
Appendix F. Simplified Mnemonics F-1

Appendix F
Simplified Mnemonics
F0
F0

This appendix is provided in order to simplify the writing and comprehension of assembler
language programs. Included are a set of simplified mnemonics and symbols that define the
simple shorthand used for the most frequently-used forms of branch conditional, compare,
trap, rotate and shift, and certain other instructions. (Note that the architecture specification
refers to simplified mnemonics as extended mnemonics.)

F.1 Symbols
The symbols in Table F-1 are defined for use in instructions (basic or simplified
mnemonics) that specify a condition register (CR) field or a bit in the CR.

Table F-1. Condition Register Bit and Identification Symbol Descriptions

Symbol Value
Bit Field
Range

Description

lt 0 — Less than. Identifies a bit number within a CR field.

gt 1 — Greater than. Identifies a bit number within a CR field.

eq 2 — Equal. Identifies a bit number within a CR field.

so 3 — Summary overflow. Identifies a bit number within a CR field.

un 3 — Unordered (after floating-point comparison). Identifies a bit number in a CR field.

cr0 0 0–3 CR0 field

cr1 1 4–7 CR1 field

cr2 2 8–11 CR2 field

cr3 3 12–15 CR3 field

cr4 4 16–19 CR4 field

cr5 5 20–23 CR5 field

cr6 6 24–27 CR6 field

cr7 7 28–31 CR7 field

Note: To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a bit-number-
within-CR-field symbol can be used.

F-2 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Note that the simplified mnemonics in Section F.5.2, “Basic Branch Mnemonics,” and
Section F.6, “Simplified Mnemonics for Condition Register Logical Instructions,” require
identification of a CR bit—if one of the CR field symbols is used, it must be multiplied by
4 and added to a bit-number-within-CR-field (value in the range of 0–3, explicit or
symbolic). The simplified mnemonics in Section F.5.3, “Branch Mnemonics Incorporating
Conditions,” and Section F.3, “Simplified Mnemonics for Compare Instructions,” require
identification of a CR field—if one of the CR field symbols is used, it must not be multiplied
by 4. (For the simplified mnemonics in Section F.5.3, “Branch Mnemonics Incorporating
Conditions,” the bit number within the CR field is part of the simplified mnemonic. The CR
field is identified, and the assembler does the multiplication and addition required to
produce a CR bit number for the BI field of the underlying basic mnemonic.)

F.2 Simplified Mnemonics for Subtract Instructions
This section discusses simplified mnemonics for the subtract instructions.

F.2.1 Subtract Immediate
Although there is no subtract immediate instruction, its effect can be achieved by using an
add immediate instruction with the immediate operand negated. Simplified mnemonics are
provided that include this negation, making the intent of the computation more clear.

subi rD,rA,value (equivalent to addi rD,rA,–value)

subis rD,rA,value (equivalent to addis rD,rA,–value)

subic rD,rA,value (equivalent to addic rD,rA,–value)

subic. rD,rA,value (equivalent to addic. rD,rA,–value)

F.2.2 Subtract
The subtract from instructions subtract the second operand (rA) from the third (rB).
Simplified mnemonics are provided that use the more normal order in which the third
operand is subtracted from the second. Both these mnemonics can be coded with an o suffix
and/or dot (.) suffix to cause the OE and/or Rc bit to be set in the underlying instruction.

sub rD,rA,rB (equivalent to subf rD,rB,rA)

subc rD,rA,rB (equivalent to subfc rD,rB,rA)

Appendix F. Simplified Mnemonics F-3

F.3 Simplified Mnemonics for Compare Instructions
The crfD field can be omitted if the result of the comparison is to be placed into the CR0
field. Otherwise, the target CR field must be specified as the first operand. One of the CR
field symbols defined in Section F.1, “Symbols,” can be used for this operand.

Note that the basic compare mnemonics of PowerPC are the same as those of POWER, but
the POWER instructions have three operands while the PowerPC instructions have four.
The assembler recognizes a basic compare mnemonic with the three operands as the
POWER form, and generates the instruction with L = 0. The crfD field can normally be
omitted when the CR0 field is the target.

F.3.1 Word Comparisons
The instructions listed in Table F-2 are simplified mnemonics that should be supported by
assemblers for all PowerPC implementations.

Following are examples using the word compare mnemonics.

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in
CR0.
cmpwi rA,100 (equivalent to cmpi 0,0,rA,100)

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,100 (equivalent to cmpi 4,0,rA,100)

3. Compare rA and rBas unsigned 32-bit integers and place result in CR0.
cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

Table F-2. Simplified Mnemonics for Word Compare Instructions

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crfD,rA,SIMM cmpi crfD,0,rA,SIMM

Compare Word cmpw crfD,rA,rB cmp crfD,0,rA,rB

Compare Logical Word Immediate cmplwi crfD,rA,UIMM cmpli crfD,0,rA,UIMM

Compare Logical Word cmplw crfD,rA,rB cmpl crfD,0,rA,rB

F-4 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

F.4 Simplified Mnemonics for Rotate and Shift
Instructions

The rotate and shift instructions provide powerful and general ways to manipulate register
contents, but can be difficult to understand. Simplified mnemonics that allow some of the
simpler operations to be coded easily are provided for the following types of operations:

• Extract—Select a field of n bits starting at bit position b in the source register; left
or right justify this field in the target register; clear all other bits of the target register.

• Insert—Select a left-justified or right-justified field of n bits in the source register;
insert this field starting at bit position b of the target register; leave other bits of the
target register unchanged. (No simplified mnemonic is provided for insertion of a
left-justified field, when operating on double words, because such an insertion
requires more than one instruction.)

• Rotate—Rotate the contents of a register right or left n bits without masking.

• Shift—Shift the contents of a register right or left n bits, clearing vacated bits
(logical shift).

• Clear—Clear the leftmost or rightmost n bits of a register.

• Clear left and shift left—Clear the leftmost b bits of a register, then shift the register
left by n bits. This operation can be used to scale a (known non-negative) array index
by the width of an element.

F.4.1 Operations on Words
The operations shown in Table F-3 are available in all implementations. All these
mnemonics can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying
instruction.

Appendix F. Simplified Mnemonics F-5

Examples using word mnemonics follow:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.
extrwi rA,rS,1,0 (equivalent to rlwinm rA,rS,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.
insrwi rB,rA,1,0 (equivalent to rlwimi rB,rA,31,0,0)

3. Shift the contents of rA left 8 bits.
slwi rA,rA,8 (equivalent to rlwinm rA,rA,8,0,23)

4. Clear the high-order 16 bits of rS and place the result into rA.
clrlwi rA,rS,16 (equivalent to rlwinm rA,rS,0,16,31)

Table F-3. Word Rotate and Shift Instructions

Operation Simplified Mnemonic Equivalent to:

Extract and left justify immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right immediate insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left immediate clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n

F-6 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

F.5 Simplified Mnemonics for Branch Instructions
Mnemonics are provided so that branch conditional instructions can be coded with the
condition as part of the instruction mnemonic rather than as a numeric operand. Some of
these are shown as examples with the branch instructions.

The mnemonics discussed in this section are variations of the branch conditional
instructions.

F.5.1 BO and BI Fields
The 5-bit BO field in branch conditional instructions encodes the following operations.

• Decrement count register (CTR)
• Test CTR equal to zero
• Test CTR not equal to zero
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in branch conditional instructions specifies which of the 32 bits in the CR
represents the condition to test.

To provide a simplified mnemonic for every possible combination of BO and BI fields
would require 210 = 1024 mnemonics and most of these would be only marginally useful.
The abbreviated set found in Section F.5.2, “Basic Branch Mnemonics,” is intended to
cover the most useful cases. Unusual cases can be coded using a basic branch conditional
mnemonic (bc, bclr, bcctr) with the condition to be tested specified as a numeric operand.

F.5.2 Basic Branch Mnemonics
The mnemonics in Table F-4 allow all the common BO operand encodings to be specified
as part of the mnemonic, along with the absolute address (AA), and set link register (LR)
bits.

Notice that there are no simplified mnemonics for relative and absolute unconditional
branches. For these, the basic mnemonics b, ba, bl, and bla are used.

Table F-4 provides the abbreviated set of simplified mnemonics for the most commonly
performed conditional branches.

Appendix F. Simplified Mnemonics F-7

The simplified mnemonics shown in Table F-4 that test a condition require a corresponding
CR bit as the first operand of the instruction. The symbols defined in Section F.1,
“Symbols,” can be used in the operand in place of a numeric value.

The simplified mnemonics found in Table F-4 are used in the following examples:

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a
count loaded into CTR).
bdnz target (equivalent to bc 16,0,target)

2. Same as (1) but branch only if CTR is non-zero and condition in CR0 is “equal.”
bdnzt eq,target (equivalent to bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.
bdnzt 4 * cr5 + eq,target (equivalent to bc 8,22,target)

4. Branch if bit 27 of CR is false.
bf 27,target (equivalent to bc 4,27,target)

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target (equivalent to bcl 4,27,target)

Table F-4. Simplified Branch Mnemonics

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl
to CTR

Branch unconditionally — — blr bctr — — blrl bctrl

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition
false

bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
branch if CTR non-zero

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR,
branch if CTR non-zero
AND condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR,
branch if CTR non-zero
AND condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR,
branch if CTR zero

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR,
branch if CTR zero
AND condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR,
branch if CTR zero
AND condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

F-8 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-5 provides the simplified mnemonics for the bc and bca instructions without link
register updating, and the syntax associated with these instructions. Note that the default
condition register specified by the simplified mnemonics in the table is CR0.

Table F-5. Simplified Branch Mnemonics for bc and bca Instructions without Link
Register Update

Branch Semantics

LR Update Not Enabled

bc
 Relative

Simplified
Mnemonic

bca
Absolute

Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true bc 12,0,target bt 0,target bca 12,0,target bta 0,target

Branch if condition false bc 4,0,target bf 0,target bca 4,0,target bfa 0,target

Decrement CTR, branch if CTR nonzero bc16,0,target bdnz target bca 16,0,target bdnza target

Decrement CTR, branch if CTR nonzero
AND condition true

bc 8,0,target bdnzt 0,target bca 8,0,target bdnzta 0,target

Decrement CTR, branch if CTR nonzero
AND condition false

bc 0,0,target bdnzf 0,target bca 0,0,target bdnzfa 0,target

Decrement CTR, branch if CTR zero bc18,0,target bdz target bca 18,0,target bdza target

Decrement CTR, branch if CTR zero
AND condition true

bc10,0,target

bdzt 0,target bca 10,0,target bdzta 0,target

Decrement CTR, branch if CTR zero
AND condition false

bc 2,0,target bdzf 0,target bca 2,0,target bdzfa 0,target

Appendix F. Simplified Mnemonics F-9

Table F-6 provides the simplified mnemonics for the bclr and bcclr instructions without
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is CR0.

Table F-6. Simplified Branch Mnemonics for bclr and bcclr Instructions without
Link Register Update

Branch Semantics

LR Update Not Enabled

bclr
to LR

Simplified
Mnemonic

bcctr to CTR
Simplified
Mnemonic

Branch unconditionally bclr 20,0 blr bcctr 20,0 bctr

Branch if condition true bclr 12,0 btlr 0 bcctr 12,0 btctr 0

Branch if condition false bclr 4,0 bflr 0 bcctr 4,0 bfctr 0

Decrement CTR, branch if CTR
nonzero

bclr 16,0 bdnzlr — —

Decrement CTR, branch if CTR
nonzero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
nonzero AND condition false

bclr 0,0 bdnzflr 0 — —

Decrement CTR, branch if CTR
zero

bclr 18,0 bdzlr — —

Decrement CTR, branch if CTR
zero AND condition true

bclr 10,0 bdztlr 0 — —

Decrement CTR, branch if CTR
zero AND condition false

bcctr 0,0 bdzflr 0 — —

F-10 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-7 provides the simplified mnemonics for the bcl and bcla instructions with link
register updating, and the syntax associated with these instructions. Note that the default
condition register specified by the simplified mnemonics in the table is CR0.

Table F-7. Simplified Branch Mnemonics for bcl and bcla Instructions with Link
Register Update

Branch Semantics

LR Update Enabled

bcl Relative
Simplified
Mnemonic

bcla Absolute
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true bcl1 2,0,target btl 0,target bcla 12,0,target btla 0,target

Branch if condition false bcl 4,0,target bfl 0,target bcla 4,0,target bfla 0,target

Decrement CTR, branch if CTR
nonzero

bcl 16,0,target bdnzl target bcla 16,0,target bdnzla target

Decrement CTR, branch if CTR
nonzero AND condition true

bcl 8,0,target bdnztl 0,target bcla 8,0,target bdnztla 0,target

Decrement CTR, branch if CTR
nonzero AND condition false

bcl 0,0,target bdnzfl 0,target bcla 0,0,target bdnzfla 0,target

Decrement CTR, branch if CTR
zero

bcl 18,0,target bdzl target bcla 18,0,target bdzla target

Decrement CTR, branch if CTR
zero AND condition true

bcl 10,0,target bdztl 0,target bcla 10,0,target bdztla 0,target

Decrement CTR, branch if CTR
zero AND condition false

bcl 2,0,target bdzfl 0,target bcla 2,0,target bdzfla 0,target

Appendix F. Simplified Mnemonics F-11

Table F-8 provides the simplified mnemonics for the bclrl and bcctrl instructions with link
register updating, and the syntax associated with these instructions. Note that the default
condition register specified by the simplified mnemonics in the table is CR0.

Table F-8. Simplified Branch Mnemonics for bclrl and bcctrl Instructions with Link
Register Update

Branch Semantics

LR Update Enabled

bclrl
to LR

Simplified
Mnemonic

bcctrl
to CTR

Simplified
Mnemonic

Branch unconditionally bclrl 20,0 blrl bcctrl 20,0 bctrl

Branch if condition true bclrl12,0 btlrl 0 bcctrl 12,0 btctrl 0

Branch if condition false bclrl 4,0 bflrl 0 bcctrl 4,0 bfctrl 0

Decrement CTR, branch if CTR
nonzero

bclrl 16,0 bdnzlrl — —

Decrement CTR, branch if CTR
nonzero AND condition true

bclrl 8,0 bdnztlrl 0 — —

Decrement CTR, branch if CTR
nonzero AND condition false

bclrl 0,0 bdnzflrl 0 — —

Decrement CTR, branch if CTR zero bclrl 18,0 bdzlrl — —

Decrement CTR, branch if CTR zero
AND condition true

bdztlrl 0 bdztlrl 0 — —

Decrement CTR, branch if CTR zero
AND condition false

bclrl 4,0 bflrl 0 — —

F-12 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

F.5.3 Branch Mnemonics Incorporating Conditions
The mnemonics defined in Table F-4 are variations of the branch if condition true and
branch if condition false BO encodings, with the most useful values of BI represented in
the mnemonic rather than specified as a numeric operand.

A standard set of codes (shown in Table F-9) has been adopted for the most common
combinations of branch conditions.

Table F-9. Standard Coding for Branch Conditions

Code Description

lt Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point comparison)

Appendix F. Simplified Mnemonics F-13

Table F-10 shows the simplified branch mnemonics incorporating conditions.

Instructions using the mnemonics in Table F-10 specify the condition register field in an
optional first operand. If the CR field being tested is CR0, this operand need not be
specified. One of the CR field symbols defined in Section F.1, “Symbols,” can be used for
this operand.

The simplified mnemonics found in Table F-10 are used in the following examples:

1. Branch if CR0 reflects condition “not equal.”
bne target (equivalent to bc 4,2,target)

2. Same as (1) but condition is in CR3.
bne cr3,target (equivalent to bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than,” setting the link register.
This is a form of conditional “call.”
bgtla cr4,target (equivalent to bcla 12,17,target)

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 (equivalent to bcctrl 12,17)

Table F-10. Simplified Branch Mnemonics with Comparison Conditions

Branch Semantics

LR Update Not Enabled LR Update Enabled

bc
Relative

bca
Absolute

bclr
to LR

bcctr
to CTR

bcl
Relative

bcla
Absolute

bclrl
to LR

bcctrl
to CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or
equal

ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than
or equal

bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater
than

bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary
overflow

bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary
overflow

bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

F-14 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-11 shows the simplified branch mnemonics for the bc and bca instructions without
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is CR0.

Table F-11. Simplified Branch Mnemonics for bc and bca Instructions without
Comparison Conditions and Link Register Updating

Branch Semantics

LR Update Not Enabled

bc Relative
Simplified
Mnemonic

bca Absolute
Simplified
Mnemonic

Branch if less than bc 12,0,target blt target bca 12,0,target blta target

Branch if less than or equal bc 4,1,target ble target bca 4,1,target blea target

Branch if equal bc 12,2,target beq target bca 12,2,target beqa target

Branch if greater than or equal bc 4,0,target bge target bca 4,0,target bgea target

Branch if greater than bc 12,1,target bgt target bca 12,1,target bgta target

Branch if not less than bc 4,0,target bnl target bca 4,0,target bnla target

Branch if not equal bc 4,2,target bne target bca 4,2,target bnea target

Branch if not greater than bc 4,1,target bng target bca 4,1,target bnga target

Branch if summary overflow bc 12,3,target bso target bca 12,3,target bsoa target

Branch if not summary overflow bc 4,3,target bns target bca 4,3,target bnsa target

Branch if unordered bc 12,3,target bun target bca 12,3,target buna target

Branch if not unordered bc 4,3,target bnu target bca 4,3,target bnua target

Appendix F. Simplified Mnemonics F-15

Table F-12 shows the simplified branch mnemonics for the bclr and bcctr instructions
without link register updating, and the syntax associated with these instructions. Note that
the default condition register specified by the simplified mnemonics in the table is CR0.

Table F-12. Simplified Branch Mnemonics for bclr and bcctr Instructions without
Comparison Conditions and Link Register Updating

Branch Semantics

LR Update Not Enabled

bclr to LR
Simplified
Mnemonic

bcctr to CTR
Simplified
Mnemonic

Branch if less than bclr 12,0 bltlr bcctr 12,0 bltctr

Branch if less than or equal bclr 4,1 blelr bcctr 4,1 blectr

Branch if equal bclr 12,2 beqlr bcctr 12,2 beqctr

Branch if greater than or equal bclr 4,0 bgelr bcctr 4,0 bgectr

Branch if greater than bclr 12,1 bgtlr bcctr 12,1 bgtctr

Branch if not less than bclr 4,0 bnllr bcctr 4,0 bnlctr

Branch if not equal bclr 4,2 bnelr bcctr 4,2 bnectr

Branch if not greater than bclr 4,1 bnglr bcctr 4,1 bngctr

Branch if summary overflow bclr 12,3 bsolr bcctr 12,3 bsoctr

Branch if not summary overflow bclr 4,3 bnslr bcctr 4,3 bnsctr

Branch if unordered bclr 12,3 bunlr bcctr 12,3 bunctr

Branch if not unordered bclr 4,3 bnulr bcctr 4,3 bnuctr

F-16 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table F-13 shows the simplified branch mnemonics for the bcl and bcla instructions with
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is CR0.

Table F-13. Simplified Branch Mnemonics for bcl and bcla Instructions with
Comparison Conditions and Link Register Update

Branch Semantics

LR Update Enabled

bcl Relative
Simplified
Mnemonic

bcla Absolute
Simplified
Mnemonic

Branch if less than bcl 12,0,target bltl target bcla 12,0,target bltla target

Branch if less than or equal bcl 4,1,target blel target bcla 4,1,target blela target

Branch if equal beql target beql target bcla 12,2,target beqla target

Branch if greater than or equal bcl 4,0,target bgel target bcla 4,0,target bgela target

Branch if greater than bcl 12,1,target bgtl target bcla 12,1,target bgtla target

Branch if not less than bcl 4,0,target bnll target bcla 4,0,target bnlla target

Branch if not equal bcl 4,2,target bnel target bcla 4,2,target bnela target

Branch if not greater than bcl 4,1,target bngl target bcla 4,1,target bngla target

Branch if summary overflow bcl 12,3,target bsol target bcla 12,3,target bsola target

Branch if not summary
overflow

bcl 4,3,target bnsl target bcla 4,3,target bnsla target

Branch if unordered bcl 12,3,target bunl target bcla 12,3,target bunla target

Branch if not unordered bcl 4,3,target bnul target bcla 4,3,target bnula target

Appendix F. Simplified Mnemonics F-17

Table F-14 shows the simplified branch mnemonics for the bclrl and bcctl instructions with
link register updating, and the syntax associated with these instructions. Note that the
default condition register specified by the simplified mnemonics in the table is CR0.

F.5.4 Branch Prediction
In branch conditional instructions that are not always taken, the low-order bit (y bit) of the
BO field provides a hint about whether the branch is likely to be taken. See Section 4.2.4.2,
“Conditional Branch Control,” for more information on the y bit.

Assemblers should clear this bit unless otherwise directed. This default action indicates the
following:

• A branch conditional with a negative displacement field is predicted to be taken.

• A branch conditional with a non-negative displacement field is predicted not to be
taken (fall through).

• A branch conditional to an address in the LR or CTR is predicted not to be taken (fall
through).

Table F-14. Simplified Branch Mnemonics for bclrl and bcctl Instructions with
Comparison Conditions and Link Register Update

Branch Semantics

LR Update Enabled

bclrl to LR
Simplified
Mnemonic

bcctrl to CTR
Simplified
Mnemonic

Branch if less than bclrl 12,0 bltlrl 0 bcctrl 12,0 bltctrl 0

Branch if less than or equal bclrl 4,1 blelrl 0 bcctrl 4,1 blectrl 0

Branch if equal bclrl 12,2 beqlrl 0 bcctrl 12,2 beqctrl 0

Branch if greater than or equal bclrl 4,0 bgelrl 0 bcctrl 4,0 bgectrl 0

Branch if greater than bclrl 12,1 bgtlrl 0 bcctrl 12,1 bgtctrl 0

Branch if not less than bclrl 4,0 bnllrl 0 bcctrl 4,0 bnlctrl 0

Branch if not equal bclrl 4,2 bnelrl 0 bcctrl 4,2 bnectrl 0

Branch if not greater than bclrl 4,1 bnglrl 0 bcctrl 4,1 bngctrl 0

Branch if summary overflow bclrl 12,3 bsolrl 0 bcctrl 12,3 bsoctrl 0

Branch if not summary overflow bclrl 4,3 bnslrl 0 bcctrl 4,3 bnsctrl 0

Branch if unordered bclrl 12,3 bunlrl 0 bcctrl 12,3 bunctrl 0

Branch if not unordered bclrl 4,3 bnulrl 0 bcctrl 4,3 bnuctrl 0

F-18 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

If the likely outcome (branch or fall through) of a given branch conditional instruction is
known, a suffix can be added to the mnemonic that tells the assembler how to set the y bit.
That is, ‘+’ indicates that the branch is to be taken and ‘–’ indicates that the branch is not
to be taken. Such a suffix can be added to any branch conditional mnemonic, either basic
or simplified.

For relative and absolute branches (bc[l][a]), the setting of the y bit depends on whether the
displacement field is negative or non-negative. For negative displacement fields, coding the
suffix ‘+’ causes the bit to be cleared, and coding the suffix ‘–’ causes the bit to be set. For
non-negative displacement fields, coding the suffix ‘+’ causes the bit to be set, and coding
the suffix ‘–’ causes the bit to be cleared.

For branches to an address in the LR or CTR (bcclr[l] or bcctr[l]), coding the suffix ‘+’
causes the y bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

Examples of branch prediction follow:

1. Branch if CR0 reflects condition “less than,” specifying that the branch should be
predicted to be taken.
blt+ target

2. Same as (1), but target address is in the LR and the branch should be predicted not
to be taken.
bltlr–

F.6 Simplified Mnemonics for Condition Register
Logical Instructions

The condition register logical instructions, shown in Table F-15, can be used to set, clear,
copy, or invert a given condition register bit. Simplified mnemonics are provided that allow
these operations to be coded easily. Note that the symbols defined in Section F.1,
“Symbols,” can be used to identify the condition register bit.

Table F-15. Condition Register Logical Mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by

Appendix F. Simplified Mnemonics F-19

Examples using the condition register logical mnemonics follow:

1. Set CR bit 25.
crset 25 (equivalent to creqv 25,25,25)

2. Clear the SO bit of CR0.
crclr so (equivalent to crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.
crclr 4 * cr3 + so (equivalent to crxor 15,15,15)

4. Invert the EQ bit.
crnot eq,eq (equivalent to crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into
the EQ bit of CR5.
crnot 4 * cr5 + eq, 4 * cr4 + eq (equivalent to crnor 22,18,18)

F.7 Simplified Mnemonics for Trap Instructions
A standard set of codes, shown in Table F-16, has been adopted for the most common
combinations of trap conditions.

Table F-16. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U >U

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Note: The symbol “<U” indicates an unsigned less than evaluation will be performed. The symbol “>U” indi-
cates an unsigned greater than evaluation will be performed.

F-20 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The mnemonics defined in Table F-18 are variations of trap instructions, with the most
useful values of TO represented in the mnemonic rather than specified as a numeric
operand.

Table F-18. Trap Mnemonics

Trap Semantics
32-Bit Comparison

twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if not greater than twngi twng

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twlgei twlge

Trap if logically greater than twlgti twlgt

Trap if logically not less than twlnli twlnl

Trap if logically not greater than twlngi twlng

Appendix F. Simplified Mnemonics F-21

Examples of the uses of trap mnemonics, shown in , Table F-18follow:

1. Trap if register rA is not zero.
 twnei rA,0 (equivalent to twi 24,rA,0)

2. Trap if register rA is not equal to rB.
 twne rA, rB (equivalent to tw 24,rA,rB)

3. Trap if rA is logically greater than 0x7FF.
twlgti rA, 0x7FF (equivalent to twi 1,rA, 0x7FF)

4. Trap unconditionally.
trap (equivalent to tw 31,0,0)

Trap instructions evaluate a trap condition as follows:

• The contents of register rA are compared with either the sign-extended SIMM field
or the contents of register rB, depending on the trap instruction.

The comparison results in five conditions which are ANDed with operand TO. If the result
is not 0, the trap exception handler is invoked. (Note that exceptions are referred to as
interrupts in the architecture specification.) See Table F-19 for these conditions.

F.8 Simplified Mnemonics for Special-Purpose
Registers

The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather
than requiring it to be coded as a numeric operand. Table F-20 provides a list of the
simplified mnemonics that should be provided by assemblers for SPR operations.

Table F-19. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

F-22 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Following are examples using the SPR simplified mnemonics found in Table F-20:

1. Copy the contents of rS to the XER.
mtxer rS (equivalent to mtspr 1,rS)

2. Copy the contents of the LR to rS.
mflr rS (equivalent to mfspr rS,8)

3. Copy the contents of rS to the CTR.
mtctr rS (equivalent to mtspr 9,rS)

Table F-20. Simplified Mnemonics for SPRs

Special-Purpose Register

Move to SPR Move from SPR

Simplified
Mnemonic

Equivalent to
Simplified
Mnemonic

Equivalent to

XER mtxer rS mtspr 1,rS mfxer rD mfspr rD,1

Link register mtlr rS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DSISR mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr 22,rS mfdec rD mfspr rD,22

SDR1 mtsdr1 rS mtspr 25,rS mfsdr1 rD mfspr rD,25

Save and restore register 0 mtsrr0 rS mtspr 26,rS mfsrr0 rD mfspr rD,26

Save and restore register 1 mtsrr1 rS mtspr 27,rS mfsrr1 rD mfspr rD,27

SPRG0–SPRG3 mtspr n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

Address space register mtasr rS mtspr 280,rS mfasr rD mfspr rD,280

External access register mtear rS mtspr 282,rS mfear rD mfspr rD,282

Time base lower mttbl rS mtspr 284,rS mftb rD mftb rD,268

Time base upper mttbu rS mtspr 285,rS mftbu rD mftb rD,269

Processor version register — — mfpvr rD mfspr rD,287

IBAT register, upper mtibatu n, rS mtspr 528 + (2 * n),rS mfibatu rD, n mfspr rD,528 + (2 * n)

IBAT register, lower mtibatl n, rS mtspr 529 + (2 * n),rS mfibatl rD, n mfspr rD,529 + (2 * n)

DBAT register, upper mtdbatu n, rS mtspr 536 + (2 *n),rS mfdbatu rD, n mfspr rD,536 + (2 *n)

DBAT register, lower mtdbatl n, rS mtspr 537 + (2 * n),rS mfdbatl rD, n mfspr rD,537 + (2 * n)

Appendix F. Simplified Mnemonics F-23

F.9 Recommended Simplified Mnemonics
This section describes some of the most commonly-used operations (such as no-op, load
immediate, load address, move register, and complement register).

F.9.1 No-Op (nop)
Many PowerPC instructions can be coded in a way that, effectively, no operation is
performed. An additional mnemonic is provided for the preferred form of no-op. If an
implementation performs any type of run-time optimization related to no-ops, the preferred
form is the no-op that triggers the following:

nop (equivalent to ori 0,0,0)

F.9.2 Load Immediate (li)
The addi and addis instructions can be used to load an immediate value into a register.
Additional mnemonics are provided to convey the idea that no addition is being performed
but that data is being moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value (equivalent to addi rD,0,value)

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD.
lis rD,value (equivalent to addis rD,0,value)

F.9.3 Load Address (la)
This mnemonic permits computing the value of a base-displacement operand, using the
addi instruction which normally requires a separate register and immediate operands.

la rD,d(rA) (equivalent to addi rD,rA,d)

The la mnemonic is useful for obtaining the address of a variable specified by name,
allowing the assembler to supply the base register number and compute the displacement.
If the variable v is located at offset dv bytes from the address in register rv, and the
assembler has been told to use register rv as a base for references to the data structure
containing v, the following line causes the address of v to be loaded into register rD:

la rD,v (equivalent to addi rD,rv,dv

F.9.4 Move Register (mr)
Several PowerPC instructions can be coded to copy the contents of one register to another.
A simplified mnemonic is provided that signifies that no computation is being performed,
but merely that data is being moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS (equivalent to or rA,rS,rS)

F-24 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

F.9.5 Complement Register (not)
Several PowerPC instructions can be coded in a way that they complement the contents of
one register and place the result into another register. A simplified mnemonic is provided
that allows this operation to be coded easily.

The following instruction complements the contents of rS and places the result into rA.
This mnemonic can be coded with a dot (.) suffix to cause the Rc bit to be set in the
underlying instruction.

not rA,rS (equivalent to nor rA,rS,rS)

F.9.6 Move to Condition Register (mtcr)
This mnemonic permits copying the contents of a GPR to the condition register, using the
same syntax as the mfcr instruction.

mtcr rS (equivalent to mtcrf 0xFF,rS)

