read button
cmp r7, r6 ; ? Has button changed?
beq loop ; if not, then nothing todo!
mr r7,r6 ; this is an or instruction (page F-23, green book)

; notice it does not change the CR.
blt change ; If r7<r6 button went from pressed to unpressed.

; light does not change.
sb r5, 0(r4) ; change light state
nor r5, r5, r5 ; \ bitwise_negate(A)+2 = !A if A starts
addi r0, r5, 2 ; / as either 1 or 0. Anyone have a better way?
b loop

 16 BO=4 BI=14 BD=3 AA=0 LK=0

0 5 6 10 11 15 16 29 30 31

