
Introduction
This tutorial introduces the following SingleStep features:

● Starting a debug session.

● Watching variables.

● Setting breakpoints.

● Modifying breakpoints.

● Stepping through a program.

● Changing variables as the program runs.

● Using the command line.

● Reading variables.

This tutorial utilizes the SingleStep Demonstration Software - Starter Kits for the 68K and Pow-
erPC processors. You can also follow this tutorial with Evaluation or Licensed Software. (To
follow this tutorial for the M•CORE processor, use the provided M•CORE example pro-
gram files with Evaluation or Licensed Software. See the Installation and Notes pamphlet and
Chapter 1.1 of the SingleStep Users Guide for installation information.) 
1



Installation
To install the SingleStep Demonstration Software (Starter Kit):

1. Run setup.exe from the CD-ROM. 

2. Select Demonstration (For installing Starter Kits or Lite software) on the Choose Product Install Type page, then
click on the Next> button.

On the next screen, select Starter Kits and click Next>.

A wide variety of Starter Kits are available for 68K and PowerPC processors.
2



3. Select PowerPC Starter Kit with Simulator Only and 68K Starter Kit with Simulator Only, then click on the
Next> button.

4. On the remaining installation dialogs, click on the Next> button to choose the default
selections.
3



SDS Products
The SingleStep debugging environment comes in a wide variety of configurations. Different
versions of SingleStep may be used to develop embedded systems based on 68K, PowerPC,
M•CORE or ColdFire processor families. SingleStep 7.4 runs on Windows 95 and 98, Win-
dows NT 3.5.1 and 4.0, Sun Solaris 2.5 and later, and HPUX 10.20 host platforms. (If sup-
port for Windows 3.1x, SunOS, or earlier versions of Sun Solaris or HPUX is required,
SingleStep 7.11 is still available for these platforms.)

SingleStep may be purchased in the following configurations:

Simulators. Available for 68K, PowerPC, and M•CORE. Simulators reproduce the behav-
ior of real or theoretical target hardware on your host platform. This allows you to debug
software before hardware is available or when the target hardware is not connected to your
host. The SingleStep Demonstration Software (Starter Kit) is a simulator with some features
disabled. (The simulator supplied with the CrossCode C/C++ compiler also has some fea-
tures disabled.)

Target Monitors. Available for 68K, PowerPC, M•CORE, and ColdFire. A target monitor
is a small program that runs on your target hardware. The monitor provides communication
between the target and host computer through a serial connection, a parallel connection, or a
ROM emulator.

On Chip Connections. Available for 68K, PowerPC, and ColdFire. Chips with BDM
(Background Debug Mode), JTAG, or OnCE have built-in mechanisms which give an exter-
nal debugger access to and control over to information on the CPU. Since the communica-
tion software is built into the CPU, these systems consume fewer target resources than target
monitors. These processors communicate to the host through small, inexpensive connectors. 

Emulators. Available for 68K, PowerPC, and ColdFire. Emulator debugging hardware is
connected between your host computer and your target hardware. Emulators govern the
communication between your host and target, so you can debug without consuming target
resources.

Kernel Awareness. Available for a wide variety of Real Time Operating Systems
(RTOSes). RTOS awareness allows SingleStep to see and interact with all tasks running in the
target system. Some RTOS packages also support Task Debug Mode, which allows you to
stop one task while others continue to run. You can develop task awareness for unsupported
or custom RTOSes using the Multi-Task Debugging Adaption Kit.
4



Getting Started
1. Start either SingleStep Demo (68K) or SingleStep Demo (PowerPC). 

◆ On Windows 95, 98, and NT 4.x, choose a SingleStep product from the SingleStep
7.4 submenu of the Programs submenu of the Start menu.

◆ On Windows NT 3.5.x double-click the SingleStep product icon in the SingleStep
7.4 program group in the Program Manager.

When you first open SingleStep, the Demo License Dialog appears; then when you click
Continue, the Debug Dialog opens.

2. Click the Browse button to choose an object file to debug. The 68K versions of
SingleStep can read .out files produced by the CrossCode C/C++ compiler, IEEE-695
files (IEEE-695 is only supported for C, not C++), or .elf files produced by other
compilers. The PowerPC versions of SingleStep read only .elf files.       

If you are using a 68K version, choose the file 
C:\sds74\tutorial\panel.out

If you are using a PowerPC version, 
choose the file
C:\sds74\tutppc\panel.elf
5



3. Click the Options tab. Make sure that all options except Require Exact Symbol Names are
selected. 

If you would like to know what any of these controls do, click the Help button. This
takes you to the on-line help for the Debug Dialog. Click the Options tab in the help win-
dow, then click in the help window on the control you want to know more about. 

4. Click the OK button in the Debug Dialog. SingleStep downloads the object file to the
target. In this case, the target is the Simulator. With other versions the target may be
actual hardware. SingleStep then runs the program on the target up to the first break-
point. The resulting Debug Status Dialog shows you what SingleStep did.    

68K
6



5. Click the Close button.

PowerPC
7



The SingleStep Debug Window
When you first start SingleStep, the Debug Window and the Watch Window open. (The Watch Window is
hidden behind the Debug Window.) Most of your basic debugging information will come from
these windows. The Debug Window uses three areas, called Panes, to show different information
about your object file. The large Pane with code in it is called the Source Pane. The smaller area
with functions in it is called the Stack Pane. The area with register IDs and values is called the
Register Pane. The picture below shows the Debug Window. The Watch Window has a single area where
the values of the variables are displayed. You will see how it works as you explore the panel pro-
gram.      

Debug Toolbar

Stack Pane

Register Pane

Breakpoint Icon

Program
Counter

Line Number

Display Mode
Buttons

Source Pane

Navigation Buttons
Debug Status Bar

Selected Location
8



The Panel Program
The program you downloaded to your target (panel.out or panel.elf) simulates a simple text read-
out on an LED display. The display is assumed to be an array of dots or pixels that can be
turned on and off by setting the proper bits in memory. A variable called panel simulates the
LED display with an array of ASCII characters. This variable represents lit pixels with the
character "#" and represents unlit pixels with a space.

1. Click the  (Globals) button in the toolbar. This opens the Globals Window.

2. Select the panel variable.  

68K PowerPC
9



3. Click the  (Add to Watch) button in the Globals Window. The Watch Window displays the
structure and content of panel as shown below.

panel is a 2 dimensional array of char defined as
char panel[HEIGHT][WIDTH*PANELSZ];

whereHEIGHT is 8 and each row is a NULL-terminated array of chars (that is, each row is a
string).

4. Click the  (Go) button. The Watch Window should look something like the picture
below.

It now shows the value of panel when the program stopped (at the end of the program).
To see panel as it changes we need to set some breakpoints.

Note: variables change color to indicate a change in value since the prior Sing-
leStep operation. The words "-- ALL DONE!" will be red.
10



5. To hide the individual lines of panel, click on the  (Close Expansion) button next to panel.
The Watch Window then shows that panel is an array, but does not show what is in the
array.

6. To view the lines in panel again, click the  (Expand) button.

The Watch Window displays any structured variable (array, struct, or ptr) in this manner. Sim-
ple variables (int, float, char, etc.) are displayed as a single line.

PowerPC
11



Seeing an Embedded Program Run
When you ran the panel program, you knew something happened because the panel variable was
shown in the Watch Window. If the program were designed to work with an actual LED display,
and you had the proper hardware with the LED display properly hooked up, you also would
have seen text moving across the display. Typically when you work on an embedded program,
the hardware does not provide much feedback as the program runs (because the hardware is
in development, or because it does not have a display). This (among other reasons) is why
you need SingleStep.

To see how SingleStep works, we’re going to use it to understand how the panel program
works. 

If the Globals Window is still open, select the window, then close it by typing the key combination
Ctrl-F4 (hold down the Ctrl key and press the F4 key).

1. Click the  (Reset) button, then click the OK button on the confirmation dialog. The
line

for ( ptr = head; ptr; ptr = ptr->next )

should be visible in the Debug Window. (If it is not, you might be displaying the program
in Mixed Mode or Disassembly Mode rather than Source Mode. Select Source Mode by clicking on the

 (Source Mode) button at the bottom of the Source Pane.)

2. Click the  (Close Expansion) button next to panel in the Watch Window.

3. ptr in this for statement is a linked list defined elsewhere as:

typedef struct list
{

struct list *next;
char text[20];

} list_item;

list_item *ptr;

Double-click on ptr in the expression ptr->next on the line
for ( ptr = head; ptr; ptr = ptr->next )

This highlights ptr.

4. Click the  (Add to Watch) button in the toolbar at the top of the Debug Window. This adds
the struct pointer ptr to the Watch Window.
12



5. Double-click on next in the variable ptr->next. This highlights ptr->next.

6. Click the  (Add to Watch) button. This adds the struct element ptr->next to the Watch Window.

7. Expand ptr and ptr->next one level by clicking the  (Expand) buttons. Neither of these
variables are initialized yet, so the display will be different on the two demonstration
simulators, as shown below.  

8. In the Source Pane, double-click on the line number next to

display_str( 0, ptr->text, 1 );

This inserts a  (Breakpoint) icon next to the line number.

68K

PowerPC
13



9. Click the  (Go) button. Notice the changes in ptr and ptr->next.    

ptr->text now has the value "SDS brings" or 0x10078 and ptr->next->text now has the value "you
the".

Also notice the  (Program Counter) icon in the Source Window moved from the initial stop
location to the current breakpoint.

10.Click the  (Go) button again. You can see ptr->next has been copied to ptr, and ptr->next
now has new values.

68K PowerPC
14



11.Click the  (Expand) button next to panel. You can now see the text which was previ-
ously in ptr->text displayed on the panel.

12.Click the  (Breakpoint) icon next to the  (Program Counter) icon. This opens the Modifying
Breakpoint Dialog.

13.Click the Advanced>> button. This expands the dialog box.
15



14.Select the Resume Execution checkbox.

15.Click the OK button. 

16.In the Source Pane, scroll down a few lines so the line

panel_rotate( -1 );

is visible. Insert another breakpoint by double-clicking on the line number next to
this line.

17.Open the Modifying Breakpoint Dialog for this new breakpoint, make the same change you
made on the other breakpoint, and click OK. 

18.Click the  (Reset) button, then click the  (Go) button. Now you can see the
entire panel program as it runs. The display in the Watch Window will simulate the actual
LED display on the real hardware.

Looking at the Details
You have now seen what the panel program does, but you have not yet seen how it works. To
do this we are going to step through the program.
16



1. Click the  (Reset) button. This sets the  (Program Counter) icon back to the start of
main.

2. Click the  (Step into) button. This runs one statement moving the  (Program Counter)
icon to the next executable statement. On the 68K simulator, this runs the
assignment ptr = ptr->next. The next executable statement is the test (on the same line) in
the for statement. On the PowerPC simulator, the next executable statement is the
display_str function.

3. If you are running the 68K simulator, click the  (Step into) button again. The
(Program Counter) icon moves to the display_str function call. 

If you are running the PowerPC simulator the  (Program Counter) icon already points to
the display_str function call.

Notice the status bar at the bottom of the Debug Window. The first item indicates the
source file. Up until this point, you have been looking at the file panel.c.

4. Click the  (Step into) button again. This time the  (Program Counter) moves to the first
statement of the display_str function. display_str is defined in the file panel2.c, so the Source
Pane now displays this file.   

You can look at panel.c again (or look at any other file linked into the object you are
debugging), by clicking on the  button next to the file name and choosing a file
from the list.

5. Continue clicking the  (Step into) button. As you go, read the comments above the
 (Program Counter) icon position to figure out what the statements do. Stop after about

10 to 15 clicks, when the  (Program Counter) icon is on the line:

*panelp++ = (bitmap & mask) ? ON: OFF;

6. Click the  (Step into) button until panel[0] changes from ""  to " #" . If the (Program
Counter) icon has not returned to the line with *panelp++, continue clicking the  (Step
into) button until it does.

Note: If you accidentally go too far, set a breakpoint next to the line with *panelp++, reset
and run the program, then click the  (Step into) button until you are at the right place.  

7. Add a breakpoint to the current line, and open the Modifying Breakpoint Dialog by clicking on
the  (Breakpoint) icon.  
17



8. Specify a Count of 7, and click OK.    

9. When you click the  (Go) button you will see the program build the first row of the
first character on the panel. The program stops when panel[1] is "#" . (If panel[1] is ""
you have not gone far enough. Click the  (Step into) button until panel[1] changes and
the  (Program Counter) icon returns to the line with *panelp++.)

How does the panel program do this? Just watching the program execute may not make this
obvious. To show what the program is doing, try the following:

1. Make the Watch Window a little taller.

2. Select ptr and press the right mouse button while the mouse is over the Watch Window.
This opens a pop-up menu.

3. Choose Remove from the pop-up menu. This removes ptr from the Watch Window.

4. Remove ptr->next from the Watch Window the same way. 

68K 

PowerPC
18



5. Select bitmap in the Stack Pane of the Debug Window.   

Press the right mouse button and select Add ’bitmap’ to Watch window from the popup menu.
This adds bitmap to the Watch Window. Add mask to the Watch Window the same way. The Watch
Window should now appear as shown below:   

6. Step through the program until panel[2] changes, observing what happens as you go. 

Notice that mask starts with a value of 0x40, which has a binary value of 01000000.
bitmap is a binary representation of one row of one character. Each step shifts the bit in
mask one column to the right. That is, as the program constructs a panel row, mask
changes from 0x40 to 0x20 (binary 00100000), then changes to 0x10 (binary
00010000), and so on down to 0x00 (binary 00000000). Meanwhile, bitmap stays
unchanged until the beginning of the next row.

Just before the first column in the next row, mask resets to 0x80 (binary 10000000),
and the sequence starts again with a new bitmap.

The 1 bit in mask thus acts as a pointer to the bit in bitmap that will be written to panel
next.
19



Variables and Commands
To see what is going on a little more clearly, we are going to modify a program variable
(bitmap), then set a breakpoint that triggers when (panel[3]) changes.

Note: This example illustrates the SingleStep scripting language by showing you how to
set a breakpoint that will trigger when a variable changes. It is a complex example com-
pared to the rest of this tutorial, and may look intimidating at first. The scripting lan-
guage is designed to be a powerful debugging tool that is easy to use if you are familiar
with programming languages. The Command Window is actually an implementation of a
UNIX-style C Shell, so if you are familiar with this type of UNIX shell you will be famil-
iar with the command language syntax.

1. Select bitmap in the Watch Window and choose Modify from the pop-up menu. This opens the
Evaluate/Modify dialog.

2. Change Value from 192 (binary 11000000) to 255 (binary 11111111), then click the OK
button.

Now we are going to run the program until panel[3] changes. The last time we set a breakpoint
like this, we guessed that we needed to go past the breakpoint 7 times before panel[2] would
change. This time we are going to explicitly specify that the breakpoint only triggers when
panel[3] changes. The following shows you just a little of the debugging power accessible from
the SingleStep command line.
20



1. Click the  (Command) button. This opens the Command Window. When you open the
Command Window, you may not have a prompt. This is OK. You can type commands any-
way, or you can press Enter to get a prompt. An empty command line with a prompt
looks like the line below.

SingleStep>

2. Type the following in the Command Window and press Enter.

set oldpanel = "`read -rY panel[3]`"

This sets the debugger variable oldpanel to the current value of the program variable
panel[3]: 

◆ The backticks (` ) tell SingleStep to evaluate the read statement before assigning a
value to the debugger variable. 

◆ The double-quote protects the value returned by the read statement. 
◆ The -r option tells SingleStep that the value of panel[3] might have changed since

the last time it was read. This forces SingleStep to reread the actual value. 
◆ The -Y option tells SingleStep to expand structures or arrays, thus reading panel[3]

as a string. 

Note: The SingleStep scripting language is case-sensitive. The -r option is differ-
ent from the -R option.

3. Now, in the Source Pane click on the  (Breakpoint) icon next to:

*panelp++ = (bitmap & mask) ? ON: OFF;

4. In the Modifying Breakpoint Dialog, click on the Advanced>> button, then type the following in
the When field under Advanced Options:

\"`read -rY panel[3]`\" != \"`echo $oldpanel`\"

Note: Make sure the spaces, double-quotes, and backticks (` ) are exactly as they appear
above; otherwise the parser may not interpret the statement correctly. 
21



 

Click on OK. The next time the program is run, it will stop when panel[3] changes.

This When statement is more complicated than most; however, with a little bit of
thought it is easy to decipher:

◆ There are two statements (a read and an echo) on either side of a conditional opera-
tor (!= ). Since the two statements are enclosed in backticks (` ), they are evaluated
before the not-equal condition (!= ). 

◆ The read statement returns the current value of panel[3]. 
◆ The echo statement returns the value of the debugger variable oldpanel (which was set

earlier). 
◆ Both statements return strings which have to be enclosed in double- quotes (" ) to

work with conditional operators. 
◆ Since the statement is being typed in a dialog box, not on the command line, the

double-quotes need to be preceded with the backslash character (\ ). 

When the current value of panel[3] is not equal to the saved value of panel[3], the break-
point will trigger.

5. Now we are ready to see what happens when we click the  (Go) button. Remember,
we changed bitmap so its value is 0xFF (binary 11111111). Click (Go). The program
stops when panel[3] is " " . panel[2] is now "########" .
22



Since setting this up was a little complicated we are going to change bitmap again, and use sim-
ilar commands to stop the program when panel[4] changes.

1. Change the value of bitmap from 112 (binary 01110000) to 7 (binary 00000111).
(Make sure there are no quotes around the 7.)

2. In the Command Window press the up-arrow key until the set command you typed earlier
appears. 

3. Change panel[3] in the command to panel[4], then press the Enter key.

set oldpanel=`read -rY panel[4]`

4. Change panel[3] in the When field of the breakpoint to panel[4], and click the OK button in
the Modifying Breakpoint Dialog.

\"`read -rY panel[4]`\" != \"`echo $oldpanel`\"

5. Click the  (Go) button. The program runs until panel[4] changes. Since we changed
bitmap to 7 (binary 00000111), panel[3] is now " ###"  (five spaces and three #
characters).

The Read Window

By now it should be fairly clear what bitmap and panel[] do. What does panelp do? To look at this

variable, we are going to use the Read Window.

1. Change the When condition in the breakpoint to stop when panel[2] changes. Reset the
program, then set oldpanel to the current value of panel[2]. Now run the program.

2. In the Source Pane, double-click on panelp, then click on the  (Add to Read) button. This
opens the Read Window with panelp displayed similarly to variables in the Watch Window.
Notice the address of panelp is different on the 68K and PowerPC.   

68k

PowerPC
23



3. Now also add panelp to the Watch Window.

4. Run the program until panel[2] changes again (set oldpanel to the current value of panel[2],
then click the  (Go) button). The current value of mask is 0x20 (binary 00100000),
and the current value of bitmap is 0xC0 (binary 11000000). Notice that the value
shown for panelp in the Watch Window has changed, but the value in the Read Window has not.
The Read Window is used to remember previous values of variables, while the Watch Window
is used to show current values of variables.

5. Change panelp back to the old value (0x4811 for 68K, or 0x10701 for PowerPC), then
run the program until panel[2] changes again. The # in the second column changed to a
space. Why did this happen?

The value of panelp controls where in panel[] the next character is written. By changing
panelp, we forced the character that would normally be written to the third position in
the array to be written to the second position instead.

6. Continue stepping through the program until panel[3] changes. Notice that panel[2] is
now missing a character (because we wrote both the second and third characters to
the second position in the array).

This concludes the Starter Kit Tutorial. You should now understand how the demonstration
program panel works and how to use the fundamental features of SingleStep. Several important
features were not covered here. These are covered in the main SingleStep manuals and the
on-line help.
24



Index
Symbols
.elf files 5
.out files 5

Numerics
68k support 4

A
Add to Read button 23
Add to Watch button 10, 12

B
background debug mode 4
BDM 4
Breakpoint icon 13, 15, 17, 21
buttons

Add to Read 23
Add to Watch 10, 12
Close Expansion 11
Command 21
Expand 11
Globals 9
Go 10, 14, 17, 18, 22, 23
Help 6
Reset 12, 17
Step into 17

C
chips supported 4
Close Expansion button 11
ColdFire support 4
Command button 21
Command Window 21, 23
connections 4

D
Debug Dialog 6
Debug Options 6

Debug Status Dialog 6
Debug Window 8, 19

illustration 8
status bar 17

Demo License Dialog 5
dialogs

Debug 5, 6
Debug Options 6
Debug Status 6
Demo License 5
Evaluate/Modify 20
Modifying Breakpoint 15, 17, 21

display modes 12

E
elf files 5
emulators 4
Evaluate/Modify Dialog 20
Expand button 11

G
getting help 6
getting started 5
global variables, listing 9
Globals Window 12
Go button 10, 14, 17, 18, 22, 23

H
Help button 6

I
icons

Breakpoint 13, 15, 17, 21
Program Counter 14, 15, 17

IEEE-69x files 5

J
JTAG 4

K
kernel awareness 4
25



M
M•CORE support 4
Modifying Breakpoint Dialog 15, 17, 21
Multi-Task Debugging 4

O
object files 6

panel programs 9
supported formats 5

on chip connections 4
OnCE 4
on-line help 6
operating systems

real time 4
supported 4

out files 5

P
panel program, description 9
panes

Register 8
Source 8

PowerPC support 4
processors supported 4
Program Counter icon 14, 15, 17

R
read statement 21
Read Window 23, 24
real time operating systems 4
Register Pane 8
Reset button 12, 17
RTOS 4

S
scripting language 20
simulators 4
Source Mode 12
Source Pane 8, 21
Stack Pane 19

status bar 17
Step into button 17

T
target monitors 4
Task Debug Mode 4

W
Watch Window 10, 13, 15, 23

adding variables to 10, 12
removing variables from 18

windows
Command 21, 23
Debug 8

illustration 8, 19
status bar 17

Globals 9, 12
panes 8
Read 23, 24
Watch 8, 23

adding variables to 10, 12
illustration 10, 15

changes displayed 13
removing variables from 18
 26



Manual: ©1982-1998 SDS.  All Rights Reserved

Software: © 1982-1998 SDS.  All Rights Reserved

Printing Revision: 100003-11

A notice of protection under copyright, trade secret and contract law may be printed from 
each tool via use of the -C option on the tool’s command line.

The use and copying of the Users Manual and Software are subject to the License Agreement 
packaged with this manual and/or software. Any other use is prohibited.

CrossCode® is a trademark of SDS.
SingleStep™ is a trademark of SDS.

M•CORE is a trademark of Mototola.
Windows® is a registered trademark of Microsoft.

UNIX® is a registered trademark of UNIX Systems Laboratories.

Written by Mark Stevens, Ananda Banttari, and Lance Lickus.



Contents
Introduction ......................................................................................... 1
Installation............................................................................................ 2
SDS Products........................................................................................ 4
Getting Started ..................................................................................... 5
The SingleStep Debug Window............................................................ 8
The Panel Program ............................................................................... 9
Seeing an Embedded Program Run..................................................... 12
Looking at the Details......................................................................... 16
Variables and Commands ................................................................... 20
The Read Window.............................................................................. 23
Index .................................................................................................. 25




	Introduction
	Installation
	SDS Products
	Getting Started
	The SingleStep Debug Window
	The Panel Program
	Seeing an Embedded Program Run
	Looking at the Details
	Variables and Commands
	The Read Window
	Index

